Global Carbon Cycle

- I. Intro why study the carbon cycle?
 - A. carbon is the key element of life
 - 1. most fundamental biogeochemical cycle
 - B. changes in atmos. CO₂ as a result of fossil fuel burning
 - 1. potential global warming
 - 2. crucial to understand how the carbon cycle operates
 - a. also linkages between CO₂ and climate
 - C. carbon cycle is complex -

C cycle box model

- 1. operate on a variety of time scales
 - a. short-term and long-term components
 - b. cycling of organic and inorganic C
- D. geological processes operating on million year time scales
- E. biological processes operating on annual time scales
 - 1. interactions between the 2 are important

II. Major reservoirs

Fig. 8-3

- A. vast majority of C tied up in sedimentary reservoirs that cycle very slowly
 - 1. think of atmosphere, oceans and land as the major active reservoirs
 - a. active on short time scales
 - 2. the atmosphere is a rel. small reservoir but it turns over rapidly
- B. large gross exchange fluxes to and from atmosphere

show my model

- 1. compare terr pp (60) vs. loss to oceans (0.4)
 - a. also marine pp (50) vs. burial in sediments (0.1)
- 2. most primary production (uptake of CO₂) is respired (CO₂ goes back to atmos.)
- 3. small net fluxes
- 4. atmospheric reservoir has a short residence time ~3 yrs
- C. problem with adding fossil fuel CO₂ to atmosphere
 - 1. taking carbon from a long term/geologic reservoir and transferring it a short term reservoir
 - 2. this system may be balanced on long time scales
 - a. relatively balanced (within certain limits) on shorter time scales
 - 3. such a transfer from reservoirs that operate on different time scales may exceed the capacity of the short term feedback mechanisms to control the system

III. Atmosphere

- A. mostly C in atmosphere exists as CO₂
 - 1. some methane and CO
 - 2. other trace carbon gasses more impt. for other elemental cycles (ie, DMS in S cycle)
- B. atmospheric CO₂ show a rapid recent increase in recent time

Fig. 1-2 and 1-3

- C. rapid increase begins with the Industrial Revolution and rise of population in Europe and America
- D. see seasonal variations in recent increase

Barrow and S Pole data

- 1. uptake in spring when there is net plant growth, release in fall from net respiration
- 2. seasonality offset 6 months between northern to southern hemisphere
 - a. southern hemisphere amplitude is also smaller

- b. northern hemisphere has more extensive seasonal forests
- c. close tracking between N and S hemisphere
 - (i) rel. rapid mixing of atmosphere

E. prior to large scale human activity the system also showed natural variability

1. large glacial-interglacial changes - 50-80 ppm

Vostok ice core data

2. Holocene changes much smaller

back to Fig. 1-3

- a. recent high resolution ice core record suggest changes of ±10 ppm over last 1000 yr
- b. natural variability in the Holocene is a second order change as compared to glacial-interglacial changes or anthropogenic increase
- 3. allows us to think about a near constant pre-industrial interglacial CO₂ level of ~280 ppm
- F. recent increase mainly due to fossil fuel burning

Fig. 6-2

- 1. some due to land use changes/deforestation
 - a. deforestation
 - (i) lack of photosynthesis taking up CO₂
 - (ii) burning of wood produces CO₂
- 2. inputs from the terrestrial biosphere (e.g., deforestation) likely accounted for most of the observed changes in the 19th century
 - a. initial increases in CO₂ pre-date industrial revolution
 - b. these processes appear to have leveled off in the past 50 yr
- 3. most recent increases are likely due to fossil fuel
- G. recent results suggest that deforestation in the tropics may be partially balanced by N. Hemisphere forest expansion/regrowth
 - 1. see new IPCC budget (note d in table)

Table 2

IV. Oceans

- A. the oceans are the largest active reservoir in the carbon cycle
 - 1. primarily DIC dissolved inorganic carbon
- B. oceans link the active/short term cycles and the long-term/geological cycles
 - 1. represent an important sink for fossil fuel CO₂
- C. oceanic processes in the global carbon cycle

show ocean figure

- 1. focuses on the biological cycle and its effect in mitigating the effects of adding fossil fuel
- 2. ocean/atmos. system also involved in a more long-term cycle involving weathering rxns.
- 3. these rxns. are prob. important in terms of long-term controls on atmos. CO_2 and O_2
 - a. atmos. CO₂ -> riverine bicarbonate -> neutralized in oceans -> atmos. CO₂
 - b. more later
- D. processes that remove atmospheric CO₂ from sfc. waters
 - 1. gas exchange
 - 2. biological pump
 - 3. bottom water formation

E. gas exchange

- 1. primary transport mechanism between ocean and atmos.
 - a. $CO_2(g) \rightleftharpoons CO_2(aq)$
- 2. in the absence of other processes this only leads to equilibration of the sfc. ocean with the atmos
- 3. if CO₂ behaved like a simple gas the oceans would only take up $\sim 3\%$ of the fossil fuel input
- 4. the ability of the oceans to take up large amounts of CO₂ depend on its acid-base chemistry

