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Abstract

Images captured with a typical endoscope show spatial distortion, which necessitates spatial warping for subsequent analysis. In this paper,
an efficient architecture for an embedded system for the real-time correction of barrel distortion in endoscopic images is proposed. The spatial
warping procedure follows a methodology based on least-squares estimation to correct the non-linear distortion in the endoscopic images. A
. mathematical model of polynomial mapping is used to map the images from distorted image space onto the warped image space. The model
parameters include the expansion polynomial coefficients, distortion centre, and corrected centre. The spatial warping model is applied to
several gastrointestinal images. The spatial warping algorithm is mapped onto a linear array of simple processing elements with each element
of a particular segment communicating with its nearest neighbours, Currently, a prototype of the VLSI architecture for an image of size
256 X 192 is being designed and built. The functional simulation results obtained in the warping architecture are encouraging. The VLSI
based system will facilitate the use of a dedicated module that could be mounted along with the endoscopy unit. © 2002 Elsevier Science

B.V. All rights reserved.
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1. Introduction

Electronic video-endoscopy has become one of the
commonly accepted forms of diagnostic and therapeutic
procedures due to the advent of miniature CCD cameras
and associated microelectronics. Video-endoscopes facili-
tate observation, documentation, and electrical manipula-
tion of the images of internal structure of the
gastrointestinal tract. In these endoscopes, cameras with
wide viewing angle lens (fish-eye lens) are used to enhance
the imaging capability, which permits capturing of larger
field in a single image [1]. However, it has been noted that
the images obtained from electronic endoscopes show barrel
type spatial distortion due to wide-angle configuration of the
camera lens. Barrel distortion introduces non-linear changes
in the image due to which image areas near the distortion
centre are compressed less while areas farther from the
centre are compressed more. Because of this, the outer
areas of the image look significantly smaller than their
actual size. This inhomogeneous image compression intro-
duces significant errors in the results obtained during feature
extraction. Continuous estimation of quantitative para-
meters such as area and perimeter is of considerable
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importance while performing clinical endoscopy. Unless
the distortion is corrected, estimation errors could be very
large [2,3]. In addition, the distortion causes complications
while using token matching techniques for pattern recogni-
tion. Spatial warping is also a prerequisite for the camera
calibration to obtain extrinsic and intrinsic camera para-
meters [4,5].

Several researchers have presented various mathematical
models of the image distortion and techniques to find the
model parameters to complete the spatial warping proce-
dure. Tsai [6] proposed a radial lens distortion model that
describes a two-dimensional image correction technique. A
prism distortion model was used in Ref. [7] to correct the
tangential distortion in an image. Nomura et al. [8]
presented a calibration technique for high distortion TV
camera lens. But this method requires a precise placement
of the calibration chart. Thus, a small shift of the chart
prompts considerable errors in spatial warping. Weng et
al. [9] has explained radial, decentring and thin prism type
of distortions and techniques to model themm mathemati-
cally. All the earlier models give reasonable results for
images obtained from cameras with normal viewing objec-
tive lens but these models are not effective for electronic’
endoscopes which use wide-angle lens camera. Smith et al.
[10] gave a formulation in which distortion was assumed to
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be purely radial, and orthogonal Chebyshev polynomials
were used to determine the model parameters. Hideaki et
al. [11] presented a different method for estimation of the
model parameters in which a moment matrix was obtained
from a set of image points and distorted grid lines in the
image were straightened on the basis of smallest character-
istic root of the moment matrix. Another technique of
distortion correction based on least-squares estimation to
obtain the coefficients of the correction polynomial is
proposed by Asari et al. [12]. This approach is simpler
and faster than the earlier methods and. is independent of
the orientation of the calibration chart. Thus, it does not
require precise placement of the chart and the placement
errors in spatial warping formulation can be avoided. It
was observed that the reliance on the implementation of
the spatial warping algorithm on a PC platform for real-
time applications is not possible due to the unacceptable
processing time. Thus, it was decided to map this technique
to hardware for achieving both high performance and highly
integrated solution. It is envisaged that an efficient VLSI
implementation will facilitate the placement of this dedi-
cated hardware module within the endoscopy unit.

