Oceans Processes

I. Oceans A. cover over 75% of the Earth's sfc.	ocean picture
 B. cycling in the ocean important for several elements 1. couples relatively "rapid" atmos. & oceanic cycles w/ long term tectonic 2. these cycles ultimately involve burial in marine sediments C. plays an important role in regulating atmos CO₂ D. important in heat transport 	cycles
II. can think of the ocean as 2 boxes A. thin (~50-100 m) sfc. mixed layer 1. sunlight penetrates	Fig. 8.9
 net primary prod./photosynthesis here drives many oceanic biogeochem. OM produced here sinks into deep ocean where it is remineralized important in surface heat transport deep ocean 	cycles
 most of the volume of the ocean (>90%) isolated from the sfc for ~500-1000 yr average mixing time of bottom waters important in terms of understanding the role of the oceans in the uptake of 	of atmos. CO_2
C. processes within each "box" as well as between boxes are importantD. these ocean zones are defined by density differences	Fig. 5-6
III. Surface currents	
A. at a first order level controlled by wind pattern	Fig. 5-1
 friction between ocean and atmos. More complex real-world circulations several factors are important including the position of continents 	Fig. 5-2
C. Ekman transport 1. controlled by friction between surface ocean and atmos. and the Coriolis 2. pushes water to the center of the gyre	Fig. 5-3 effect
3. leads to regions of water convergence and divergence a. divergence leads to upwelling – more later D. geostrophic flow	Fig. 5-4
 due to the interaction between the pressure gradient associated with Ekm transport/convergence and Coriolis effect 	an
E. leads to the broad general subtropical gyres 1. vorticity effects also lead to further asymmetry in the current flow	back to 5-2
 volticity checks also lead to further asymmetry in the current flow western boundary currents (Gulf Stream, Kuroshio current) tend to be fas more narrow eastern boundary currents are slower and more diffuse 	st-flowing and
 IV. Within the deep ocean, circulation processes are also important A. ocean conveyor belt 1. bottom water primarily forms in N Atl and flows thru the deep ocean 	Fig. 5-12

- 2. forms by the cooling and sinking of sfc water (warm Gulf Stream)
- 3. releases heat in the process
 - a. plays a major role in the global and local heat and water budget
 - b. works in conjunction with atmos processes to moves heat globally
- 4. plays an important role in regulating climate
 - a. important in glacial-interglacial cycles
- 5. moves salt and nutrients thru the deep ocean
- 6. flows along constant density lines

Fig. 5-10 w/radiocarbon overlay

a. see evidence of thermohaline circulation with radiocarbon results

V. Material transport/elemental cycling in the oceans

Fig. 8-9

A. primary production produces biogenic material

organic matter

a. nutrients (N and P) also "fixed" into this organic matter

- 2. biogenic opal (silica) and calcite
 - a. hard parts of organisms
- 3. processes strip nutrients out of the surface waters

a. concs are quite low in the surface ocean

box fig. 8-1

Redfield ratio slide

- B. living OM eventually dies detritus
- C. part. material transported from sfc. to deep

back to Fig. 8-9

- 1. often referred to as the biological pump
- 2. leads to transport of materials from sfc. to deep ocean
- D. dissolution/remineralization of these particles occurs in the deep oceans
 - 1. OM remineralization and dissolution of inorganic biogenic material
- E. particles continually sink into BW as it moves along the deep ocean **Broecker figure**
- F. bottom waters continually "pick up" the end products of these rxns

Fig. 8-11

- 1. bottom waters become a repository for the soluble remineralization end-products
- 2. oxygen is also consumed
- G. bottom water nutrients concs increase in several ways

animated nitrate profile

- 1. vertical and horizontal factors
- 2. vertical concs increase with depth (esp. upper 1000 m) as a result of we remineralization
 - a. vertical mixing
- 3. horizontal nutrients accumulate along flow path of bottom waters
- 4. as OM is remineralized in the water column inorganic nutrients accumulate in the bottom waters
 - a. nitrate, phosphate, silicate and carbonate accumulate
 - b. oxygen decreases
- 5. carbonate/CO₂ accumulation occurs from both OM remineralization and calcite dissolution
 - **a.** leads to BW that is super-sat'd wrt CO₂

