Global Warming

- I. Factors influencing recent climate change
 - A. more recent climate change (Holocene)
 - 1. what controls climate?
 - 2. what is humanities influence?
 - B. important issues here
 - 1. changes in total solar input
 - 2. changes in albedo (e.g., volcanic activity)
 - 3. changes in "greenhouse" gas concentrations and trapping of outgoing IR
 - a. how do biogeochemical cycles influence these processes
 - b. positive or negative feedbacks
 - C. In this discussion we will focus on three aspects of the problem
 - 1. what are the present-day forcings on climate
 - 2. is there evidence of recent climate change
 - a. if so, can we separate natural variability from anthropogenic effects
 - 3. what's in store for the future
- II. recent changes in temperature need to consider anthropogenic activity

Fig. 11.8

- A. can't explain recent temp increase w/o anthropogenic radiative forcing
 - 1. radiative forcing change in the balance between incoming and outgoing radiation
 - a. climate system responds to restore balance
 - 2. positive radiative forcing
 - a. lower atmosphere warms
- B. causes of radiative forcing
 - 1. change in greenhouse gasses
 - a. increase/decrease IR flux out
 - 2. increase/decrease solar input
 - 3. change in planetary albedo

III. Planetary albedo

color pictures

- A. controlled by aerosols, clouds, and ice/water/land distibution on earth's sfc.
- B. aerosols
 - 1. fine airborne particles
 - 2. tend to have a cooling effect reflect light back to space
 - 3. also form cloud condensing nuclei
 - b. clouds generally increase albedo
 - 4. aerosols produced by a number of processes
 - b. volcanic activity SO₂ oxidized to sulfate aerosols
 - i. dust and aerosol prdn. from large volcanic events can significantly affect climate
 - ii. need a period of protracted activity to have more than a short-term effect
 - c. fossil fuel burning also produces SO₂
 - i. will their cooling effect effect counter warming effects?
 - ii. even a shorter term effect
- C. surface characteristics (ice/water/land distrib. on planets sfc) show albedo figure
 - 1. ice high albedo (~ 0.8)

- 2. deserts and non-vegetated areas lower albedo (~ 0.5)
- 3. oceans low albedo, absorbs most solar radiation
- 4. land and aquatic plants absorb almost all solar radiation (albedo ~ 0)
- 5. changes in sfc characteristc change global albedo
 - b. e.g. increase in the area of the oceans (sea level rise)
- c. will decr. planet albedo and inc. avg. temp.
- 6. similar effects associated with melting of sea ice or land-based ice
- D. feedbacks also important here
 - 1. global warming could change the rel. amounts of ice/ocean/veg/non-veg. land
 - 2. this could change global albedo
 - 3. mostly a positive feedback on global temp.

IV. Greenhouse effect

- A. plays a role in controlling the earth's radiative balance
 - 1. temp. controlled by a balance between
 - a. the flux of incoming radiation from the sun
 - b. the amount of outgoing IR radiation radiated from Earth
 - c. re-distribution of radiation before radiated out to space
- B. evidence of a "natural" greenhouse effect

Fig. 3-13

1. see that some parts of the atmosphere are transparent to IR

Fig. 2.4

- C. what happens when we perturb atmospheric radiation balance with additional CO₂? Fig. 2.8
 - 1. increased CO₂ lead to radiation imbalance radiative forcing
 - 2. balance restored by warming the lower atm surface temp increase
 - 3. positive feedbacks may further enhance this warming more later
 - 4. temp increase for a doubling of atmos CO_2 is referred to as ΔT_{2x} .

V. Atmospheric CO₂

- A. Have seen that atmos CO2 has varied with glacial cycles
- 1. 180-200 ppm in glacials, 280-300 ppm in pre-industrial inter-glacials
- B. recent increases appear to be due to anthropogenic activity1. increases due to fossil fuel burning and deforestation processes

Fig. 4

- 2. increase in atmos CO₂ only half total anthropogenic CO₂ input
- a. some in oceans, some uptake by land biomass

TAR Table 2

IPCC version Fig. 16.4

- 3. land-atmos flux is a net flux
- a. balance between land use change (e.g., deforestation) and terrestrial uptake sink (e.g., regrowth of new forests)
- C. two issues of concern
 - 1. where will the excess CO₂ from fossil fuel burning continue to go
 - a. how will we have to change our activities to affect atmos CO₂ concentrations?
 - 2. what are the effects of this increasing CO_2 ?
 - a. climatological and ecological
 - b. use general circulation models to address this point

VI. Other greenhouse gasses

A. other greenhouse gasses are increasing with time

TAR Table 1

1. appear to be associated with human activity

- 2. for some (eg, methane) why this link exists is not clear
- 3. important points
- a. what are the rel. contributions of these gasses to radiative forcing
- b. what are the atmos. lifetimes of these gasses

B. CH₄

- 1. appears to be due to
 - a. increased prdn and/or increased atmospheric residence time
- b. cattle & rice paddies may be the major cause of anthropogenic incr.
- c. decreased methane oxidation in the atmosphere
- 2. methane has a rel short atmos residence time
 - a. less of a long term effect than CO_2 or N_2O
- 3. rate of methane increase appears to be slowing with time

