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Abstract — A parallel VLSI architecture for real-time segmentation of endoscopic images is
presented in this paper. The architecture is based on a neural network implementation of
an adaptive progressive thresholding (APT) algorithm that precisely segments the darkest
regions of an endoscopic image representing the gastrointestinal lumen. The segmentation
process is an extension of a comprehensive statistical technique based on linear
discriminant analysis for partitioning the image. The APT algorithm is modeled as a
recurrent neural network with adaptive weight modifications for rapid convergence. The
hardware design utilizes simple processing elements functioning simultaneously to
generate the optimum threshold for performing segmentation in real-time.

1 Introduction

The lumen region and boundary in intestinal images form the preliminary basis of the features
used for navigation and guidance in an automated endoscopy system. The high speed and
accurate extraction of these features is essential for real-time navigation. Since the endoscope
uses several light sources at its tip and the illuminating distances of these sources are limited,
the intestinal surface lying near the light source will be brighter than the farther ones. Hence,
the areas of lowest intensity represent the lumen region in an image. Hardware realization of a
novel technique based on adaptive progressive thresholding (APT) for the real-time
segmentation of endoscopic images is presented in this Ppaper. Adaptive thresholding is based
on a discriminant analysis that partitions the image into two classes Gy and G at gray level ‘t’
such that Go = {0, 1, 2,..t} and G, = {t+1, t+2,...,.L-1}, where L is the total number of gray
levels in the image. The optimum threshold t* can be obtained by maximising the between-class
variance. Hence,

t*=ArgMax{n} < opg )
0<i<L
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n= c51::2
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wo and w; denote the fraction of pixels lying in Gy and G, class, respectively, and can be
represented by,

t
Wo =1 w;=N-w, 2)
i=0

where n; is the number of pixels on the ith gray and N is the total number of pixel in the image.
Mo and p, represent the class means for Gy and Gy, respectively, and are calculated by,
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where,
t L-1
By = Xixn; Hr = 2lixm;
i=0 - i=0

Repeated application of this technique adaptively in a systematic fashion leads to a more
accurate thresholded value. Recursive thresholding is continued until the Cumulative Limiting
Factor (CLF) defined as the ratio of between-class variance and total variance in every A"
iteration becomes less than a predefined value. The algorithm involving in calculating the APT
1s shown on Fig. 1.
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Fig.1 . Computational steps in APT
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2 Parallel Architecture for APT

The neural architecture is a recurrent Neural-Network, which consists of 3 layers. Each hidden
processing element is fully connected to all the input processing elements, and each output
processing element is connected to itself and fully connected to other output processing
elements, and all hidden processing elements. In addition, each output processing element is
fully connected to the input processing elements. The parallel architecture for the APT is made
for four-bit gray level image of size 32x32. Some variations in the computational steps of the
APT algorithm are adopted to make the hardware mmplementation feasible.

2.1. Architecture for the input layer

The input layer is simply a distribution layer where it takes the histogram values n;, and
forward it to the hidden layer. For example, the input will get the histogram intensities from the
external input, it will store the sixteen intensity values into sixteen 10 bit registers for the next
cycle, and it will forward the histogram values to the hidden layer. Furthermore, the input layer
also accepts feedback loop from the output layer to activate or inhibit the inputs n; by using a
simple 15 bit AND gate for enabling the register. Fig. 2 illustrates 1 of the 16 elements in the
input layer. -~
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Fig. 2. Architecture for the input configuration of the input layer.

2.2. Architecture for the hidden layer

The hidden layer is a computational layer where the computation of the between class
variance is performed. It is also a layer where the additions, multiplications, and divisions are
needed to assist computation. For instance, the hidden layer has fifteen blocks of processing

elements. Each processing element is used to find the between class variance o”g. As shown
in Fig. 3 observe that many additions, multiplications, and divisions have to be used in each
processing element of the output layer. Also observe closely that some values are calculating
more than once in the design. The reason for this repetition in the design is that we have a trade
off in parallelism with respect to the amount of hardware we have to use. The justification for
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that is, by using more hardware we can accomplish the processing time in a rapid manner by
simultaneously calculating the values. When the calculation is done, each hidden layer neuron
will forward its value to all the output neurons in the output layer.
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Fig. 3. Architecture for the computation of o2z

2.3. Architecture for the output layer

The output layer is a discrimination layer where each output neuron is connected to itself and
fully connected to each other. The output layer will attempt to find the maximum of the values
in the hidden layer by performing discrimination using the modified MAX-NET. The
architecture of a single neuron in the output layer is shown in F ig. 4. Initially, the value from
the hidden layer will be saved in 16 registers. After that, each neuron is updated by

M
Hi (t+D) = £ () - Wy 2] )
i=1
The weight is updated after completing each iteration by,
1
W.(t+1) = - (5)
’ number of neuron firing

Finally, after the maximum input is found, which is when one neuron is active, the o2p will be

compared to CLF. If the value is less than o?g, the process is completed. Otherwise, each
output neuron will output 16-bit mask to all neurons in the input layer where the each input
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register is enabled or disabled. The mask will be the output in such a way that only i neuron
down to the index 0 neuron will be ‘ON’ and not otherwise. _

Threshold Comparator

0'23_“‘/_-CLF‘E

Fig. 4. A single modify MAXNET neuron’s architecture

To verify the results of APT, the APT was applied onto a large set of endoscopic images. The
images of gastrointestinal tract were captured by an endoscopy system consisting of a miniature
CCD camera having a resolution of 200,000 pixels. However, the size of the processed image
for the construction of the hardware was restricted to 32x32 pixels in the design. When a
colour image is captured, it is transformed to a grey level image consisting of 16 greyscale. The
APT technique is independent of the absolute grey level of the pixels contained in the darkest
region and hence gives much better results than a thresholding technique that solely depends on
the hills and valleys in the image histogram.

The architecture is designed to utilize the concept of neighborhood data sharing. The circuit
is simulated in VHDL using Altera Quartus II for implementation in Apex II FPGA. The total
number of logic cells utilized for the parallel implementation of APT is 42000. It has been
observed that, though the VILSI architecture needs more computing modules, the recurrent

-neural network converges in two or three iterations by performing repeated recycling of the

APT process to achieve optimum threshold, making it suitable for real-time applications.

3 Conclusion

In this paper, we have presented Adaptive Progressive Thresholding (APT) for the real-time
segmentation of endoscopic images by extending Otsu’s approach and its parallel
implementation in hardware. After each iteration, the proposed algorithm segments the object
of lowest intensity from a given image. This process continues until the CLF become less than
a specified value. Simulation result shows that the technique works flawlessly. A parallel
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implementation of the APT was developed, and on this implementation, although the hardware
required is more, the convergence time for the architecture is observed to be two or three
iterations.
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