6. Origin of the Earth

- I. Planets appear to have come from a disk of matter that circled the early sun show figure
 - A. particles in the solar nebula clumped together to form planetesimals (small proto-planets)
 - 1. planetesimals collided to form larger planets accretion
 - B. formation also lead to a "fractionation" of materials among the planets
 - 1. rocky terr planets form from metals and oxides

Table 3-11 Broecker

- C. age of planets
 - 1. oldest rocks on earth ~4.4 by old
 - a. dating of zircon grains
 - 2. planet actually appears to be older \sim 4.6 by
 - 3. this actually tells the time since x'tallization
 - 4. solar system formed ~10-100 my earlier
 - 5. time since x'tallization. \approx age of planets
- II. Composition of the early earth
 - A. present day earth is layered

show Figure

- 1. liquid outer core and solid inner core predom. Fe and Ni
- 2. mantle silicate material
- 3. crust continental and oceanic
- 4. how did segregation occur?
- B. Planetary formation
 - 1. initial accretion likely homogeneous
 - a. formation of small planetesimals (1- 10 km radii)
 - b. non-gravitational forces
 - c. weak van der Waal's binding
 - 2. eventually they start to grow by gravitational attraction
 - a. from protoplanets the size of Mercury or Mars
 - 3. later on collision of large planetesimals or protoplanets increase planetary size
 - 4. for Earth some may have been so large as to melt large portions of the early Earth
 - 5. allowed Ni and Fe to separate and form the core
 - a. extensive melting leads to the formation of a terrestrial magma ocean
 - 6. these processes also played a role in bringing water and other volatiles to the Earth
- C. chemical composition of the Earth and its components shows the evidence of this melting and chemical fractionation and separation

 Table 5-3 Broecker
 - 1. assume the early Earth started out with roughly the composition of a chondritic meteorite
 - 2. mantle depleted in Fe
 - 3. separation of Ni/Fe core during melting
- D. formation of crustal material from mantle leads to additional segregation
 - 1. partial melting of mantle material
 - 2. crustal material becomes enriched in Na, Si, and Al

show next Table 5-3

- 3. depleted in Mg
- 4. further fractionation for granite than basalt
 - a. formation of continental vs. oceanic crust

1

III. Formation of the crust

- A. chemical differences in continental vs. oceanic crust show Bowen's reaction sequence
- B. continental crust appears to form from the repeated recycling and partial melting of mantle material and oceanic crust
 - 1. repeated heating, cooling, subsidence, burial and repeated melting
 - 2. leads to a distillation/segregation of lighter granitic material from heavier oceanic crust and mantle
 - 3. also leads to chemical separation of elements
- C. age differences as well for these 2 types of crust
 - 1. oceanic basalt generally much younger
 - 2. oldest material ~100 my
 - 3. continental crust is as old as 3.8 by
- D. continental crust is also lighter

show my figure

- 1. $\rho = 2.7$ g/cm³ vs. 2.8 for oceanic crust and 3.3 for mantle material
- 2. recent studies also suggest that heating of continental crust may contribute to its buoyancy
- E. age and composition of the oceanic crust controlled by plate tectonics and associated mantle convection cells

IV. Timing show figure

- A. Major period of accretion
 - 1. first $\sim 10-30 \text{ my}$
 - 2. once thought to be first ~100 millions years
 - 3. recent evidence suggests the planet cooled more quickly
 - 4. water begins to accumulate on the Earth's surface
 - 5. began to form crustal material/features
- B. early history of the Earth generally thought to be a period of heavy bombardment by meteorites and small planetessimals
 - 1. up to \sim 3.8 bybp
 - 2. similar to processes that ultimately formed the moon from the Earth
 - 3. this bombardment continued to bring water and other volatiles to Earth
 - a. helped oceans and atmosphere to continue to grow