10 Evolution of the Oceans

- I. Chemical evolution of the oceans
 - A. concerned with where water and salts come from
- II. Origin of water in the oceans

show timeline

- A. original source of this water and other gasses (CO₂ etc.) may not have been the material that formed the original Earth
- B. recent work suggests that volatile-rich comets from the outer (colder) parts of the solar system may have provided these materials early in the Earth's history
 - 1. process known as impact degassing
 - 2. shock-induced degassing of volatiles from these comets
 - 3. occurred during the period of heavy bombardment
- C. early volcanic activity also likely played a small role in contributing these volatiles
 - 1. similar processes still occur today hot springs, hydrothermal vents
- D. in addition to water this degassing also added other volatiles elements to the early earth's surface (atmosphere)
 - 1. Cl (as HCl), N (as N_2), S (as H_2S), and CO_2
 - a. "excess volatiles" Rubey (1940's)
 - 2. their abundance on the earth's surface was greater than that which could be accounted for by weathering of igneous rocks.
 - 3. most were initially found as gasses although most now reside in crust or oceans
 - a. only N is still predominantly found in the atmosphere
- III. Initial history of the ocean (Hadean 4.6 to 3.8 bybp)
 - A. after period of heavy bombarment the Earth's surface became more quiescent
 - 1. condensation of water vapor from atm leads to the formation of the oceans
 - B. Hadean thought to end as moderate conditions began to occur on the Earth's sfc.
 - 1. 3.8 by boundary based on Isua metasediments
 - 2. generally taken to be evidence for water-laid sediments and early continental land masses
 - C. zircon results suggests this may have occurred earlier

zircon data

- 1. liquid water may have existed much earlier
- trace elements in these zircons also provides early evidence for the formation of cont. crust
 color timeline
- 3. early Earth may have become quiescent earlier than once thought
- IV. Early oceans (regardless of time of formation)
 - A. oceans are initially fairly acidic as acidic excess volatiles in the atm. began to dissolve in the oceans
 - B. these began to react with basic igneous rocks
 - C. cause a pH rise as a result of these weathering rxns.
 - 1. titrate the acids in the excess volatiles
 - D. rxn of interest:
 - 1. cation-rich Al-silicates + $H^+ \rightarrow$ cation poor-clays + SiO_2 + diss. cations
 - E. protons came from these acidic excess volatiles

- 1. left behind the anions (Cl⁻, S⁻² and HCO₃ ⁻)
- F. these anions and the cations weathered from rocks led to an increase in the salt content of the early oceans.
 - 1. assuming present-day weathering rates this could have occurred fairly rapidly
 - a. 100's of millions of years
- G. as the pH rose above approx. 7.5, carbonate minerals (CaCO₃) began to ppt.
 - 1. began to buffer the pH of the oceans
 - a. biol. or chem ppt.?
 - b. Stromatolites

strom. picture

- 2. regardless of mechanism this led to a large drop in atmos. CO₂
- 3. initial atmosphere likely had a much higher total pressure and partial pressure of CO₂
- 4. most of this CO₂ now sequestered in carbonate rocks.
- V. With the onset of these reactions (weathering, carbonate buffering) it appears that the cation concentration of the oceans reached a "steady state"
 - A. "steady-state" not a chemical equilibrium
 - 1. inputs equal outputs
 - 2. concentrations remains constant
 - B. over the last 700 my the concentrations of the major ions in seawater have probably not changed by more than a factor of 2 (2x or 0.5x their present amounts).
 - 1. seawater composition constrained by the distribution of evaporite minerals in the geologic record.
 - 2. major changes in seawater composition would lead to a different evaporite mineral sequence
- VI. Major differences between ancient ocean and present ocean
 - A. surface waters were much warmer ~50°C
 - B. ancient ocean had no dissolved oxygen (no free O₂ in the atm.)
 - C. sulfate content much lower
 - 1. sulfur occurred primarily as H₂S (ancient) rather than as SO₄ (as it does today)
 - D. CO₂ much higher than it is today as a result pH was lower
 - E. Fe existed as dissolved Fe(II)
 - 1. once oxygen concentrations began to rise on the Earth occurred the iron was oxidized to Fe(III) which forms an extremely insoluble oxide.
- VII. Controls on chemical composition of seawater
 - A. assume that rivers are the predominant source of materials to the oceans
 - 1. can we use river data to estimate fluxes of major ions to oceans
 - B. what controls the chemistry of the oceans?
 - 1. early models of the ocean formation assumed that the oceans formed by one way rxns.
 - a. igneous rock + "excess" volatiles → seawater + sediments + air
 - 2. get good agreement (with regard to concentrations of non-volatiles)
 - a. however the process occurs much too rapidly given the age of the ocean
 - b. see the calculation on p. 92 of text