show pCO₂ depth profile

b. more later

VI. Upwelling

- A. returns water and dissolved materials to the sfc.
- **B.** completes oceanic cycles

next Fig. 8-9

- C. bring cold, nutrient-rich waters from below the thermocline back up to the surface
 - 1. see upwelling in maps of surface temperature and nutrients for the oceans sfc. T map
 - 2. causes enhanced productivity in the upwelling region.
- D. this process is important in terms of balancing the flow of nutrients in the oceans.
 - 1. critical for sustaining surface ocean productivity
 - a. internal cycling of nutrients more important than external sources
 - 2. upwelling also brings waters supersaturated with CO₂
 - a. important in terms of the oceanic carbon cycle
 - b. upwelling regions act as a source of CO₂ to the atm
- E. upwelling is caused by both wind action and surface current flow
 - 1. tend to be coastal features
 - 2. see upwelling along both coasts but for different reason
- F. surface current driven upwelling
 - 1. interaction of surface currents and shallow topography
 - 2. western boundary currents such as Gulf Stream
- G. wind driven upwelling

upwelling pixs

- 1. winds blow water offshore and it is replaced by deeper water
- 2. western boundaries of continents/eastern boundary currents
 - a. California, Peru, Canary (off. N. Africa) and Benguela (off S. Africa) current
- 3. upwelling in Arabian Sea is seasonal

Arabian Sea pixs

- a. shift on wind direction seasonally
- H. also see upwelling in the central Pacific along the equator, in the seas around the Antarctic
 - 1. equatorial divergence

equat. divergence cartoon

P cycle fig w/ residence times

- 2. trade winds push water away from the equator
- 3. divergence zone between the 2 sub-tropical gyres
- 4. upwelling in the S Ocean when NADW runs into the Antarctic continent
- VII. Primary production in oceans important in controlling atmos CO_2 and O_2 Fig. 8-9
 - A. > 99% of OM matter produced in sfc. oceans recycled in oceans or sfc. seds
 - 1. only a small amt. is permanently buried
 - B. important because this burial of reduced carbon leaves behind O₂ in the atmosphere
 - C. another way atmos CO_2 is controlled on time scales shorter than carbonate/silicate cycle
 - 1. more later
- VIII. Significance of 2 box model in terms of elemental cycling
 - A. 2 box model implies that there is elemental cycling between surface and deep ocean
 - 1. particularly important for "limiting" nutrient elements
 - B. rapid recycling does not necessarily imply a short whole ocean residence
 - 1. lots of exchange between different reservoirs
 - 2. residence time in each "box is short
 - 3. residence time in "larger" box is much longer
 - C. P cycle1. small river inputs balanced by burial in sediments
 - 2. "rapid" cycling between sfc and deep ocean
 - 3. each phosphate goes thru several sfc -> deep -> sfc cycles before being eventually lost to sediments

- IX.—El Nino oceanographic/meteorological event which causes upwelling to temporarily—cease off of Peru
 - A. leads to low nutrients and warmer surface waters.
 - B. now known as ENSO El Nino Southern Oscillation
 - C. recognized to be a ocean/atmos. interaction phenom.
 - 1. related to changes in the equatorial atmos/ocean circulation in the Pacific
 - a. Show Fig. 15-12 and 13
 - 2. E W atmos ciculation at the equator in addition to N S Hadley ciculation
 - 3.—positive feedback amplifies the standard circulation Fig. 15-14
 - D. if something breaks down this feedback then positive feedback drives it in the opposite direction Fig. 15-13b and Fig. 15-12 & 16
 - 1. see evidence of these changes in SOI show SOI figure and Fig. 15-17
 - E. change in atmos circ at the equator impacts other aspects of global climate
 - 1. Fig. 15-18
 - 2. effects are often variable (both spatially and temporally)
 - F. will global warming affect ENSO pattern?
 - 1. if depth of the thermocline in the equatorial ocean were to increase too much would induce prolonged ENSO conditions