Low and medium levels of image processing are charac-
terised by a large amount of data to be processed and by
classes of algorithms that present a fine/medium level grain
parallelism. These two computational characteristics,
together with possible real-time applications, lead to consid-
eration of the definition of dedicated architectures that
execute the described processing with high efficiency [13].
Due to the excessive computations associated with image
processing, many hardware implementation schemes have
been presented in the literature to facilitate high-speed
performance. A pipelined architecture for image segmenta-
tion by adaptive progressive thresholding has been
presented by Asari et al. [14]. The segmentation algorithm
is mapped onto a linear pipelined architecture in which the
computation is fully overlapped with I/O to perform online
segmentation. The implementation of systolic architectures
for Hopfield and Hamming neural networks are presented in
Ref. [15]. A methodology for the design of modular and
optimised architectural blocks for the generation of local
windows of pixels is presented by Antola et al. [16]. A
VLSI implementation of a focal plane image processor for
the realisation of the near-sensor image processing concept
has been proposed by Eklund et al. [17]. A methodology for
creating dense integrated processing element array to
build pixel-parallel image processing hardware for micro-
computer systems is described by Sodini et al. [18]. All these
techniques are aiming towards the realisation of various
compute-intensive algorithms to dedicated architectures.

Design of a dedicated architecture for non-linear spatial
warping of endoscopic images is proposed in this paper. The
design procedure partitions the entire spatial warping
process into several functional modules. The special
purpose VLSI architecture uses an efficient mapping strat-
egy that reduces the processing time as well as the commu-

nication time between the processing modules. Each
processing cell in the pipelined array is simple and requires
minimal contro] logic and the entire architecture could be
realised in a single VLSI chip.

2. The non-linear spatial warping algorithm

The spatial warping technique presented in this paper is
based on L,-norm approximation, which assumes that the
distortion is radial about the distortion centre [12]. Although
non-linear magnification of the distorted endoscopic image
in two dimensions is needed to correct the barrel distortion,
the assumption precludes the loss of generality, as a typical
endoscope lens is circularly symmetric within narrow preci-
sion limits.

Let the distorted and warped image spaces (WISs) be
represented by (U’, V') and (U, V) respectively, and the
distortion centre and the corrected centre by (u'., v'.) and
(ue, v). The distortion centre (u',, v'.) is a point in the
distorted image space_(DIS) such that the straight lines in
the object space passing through it remain straight in the
image space. The corrected centre (i, v.) is a point in the
WIS about which the expansion of distorted image gives
final warped image. In DIS, magnitude p’ of a vector P’
from the distortion centre to any pixel location (u', v') is
given by: .

Pl = — ul? + @ — VL) (1a)

The angle 6’ made by the radial vector P’ from the horizon-
tal U'-axis is given by,

!

o
ﬂ’:arclan( b v") (1b)

u' — ul

Let the same pixel be assigned to a new location (u, v) in
WIS; then the magnitude p and argument 6 of the corre-
sponding vector P drawn from the corrected centre to the
new pixel location are:

p=1u— 1) + (v = v (24)
and

v =,
B:arctan(u_uc) (2b)

The objective of the mathematical model is to obtain a
relation between the vectors P’ and P. An expansion poly-
nomial of degree N is defined to relate the magnitudes of the
two vectors in the distorted and warped images as:

N

p="> a,p | ©)
n=]

where a,s are the expansion coefficients. As the distortion

has been assumed to be purely radial, there will be no
change in the arguments of the corresponding vectors P’
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and P, i.e. ' = 6. After obtaining the magnitude of the new
vector, the new pixel location in the WIS can be calculated
as:

u=u,+ pcos & (4a)

v=v,+ psin @ (4b)

To map each pixel from the DIS onto the WIS, there are
N + 4 parameters viz. N expansion coefficients (a,s), distor-
tion centre (', v'.) and the corrected centre (u,, v.).

