Global N and P cycles

- I. Intro
 - A. look at aspects of these cycles
 - B. dominant processes and how man's activities are affecting them

II. Nitrogen cycle

Fig. 12.1

- A. strongly coupled to the carbon cycle
 - 1. some key differences
- B. a larger variety of nitrogen species
 - 1. N_2 large reservoir in the atmosphere but not easily available to biota
 - a. other gaseous form NO and N_2O
 - 2. biologically available N ammonium, nitrite, nitrate
 - 3. nitrogen oxides such as N₂O
 - a. N₂O not generally thought of as a reactive form of N but it is a greenhouse gas
 - b. produced by both nitrification and denitrification
 - c. other nitrogen oxides
 - 4. a large number of biogeochemical transformations possible

III. Global nitrogen cycle

Reeburg figure

- A. atmospheric N_2 is the largest pool
 - 1. $\sim 10^9$ Tg N in atmos.vs. $\sim 10^5$ g in terr systems (terr. biomass and soil OM)
 - 2. oceans contain $\sim 10^6$ g of "bioactive" N (not N₂)
- B. contrasts other elements that have their largest pool in sed rocks (ie, C)
 - 1. instead of burying it away for long periods of time, N cycling "stores" most N in the atmos. in a form that is simply much less biologically available
 - 2. atmospheric residence time is over 20 million years
- C. Human activity has severely affected global N cycle
 - 1. first look at controls on pre-industrial N cycle
 - 2. then look at how human activity is affecting the cycle

IV. Long-term N cycle dominated by a balance between biological N-fixation and denitrification

A. rapid internal cycling both in the oceans and on land

Fig. 12.1

- B. these may not always be balanced **show my cartoon**
- C. some studies suggest that the pre-industrial N budget was not in steady-state
 - 1. pre-industrial ocean may have been losing fixed nitrogen
 - 2. opposite may have been the case during glacial times
- D. evidence that combined N imbalance may change on glacial/interglacial time scales
 - 1. decrease in denitrification rates during glacial times
 - a. possibly related to drop in sea level and decrease in the area of continental shelves (important sites of denitrification)
 - b. could help explain the lower atmos CO₂ during glacial times show my systems diagram
 - 2. could also be related to an increase in N fixation

Fig. 14-13

- V. Man's impact on the nitrogen cycle
 - A. human activities have severely affected the global N cycle

B. add fixed N in several ways

show N cascade figure

- 1. energy production fossil fuel burning
 - a. converts N₂ and org N in fossil fuels to NO
 - b. NO oxidized to NO₂ which then rains out at nitrate
 - (i) leads to acid rain
 - (ii) has a rel. short lifetime in atmosphere
 - (iii) see atmos. Fixed N turnover times in Fig. 3
- 2. fertilizer production Haber process
 - a. converts N₂ to ammonium
- 3. crop cultivation
 - a. human-induced increase in biological nitrogen fixation

VI. Anthropogenic cycles of reactive N

Fig. 3 Reeburg

- A. on continents, human activities are producing reactive N at comparable rates to natural processes
 - 1. ~140 vs. ~190 Tg N/yr
- B. release of reactive N from continents to coastal oceans has doubled

Fig. 2

- 1. comparison of pre-ind. world to present day
 - a. present day = pre-ind. + anthropogenic fluxes
- C. net atm transfer of N from continents to oceans has gone from ~0 to 18 Tg N/yr
 - 1. absolute emission of reactive N to atmos have increased
 - a. 29 Tg/yr (pre-ind) to 107 Tg/yr (currently)
- D. allows more reactive N to be re-distributed to points far from the pt. of fixation

Fig. 12.3

VII. human activity on land fixes ~ 140 Tg N/yr

Fig. 2 with animation

- A. where does it go
- B. 41 Tg/yr transported to coastal ocean
- C. 18 Tg/yr are deposited on oceans from atmos.
 - 1. primarily from atmos deposition
- D. 3.4 Tg/yr are emitted to atmos as N_2O
 - 1. leads to an increase in atmos. N₂O increasing
 - 2. N₂O less reactive in atmos. longer turnover time
 - a. another greenhouse gas
- E. ~80 Tg/yr not accounted for
 - 1. retained on land in groundwater, soils or vegetation
 - 2. may be be denitrified on land
 - a. estimate of this is 50 -110 Tg/yr
 - b. based on N₂O prdn. rate and a N₂:N₂O denitrif. ratio of 14-32

VIII. Fate Anthro reactive N added to oceans

- A. 41 Tg/yr transported to coastal ocean by rivers
- B. 18 Tg/yr are deposited on oceans from atmos.
- C. What is its fate

Fig. 6

- 1. buried in seds (some) or denitrified (most)
- 2. in a local sense this plays a role in cultural eutrophication of coastal regions
- 3. little of this apparently escapes coastal ocean

- a. no enhanced C_{org} burial in open ocean, implies that N burial has not increased
- b. DN on shelves may be greater than river input of reactive N
- D. on land and in the ocean the ultimate fates or anthro reactive nitrogen is denitrification
 - 1. the problem is what happens along the way

IX. Impacts of increasing anthroogenic N fixation

go through Nr slides

- 1. once an atom of Nr enters the system it can cause multiple effects
 - a. in the atmosphere, in terr. ecosystem and in marine and freshwater environments
- 2. effects become magnified over time
- B. Cascade of reactive N

go thru N cascade figures

- 1. Reactive nitrogen (Nr) is accumulating in the atmosphere.
- 2. Nr is accumulating in terrestrial systems
- 3. Once Nr enters water (streams, rivers, estuaries) most will eventually denitrify
 - a. generally far from point of entry.
- 4. Accumulation occurs on short- and long-time scales
 - a. different reservoirs have different residence times
 - b. leads to accumulation

X. Forecast for the future

A. anthro N fixation driven by energy and food production

EHP Fig.

- 1. controlled by human pop. and standards of living
- 2. both will prob. incr. with time
- B. the implications of this increase will depend on how and where this N accumulates
- C. even if most is eventually denitrified there are still regional and global problems

XI. Phosphorus cycle

- A. linked to N & C cycles
 - 1. some distinct diffs in P cycle
 - 2. P has no significant atmos component
 - 3. phosphate and org. P are the predom. species
- B. much more of a "geological" cycle

look at figures

- 1. no significant atmospheric fluxes from continent to oceans
- a. atmospheric inventory component minor
- 2. on long time scales, P is generally considered to be the major nutrient limiting primary prod.
- C. internal recycling very important particularly in the oceans
- D. Increased P remobilization by human activity
 - 1. mineable P in the budget
 - 2. see it, for example, in incr. P loading by rivers

Fig. 10.16 Mackenzie

- 3. again its effect will be more regional rather than global (like N)
 - a. no major atmos. P cycle
 - b. P cycling relies strongly on hydrologic transport
- 4. distribution from fertilizer run-off and sewage treatment is likely confined to freshwater and nearshore coastal ecosystems