- c. calculation actually gets you the average residence time of salt in the oceans (~100 my)
- 3. implies that crustal materials are being recycled
 - a. tectonic/rock cycle
 - b. materials are being brought to the ocean primarily by weathering reactions
 - c. eventually removed and recycled back into the crust
 - d. consistent with what we talked about earlier regarding an early period of unidirectional change on the Earth and a later period where recycling processes were more important.
- C. further evidence for this type of recycling comes from comparing the composition of river water and seawater.
 - 1. comparison indicates that seawater is not simply concentrated river water
 - a. look at rel. proportions of major ions in **Table**
 - 2. such a process would lead to the formation of a highly alkaline (pH 10) soda lake similar to the Dead Sea or the Great Salt Lake.
- D. in addition to the differences in pH the proportion of cations in such a body would be vastly different than that which is observed in the oceans.
- E. these recycling processes also affect different elements differently
 - 1. lead to different relative concentrations of river water vs. seawater
 - 2. also lead to different residence times for the major ions in seawater

VIII. Source of major ions to seawater

- A. the major source of most cations and anions to the oceans is rivers.
 - 1. the source of these ions are weathering reactions which occur on continents.
 - 2. similar to the original processes that initially led to an increase in the salinity of the oceans
- B. mechanical and chemical weathering
 - 1. mechanical weathering breaks materials into smaller pieces.
 - a. some gets transported to oceans as part. material
 - 2. chemical weathering
 - a. weathering of ionic materials (dissolution)- calcite, halite, etc.
 - b. weathering of rocks
 - (i) a type of acid-base titration
 - (ii) carbonic acid (from the atmosphere) plus basic igneous rocks
 - re-write weathering equation
 - 3. end-products are cations, diss. silica, and clays, bicarbonate
 - 4. look at avg. comp. of river water- bicarbonate is a major anion
- C. products of weathering are clay minerals
 - 1. disordered Al-silicates
 - 2. these are carried to the oceans
 - a. detrital material or "red clays"
 - b. simply pass through the system from continents to marine sediments
- D. a variety of processes are responsible for the removal of these elements from the oceans to maintain steady state conditions
- IX. Why are river water and seawater so different?

Table

- A. different both in absolute as well as relative concentrations
 - 1. rw is dominated by Ca²⁺ and bicarbonate
 - 2. sw dominated by Na⁺ and Cl^{-\(\)}
- B. also has been observed that the major ion composition of seawater has remained fairly constant over long periods.
- C. we therefore assume that the ocean is in steady-state with respect to these major ions.
 - 1. Σ inputs = Σ outputs
 - a. concentration doesn't change with time (dC/dt = 0).
 - b. not quite the same as thermodynamic equilibrium.
 - 2. using a one box model can define residence time (τ)
 - a. $\tau = A_T/(dA/dt)$
 - b. total amount in the ocean divided by either the total input or ouput rate
 - (i) if more than one input/removal term you need to sum all inputs/removals
 - (ii) τ is the average time an element spends in the ocean before it is removed.
 - c. τ is also a measure of the reactivity of an element
 - (i) short τ = reactive; long τ = less reactive
- D. Different elements in seawater have different residence times

show first Table

- 1. examples: τ (Na⁺) = 5.5 x 10⁷ yr, τ (Ca²⁺) = 8.3 x 10⁵ yr, τ (Si) = 1.8 x 10⁴ yr
 - a. need to know
 - (i) vol. of ocean 1.4×10^{21} liter
 - (ii) annual river flow 4.6 x 10¹⁶ l/yr
 - (iii) average rw and sw calculations

$$\tau_{Na} = \frac{(468)(1.4x10^{21})}{(0.26)(4.6x10^{16})} = 5.5x10^7 yr$$

$$\tau_{Ca} = \frac{(10.3)(1.4x10^{21})}{(0.38)(4.6x10^{16})} = 8.3x10^5 yr$$

- b. order of reactivity is Si > Ca > Na
- c. consistent with what we know about the oceans
- d. Si and Ca used by organisms to make shells while Na is unreactive
- e. τ (Ca) > τ (Si) because of differences in their input and reactivity in the ocean
- f. compare with original calculation of the age of the oceans
- 2. because most of the major ions in seawater are relatively unreactive they have long residence time.
 - a. this allows them to "accumulate" in the ocean
 - (i) large A_T in spite of small input (i.e. conc. in river water)
 - b. also helps explain constancy of composition of seawater
 - (i) Marcet's principle
 - (ii) [Ion]/Sal or [Ion]/[Cl] is a constant in the oceans
 - c. τ of most major elements is substantially larger than avg. mixing time of the ocean (500-1000 yr)
 - d. all inputs are well mixed
 - e. don't see significant vertical or horizontal variation of most major ions
- 3. salinity variations controlled largely by evaporation or precipitation salinity map