2.1. Estimation of expansion coefficients

The expansion coefficients are estimated on the basis of
degree of straightness of the points, which lie on a straight
line before imaging. These are estimated in the DIS by
straightening the grid lines of a distorted grid image. For
this purpose an experimental grid is used which contains test
dots arranged in horizontal and vertical grid lines. Let Py
denote the centre of a test dot lying in the ith row and jth
column of the grid with its co-ordinates at (xy, ;). Let there
be L columns of test dots in the grid image with k; dot
centres in the jth column. A set S; consisting of test dot
centres of the jth column is defined as:

Sj: {P}j,PQj,...,P@;} ferj=1,2,...,L (5)

To obtain a best fit polynomial curve for each set S, a
polynomial of degree M is defined as:

M
Ri(x) = D box” ()
=0

To estimate the coefficients b, s, least squares estimation is
used which provides sufficient emphasis on all those points
which are far from the approximation, without allowing
them to dominate. The unknowns, b, are chosen to
minimise the function F; which is defined as:

& M 2y 12
Fy= (Z ()’e‘f -2 bafxif) ) ™

i=1 a=0

Hence, b, js; can be calculated from

oF; =0 f =0,1,...M 8
ab - Oor & = R ( )

@

For every set S;, from Eq. (6) M + 1 simultaneous equations
are obtained, which can be represented in a matrix form as

Hb=1z ®

where,

H= [hfs](MH)x(Mﬂja

forl,s=0,1,....M

ki
t —
z=[z0,215-2u] > zs—zyax%
=1

£

b = [bg;, bijy e bag]'

To find the best linear fit for the set of k; points in jth column
of the test dots, a first degree polynomial is obtained from
Eq. (6). Hence, two optimum polynomial coefficients are
computed using Eq. (9). A normalised error function e; is
defined as the normalised sum of magnitudes of the perpen-
diculars drawn from each of the k; points on the best linear
fit of jth column as:

o

1 b]_’xy - y‘} =+ bﬂj

G=v 2" a0
J =1 (1 + b%j)
The total error for the whole grid image is obtained by:
L
E=Ye (11
=1

In the ideal condition when there is no distortion in the
image, the total error E is zero since all grid lines will be
imaged as straight lines. But due to image distortion, E has a
positive value, which decreases monotonously as the distor-
tion reduces. The main objective of the mathematical model
is to find the expansion coefficients a,s to minimise the total
error E. Minimisation of E is carried out by an iterative
procedure in which the new co-ordinates of the test dot
centres in the distorted grid image are calculated by using
a new set of expansion coefficients. The recursive relation-
ship to find the new set of expansion coefficients is derived
from the line search method of guaranteed convergence
[12]. This method is based on a ‘globalisation strategy’ to
select the new coefficients. The search direction in this
strategy is different from that derived from the Taylor series
as the Taylor series provides local approximation of a func-
tion. The global convergence ensures convergence of a
series from any starting point to a stationary point. Line
search methods are widely used for the purpose of global
convergence. On the basis of this method, the expansion
coefficients can be obtained by using the following recursive

relationship:
1
a,(A + 1) = a,(4) — cmBE(A)—amT
(5a) a

forn=1,....N

where « is the convergence rate parameter, S is the expan-
sion index, and dE/da, is the error gradient. Here a is
chosen to ensure that for every (A + 1)th iteration, E(A +
1) < E(A). If a is large, the decrease in total error E
predicted by the linear approximation may greatly differ
from the actual decrease and the global convergence could
be violated. On the other hand if « is too small, the time
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taken for convergence may be too long. The value of 8
controls the overall expansion of the distorted image and
facilitates the generation of the weights for each of the N
coefficients. The iterative relationship given in Eq. (12) also
conforms to the principle of diminishing convergence,
which ensures fast convergence at the initial phase of the
correction procedure when E is significantly large. The
iterative procedure ends when the total error becomes smal-
ler than a pre-specified limit , i.e. E(A) = . In the process
of spatial warping, E decreases as the grid lines get straigh-
tened and it reaches a minimum value E,;, when the most
optimally straightened grid is obtained. If the image is
expanded further, E starts increasing. Thus, if & is chosen
less than E .y, the diverging trend in total error is avoided by
stopping the iterations further when E(A + 1) = E(A).