IPCC figure show clathrate pictures

- 4. but methane clathrates
 - a. frozen-methane ice compounds
 - i. another possible source of methane
 - b. found in some marine sediments and in high latitude/Arctic soils
 - c. these are regions where projections of global warming suggest largest temperature changes
 - d. global warming could release this methane
 - e. could then provide a strong positive feedback for further warming
 - f. also a geotechnical hazard

C. Water vapor

- 1. previous discussions suggested that changes in water vapor might explain rapid climate changes associated with D-O events
- 2. water vapor is the principal greenhouse gas
- 3. incr. warming should lead to increased evaporation
- 4. more water vapor and more warming positive feedback
- 5. the amt. of water vapor also effects cloud formation

VII. Combined radiative forcing

A. positive and negative forcings

IPCC Fig

- B. atmospheric residence times important as well
 - 1. extent to which these will be long-term forcing effects should inputs change
- C. CO₂ contributes about 60% of the GHG radiative forcing (based on present day levels)
 - 1. methane 20%; CFC's 14%; $N_2O 6\%$

VIII. Clouds Fig. 3-18

- A. can both cool and warm
 - 1. either reflect solar radiation from above or trap IR heat from below
 - 2. balance between albedo effects and greenhouse effects
- B. preliminary studies suggest clouds may have an overall net cooling effect
 - 1. could then have a neg. feedback on greenhouse related global warming

IX. Evidence to date of climate change

show slide

A. temperature records

show IPCC/Mann fig.

1. combines proxy records (tree rings, sediment records) with actual measurements

- 2. see several trends
- 3. long-term cooling trend
- a. orbital variability and/or reduction in solar irradiance
- 4. multi-decadal to century variations
 - a. poss, related to changes in solar irradiance
- 5. short-term (sub-decadal) variation
 - a. sulfate aerosols and gasses explosive volcanic eruptions
- 6. some of these external forcings are also modulated by internal variations in ocean/atmos processes
- 7. last 100 yrs natural forcing factors have been overwhelmed by anthropogenic greenhouse gas increases
 - a. again, not monotonic trends
 - b. recent increase appears to exceed the ~ 0.5 °C range over the past 1000 yrs
 - c. counter the recent long-term trend

B. other evidence back to list slide

- 1. atmospheric temp records
- 2. ocean warming
 - a. global heat budgets
 - b. all components of the Earth system are gaining heat
 - c. oceans dominate
- 3. glacier melting
- 4. ecosystem changes
 - a. high latitude tundras have gone from CO₂ sinks to sources
 - b. increased temperatures have increased decomposition of peat
 - c. began to see change in early 1980's
 - d. prior to this these regions appear to have been CO₂ sinks for ~9,000 yrs
- 5. hydrologic cycle changes
 - a. models of global warming predict that warming should lead to a more vigorous hydrologic cycle
 - b. recent work has shown that northern (high lat) ocean waters are getting fresher and that low lat (equat.) waters are getting saltier
 - c. appear to be occurring globally
 - d. changes in salinity in the N Atl has implications for ocean circulation
- C. IPCC conclusions go thru slides

X. CO₂ removal processes

show 90's IPCC budget figure

- A. examination of the IPCC perturbation budget shows where anthro CO₂ is going
 - 1. only aprox. half accumulates in atmos.
 - 2. some goes into ocean
 - a. constrained by ocean circ. and efficiency of the biol. pump
 - 3. much recent work has focussed on uptake by terr. systems
- B. N. Hemisphere reforestation
 - 1. in the 1980's IPCC budget this was rel. small and poorly constrained
 - 2. recent work suggests that this term is much larger
 - a. better constrained using a variety of techniques
- C. this uptake appears to counter CO₂ sources from land-use changes (deforestation)

- D. mechanisms of how this uptake occurs remains elusive
 - 1. models and analyses suggest several possibilities
 - 2. CO₂ fertilization, changes in land management practices
 - 3. anthropogenic N deposition
 - a. studies of forests suggest that this N deposition accounts for <20% of this proposed terr uptake.
- E. problems with many of these removal processes are that the feedbacks seem to be positive
 - 1. global warming reduces their strength
 - 2. land use changes are also likely to saturate
 - a. minimizing the sink strength with time

XI. Long-term models of atmopspheric CO2 increase

Fig. 16-2

A. see discussions in book

XII. Projections of future atmos. CO₂ increases

Fig. 16-3

- A. approach it 2 ways
 - 1. look at how changes in emission affect atmos CO₂
 - 2. look at what are allowable emissions to stabilize CO₂ at different levels
- B. all of these models are simply C cycle models
 - 1. don't include the complexities/feedbacks of incr. CO₂
 - 2. don't include the resulting effects on ocean/atmos/land processes due to changes in temp and/or radiative forcing
- C. emission scenarios
 - 1. lead to substantial radiative forcings and temp increase
 - 2. doubling of atmos CO₂ (200-400 ppm) leads to a 4 W/m² radiative forcing
 - 3. ΔT_{2x} on the order of 1.5-4.5°C