- 5. rxn. between diss. carbonate ion and CO₂
 - a. $CO_3^{-2} + H_2O + CO_2 \rightarrow 2 HCO_3^{-1}$
 - b. buffering rxn that drives CO₂ to HCO₃
 - c. this titrate CO₂ added by gas exchange
- 6. sfc. waters reach equilibrium with atmos. CO₂ in about a year
 - a. fast enough to keep pace with mans activity
 - b. but surface ocean doesn't have a large enough capacity to neutralize all of this addition
 - (i) sfc. ocean too "small"
 - c. need a way to move CO₂ to deep waters and sediments

F. biological pump

- 1. primary production and calcite ppt. consume inorganic carbon species
- 2. these are then removed via particle fluxes
- 3. thru the interactions of the carbonate system this lowers the partial pressure of CO_2 in the ocean (pCO₂) which enhances gas exchange (Δ pCO₂ < 0)
- 4. the biological pump transports CO₂ to the deep ocean in the form of OM or calcite shells
- 5. limitations of the biologic pump
 - a. biological pump controlled by availability of nutrients (N, P, Fe?)
 - b. more CO₂ doesn't imply more biological uptake if these other nutrients are limiting

G. bottom water formation

- 1. removes CO₂ by physical movement of water away from surface
- 2. solubility pump
- 3. CO₂ is more soluble in colder waters
- H. intermediate and deep water processes that affect CO₂
 - 1. OM oxidation produces CO₂
 - 2. calcite dissolution
 - a. excess CO₂ from OM oxidation can react with calcite in marine sediments and in sinking particles
- I. when coupled to the biological pump this transports some atmos. CO₂ to deep ocean
 - 1. "stores" it as HCO₃
- J. upwelling
 - 1. intermediate waters are enriched in DIC
 - a. mixing with deep waters
 - b. OM oxidation and calcite dissolution
 - c. most CO₂ produced by these processes reacts with carbonate
 - d. still get some CO₂ increase
 - 2. upwelling of these waters leads to sfc water in upwelling regions having excess pCO₂ $(\Delta pCO_2 > 0)$
 - a. this conc gradient means that the oceans here should be a source of CO₂ to the atmosphere
 - **b.** leads to an outgassing of the CO₂ in these waters

Fig. 8-13 and Tak figure

- c. upwelling regions where intermediate water upwells
- d. non-upwelling regions of high productivity are net sinks
 - (i) also polar regions where bottom waters form
- K. integration of the data in Fig.8-13 leads to ocean uptake of CO₂ in IPCC calcs. in Table 2
 - 1. this calc. attempts to assess the rel. short term sinks for excess atmos. CO₂ due to anthopogenic activitites
 - 2. prior to anthropogenic activity the oceans behaved a little differently

V. Time scales of the oceanic carbon cycle

- 2nd ocean C cycle figure
- A. oceanic processes are relatively slow in comparison to the rate at which man is burning fossil fuels
- B. bottom water circulation occurs on time scales of hundreds of years
- C. these waters will equilibrate with atmospheric CO₂ on these long time scales
- D. deep sea sediments will equilibrate with atmosphere on time scales of thousands of years.
 - 1. this is where the bulk of the neutralizing capacity for atmos. CO₂ resides
- E. the time scales of oceanic processes are too slow to deal with the relatively rapid increases in CO₂ due to mans activities
- F. implies that the oceans do not respond rapidly enough to take up all excess CO₂
 - 1. in part this is why atmos concs. are increasing
- G. this does not mean that the oceans don't affect atmospheric CO₂ or haven't modulated increases in atmospheric concentrations
 - calculations suggest that the net carbon uptake by the oceans is a significant fraction of the total fossil fuel carbon put into the atmosphere
 back to IPCC Table 2

VI. Terrestrial Systems

A. consists of a variety of materials that turnover on different time scales

Fig. 5-17

- 1. soil humus
 - a. altered remains of vascular plants
 - b. humic substances and humus
 - (i) contain a large number of aromatic rings with phenolic (-OH) and -COOH groups
 - (ii) the residue of the microbial degradation of lignin (lignocellulose)
- 2. land plant tissue
 - a. living biomass and undecomposed litter
- 3. methane
 - a. terr systems are also a significant source of atmospheric methane
 - b. more later
- B. terr. PP rates are significant compared to marine values

show my model

- 1. process similar amounts of carbon
- C. terr. systems also "store" excess CO₂ differently than the oceans

2nd Fig. 8-3

- 1. soil humus vs. diss. bicarbonate
- D. this may be of some importance in understanding how these different systems respond to incr.

CO₂ and potential global warming

2nd Fig. 5-17

- 1. increasing CO₂ and possible associated global warming might increase terr. primary prod.
 - a. temp. effect and CO₂ fertilization effect
 - b. negative feedback on CO₂/global warming
- 2. could also increase rates of microbial decomposition of terr. OM (soil humus)
 - a. positive feedback for global warming