# Major carbon cycles and the control of atmospheric CO<sub>2</sub>

- I. Look at different time scales of the carbon cycle
  - A. break the overall cycle in to cycles of different scales
  - B. begin to see how man is affecting the processes
- II. Short-term biological cycles (years to decades)
  - A. Does not include calcite ppt/dissln. also does not include anthropogenic effects
  - B. photosynthesis/respiration
    - 1.  $CO_2 + H_2O = CH_2O + O_2$
  - C. these two cycles are almost nearly balanced
    - 1. both in oceans and on land
    - 2. little net loss

### show my box model with number

- D. some transport of OC from land to oceans
  - 1. several options
    - a. net terr. primary prod. that escapes resp. on land and is transported to oceans via rivers
    - b. uplifted kerogen that escapes weathering on continents
  - 2. regardless of source most of terr OC appears to be oxidized in oceans
- E. in oceans a small amount of marine-derived OM is also buried in seds
  - 1. enters the long-term carbon cycle
  - 2. leaves behind some  $O_2$  in the atmos.
- F. these short-term cycles process a lot of CO<sub>2</sub>
  - 1. ~30-50% of the atmospheric CO<sub>2</sub> is consumed and returned per year
  - 2. leads to the short (~3 yr) residence time of atmospheric CO<sub>2</sub>
- III. Long term organic carbon cycle (several million years)
  - **A.** involves OM in sediments, fossil fuels and atmos.  $O_2$  and  $CO_2$

Fig. 6-5

- B. start with burial of OM in sediments from short-term cycle
  - 1. subjected to burial (incr. P and T)
    - a. most ends up as kerogen
    - b. dispersed organic matter in shales
  - 2. some undergoes high P and T alteration to form oil, natural gas
    - a. generally found in shales but some OM can also migrate and form segregated deposits
  - 3. coal
    - a. forms from the alteration of terr. OM
  - 4. think of coal, oil and gas an non-renewable energy source because these processes take millions of years to transform OM into oil/coal
  - 5. OM in shales represents the largest reservoir of OM on the Earth's sfc
    - a. consistent with its geol cycle it has a long residence time (~200 my)
- C. this removal is balanced by kerogen oxidation
  - 1. uplift of this material completes this portion of the carbon cycle
  - 2. most weathering/oxidation of kerogen occurs on land
- D. this cycle also effects atmos.  $O_2$

show equations

- 1.  $CO_2 + H_2O = CH_2O + O_2$
- 2. net burial of OM leaves O<sub>2</sub> in the atmosphere
- 3. pyrite burial/oxidation also plays a role here

- a. this process also requires OM as an intermediate (to catalyze sulfate reduction at earth sfc. conditions)
- 4. oxygen in atmos controlled by a balance between pyrite and OM burial in sediments and their later oxidation on land
  - a. if this balance didn't occur atmos  $O_2$  would increase to ~150% of present levels in several million years
  - b. would also lead to complete depletion of atmos.  $CO_2$  in <10,000 yrs
  - c. see text for further discussion on the controls of atmos  $\mathrm{O}_2$

#### IV. Long term inorganic carbon (geological) cycle (100's of million years)

A. balance between weathering rxns and plate tectonics

show Fig. 8.17

- 1. weathering on silicate rocks on land
- 2. removes CO<sub>2</sub> from atmos., transfers it to the ocean as bicarbonate
  - a. diss. silica transported as well
- 3. removal of bicarbonate as calcite & burial in marine sediments
  - a. similar biol. processes remove diss. SiO<sub>2</sub>
- 4. subduction of sediments and tectonic activity
  - a. release this CO<sub>2</sub> back to atmos.
- 5. similar types of rxn. affect other cations as well (Mg, Na)
- B. processes began early in the earth's history
  - 1. leads to long-term changes of CO<sub>2</sub>

Fig. 12-3

- a. drop in CO<sub>2</sub> associated with incr in solar luminosity
- 2. Berner calcs are consistent with these trends over shorter time scales

Fig. 6.4

back to Fig. 8-17

- C. this cycle is a balance between
  - 1. weathering (takes up CO<sub>2</sub>)
  - 2. calcite ppt. in oceans and tectonics/metamorphism (releases CO<sub>2</sub>)

D. high  $CO_2$  back to Fig. **6.4** 

- a. rapid plate tectonics and metamorp. release CO<sub>2</sub>
- b. Cret. (K) and mid-Paleozoic (Camb. -> Devonian; -C- to D)
- c. warm periods in the Earth's climate
- 2. low CO<sub>2</sub>
  - a. less vigorous plate tectonics, more weathering and calcite burial
  - b. Carbon. -> Triassic, most of the Cenozoic (Tert.)
  - c. cooler temps and ice ages
- E. carbonate-silicate cycle related to climate

Fig. 8-18

- 1. vulcanism/tectonic activity likely not strongly affected by atmos. CO<sub>2</sub> or global climate
  - a. e.g. an increase in CO<sub>2</sub> could occur if there were an increase in tectonic activity
  - b. acts a s a forcing function on atmos CO<sub>2</sub>
- 2. these processes then affect CO<sub>2</sub>
- 3. this cycle has a negative feedback loop associated with it that stabilizes climate from these or other perturbations
  - a. incr sfc temp due to increasing solar luminosity
  - b. lead to a drop in CO<sub>2</sub> by increased weathering
  - c. may also induce ppt. of carbonate minerals
- F. a geological cycle BUT organisms clearly play a role
  - 1. calcite and silica ppt. are biol. processes

- 2. rates of weathering affected by plants
- 3. Gaian control or modulation?

# V. Effect of man on the carbon cycl

Fig. 10-16

### A. pre-industrial

- 1. steady state on decadal to century time scales
- 2. prior to extensive land use changes (deforestation) and fossil fuel burning
- 3. ocean a net source of CO<sub>2</sub>

show my version

- a. neutralization of river bicarbonate  $(C_{ing})$ 
  - (i) by-product of weathering
- b. oxidation of riverine  $C_{org}$  derived from terr. PP
  - (i) carbon cycling in the long term cycles plus terr OC
- 4. burial of  $C_{org}$  can be either
  - a. riverine  $C_{org}$  that escapes oxidation in the oceans (burial of terr.  $C_{org}$ )
  - b. burial of "newly" fixed marine Corg
    - (i) carbon produced in the short term C cycle
  - c. data suggests that burial of marine OC predominates
  - d. most terr. OM transported to oceans appears to be oxidized in the oceans

### B. human impacts

fig. 10.16b

- 1. the oceans are now a sink for CO<sub>2</sub>
  - a. uptake of fossil fuel CO<sub>2</sub>
- 2. increased susp. sediment load and nutrient transport and deposition
- 3. much more pronounced in the coastal zone
  - a. leads to coastal eutrophication
  - b. low oxygen conditions in these environments
  - c. recent studies also suggest that much of the excess N may be denitrified
  - d. doesn't necessarily escape the coastal zone

#### VI. fossil fuel burning

C cycle figure

- A. transferring a rel. large amount of CO<sub>2</sub> into the atmos. with no equivalent rapid uptake mechanisms
  - 1. ocean uptake limited by circulation and biol. pump (nutrients)
  - 2. uptake by terr. systems does not appear to be rapid enough
  - 3. accumulates in the atmosphere
- B. how will this increase affect climate
  - 1. depends on the time scales of the increase in atmospheric conc. vs. time scales of the resulting changes in earth's climate/heat balance/ocean or atmos. circulation
  - 2. also whether or not these changes result in positive or negative feedback responses in the Earth's climate system
- C. more later