XIII. Changes in greenhouse gasses cause changes in radiative forcing

- A. how do we link these changes in radiative forcing to temperature changes
- B. how can these changes be incorporated into climate models
- C. assess the potential climate change associated with rising CO₂
- D. what other feedbacks are associated with rising atmos CO₂ and increased radiative forcing

XIV. can use simple 1-d radiative-convection models

Fig. 18-3

- A. assume an average Earth surface and a vertically structured atmosphere
 - 1. calculate radiative balance in such a model (energy in = energy out) to get average surface temperatures
 - 2. force this model with rising levels of greenhouse gasses
- B. such models predict a ΔT_{2x} of <2°C
- C. other factors in the climate system also change in response to rising atmos CO₂
- D. these feedbacks can't be dealt with in 1-d models
 - 1. are incorporated into 3-d general circulation models
 - 2. generally predict a larger ΔT_{2x}
 - 3. system operates in a positive feedback mode

XV. Climate feedbacks

models figure

- A. have discussed many in the past
- B. play a role in amplifying climate change associated with glacial cycles
 - 1. water vapor feedback
 - 2. snow and ice albedo
 - 3. clouds
 - 4. ocean circulation
 - a. affect climate in several ways
 - b. high heat capacity of water means that the oceans warm more slowly than the atmos.
 - c. buffers temperature changes
 - d. also stores heat for later release
 - e. ocean circulation plays a major role in redistributing heat globally

XVI. General circulation models - GCM's

Fig. 6-3

- A. complex numerical models that simulate ocean/atmosphere circulation with regard to energy balance and changes in specific forcing factors that affect these circulation processes
- B. changes in temp will induce changes in other components of the earth system that may be either positive and negative feedbacks to global warming
- C. GCM's have the potential to include these feedback (vs. 1-d radiative-convection models)
- D. in spite of their imperfection these models are one of the ways to obtain info on possible future global change
 - 1. see later
 - 2. also can be used to help pinpoint where additional data is needed
- E. link GCM's to carbon cycle models or ecosystem models
 - 1. examine linkages between physical forcings/feedback and biogeochemical processes in these other models

XVII. GCM general results - equilibrium models

back to Fig. 18-3

- A. a doubling of atmospheric CO₂ will likely lead to a 1.5 4.5 °C increase in avg. global temperature
 - 1. this is the equilibrium response due to the increased radiative forcing due to greenhouse gasses
 - 2. doesn't say when will this occur
 - a. how quickly will climate respond to these changes
 - **b.** will other positive or negative feedbacks that will change this initial response
- B. global responses vary in space and time (seasonally)

Fig. 6-6

- 1. warming enhanced in high latitudes
- 2. precipitation tends to increase
 - a. related to increased evap. associated with warming
 - b. more vigorous hydrologic cycle
- **3.** combined with temp changes this may lead to dramatic shifts in vegetation zones around the globe

XVIII. Transient responses of GCMs

- A. many GCMs run the model to equilibrium and then change the boundary conditions (ie, double CO₂)
 - 1. these models assume oceans respond instantaneously to radiative forcing
 - 2. high heat capacity of the water means that oceans take longer to warm up
 - a. thermal drag of the ocean
- B. in transient models land also heats up faster than water
- C. once transient response models reach equilibrium they generally show the same temperature increase predict the same show similar patterns as equilibrium models
 - 1. takes some time to occur after change in CO₂

Fig. 6-

2. uncouples emissions and temp increases

emissions/temp graph

D. thermal drag also means that once the oceans warm up they will retain heat even as CO₂ levels/radiative forcing drop

XIX. IPCC model results (2001 TAR)

IPCC Figures

- A. use a hybrid of simple and complex transient response GCMs
- B. these results use simple climate models that are tuned (calibrated) to complex models to yield an equivalent response in temperature and sea level rise
 - 1. allows these models to be run for a much larger number of scenarios
 - 2. predict significant changes in temp and seal level
 - a. IPCC results predict a temp change of 1.4 5.8°C by 2100
 - 3. also predict changes in precipitation patterns
- C. these model results allow for a re-examination of ΔT_{2x}
 - 1. previous IPCC "best estimate" was 3.8°C including possible feedbacks
 - 2. the calibration discussed above predicts a similar value of 1.7 4.2°C
 - 3. other model studies yield similar results
 - a. re-inforces the IPCC result
 - 4. data since 2001 consistent with these model results

Fig. 1

XX. Summary

- A. greenhouse effect exists
 - 1. greenhouse gases are involved some way in past climate change
- B. past climate changes can occur rapidly decadal scales
 - 1. D-O events
 - 2. greenhouse gases are increasing due to human activities
- C. rate of increase in unprecedented

mod Vostok record

- D. increasing evidence that we are beginning to see the effects of global warming
- E. proposed future increases in temp are unprecedented in recent Earth history
- F. suggest that increasing greenhouse gasses will lead to major climate and ecological changes
- G. If we believe that we need to deal with incr. atmos. CO₂ how do we do it?
 - 1. demise of the Kyoto protocol
 - 2. present climate meetings in Bali on the 4th Assessment Report