2.2. Estimation of back mapping polynomial coefficients

Once the expansion coefficients are computed, all the
pixels contained in the DIS are mapped onto the WIS. It
can be observed that a number of pixel locations are left
vacant in the WIS due to the inhomogeneous expansion of
the distorted image. To obtain the correct intensity informa-
tion of these vacant pixels, a back mapping polynomial is
derived which maps every pixel from the WIS onto the DIS.
This polynomial is defined in a way similar to the expansion
polynomial of Eq. (3) and the coefficients are calculated by
using non-linear regression analysis employing least
squares for a finite number of points in the distorted
image [12]. For every pixel in the warped image, the corre-
sponding location in the distorted image is obtained and the
information contained in that pixel location is assigned to
the warped image pixel. In case, the pixel positions calcu-
lated using the back mapping polynomial are non-integers, a
linear interpolation on the surrounding pixels is used to get
the approximate pixel information.

2.3. Estimation of distortion centre and corrected centre

A reasonably correct estimation of the distortion centre is
essential for effective determination of the expansion coef-
ficients. The distortion centre is a fixed point for a particular
camera, and once calculated, can be used for all the images
obtained from that camera. It can be noted that the curvature
of columns decreases as it approaches the centre of the
image and then it increases and the sign of the curvature
changes. The same observation holds true for the rows also.
Thus, the lines, which remain straight after imaging, must
lie between the adjacent rows and columns of opposite
curvatures. The intersection of such straight lines gives
the distortion centre of the image. In the proposed method
of distortion centre estimation two polynomials, each of
degree v, passing through a set of grid dots of the adjacent
rows of opposite curvatures are defined as:

7 () = Zc};” fork=1,2 (13)

Similarly, two other polynomials, ¢\ (x) for k= 1 and 2,
represent the two adjacent columns of opposite curvatures.
The best-fit polynomial coefficients c}((‘;) are obtamed using
an equation similar to Eq. (9). The curvature " ) of kth row
is computed at the stationary point on a curve, (xg), ,({J) as:

d’q) ()

a? |, N
SR - fork=1,2(14)

[ (42h0) ]
dx (x(_r}_y(kr))

Similar polynomials q(” (x) for k=1, 2 are also deﬁned for
the adjacent columns, and the column curvatures k;; ) for the
k™ column at the stanonary point (x,(f), yff)) are obtained. The
distortion centre (u', v'.) is estimated by interpolating the

four curvatures &\, Kg), K\ and &Y as:

W — ()

PO () ()

(r),(") (FJ (r)
u = M vl = M (13)
¢ (C) (c) ’ ¢ (r) (r)
Ky© T Kyt

The warped image centre is needed for back mapping as all
the vectors P in the warped image are obtained with respect
to this centre. To find this centre, a pixel location is
computed in the distorted image, which after spatial warp- -
ing corresponds to the warped image centre. This pixel
location is found based on the criterion that in the warped
image, pixel distances between the dot centres should be the
same for all the grid lines in the horizontal and vertical
directions. The warped image centre is estimated by apply-
ing the expansion polynomial to this pixel location in the
distorted image, which is obtained by iteratively minimising
the variation in distances between the test dot centres in the
warped image.

3. Spatial warping architecture

The design of the spatial warping architecture assumes
the presence of 2N + 4 warping parameters viz. N expan-
sion coefficients (a,s), N back mapping coefficients (b,s),
distortion centre (', v'.) and corrected centre (i, v.). The
main activity in the spatial warping procedure is back
mapping. Different computational steps involved in the
back mapping algorithm described in Section 2 have been
mapped into suitable architectural formats along with other
necessary algorithmic constituents. The warping algorithm
is divided into different computational modules according to
their functional sequences and hardware feasibility. The
entire architecture is designed with simple computing
modules to make the design modular and regular. The
warped image could be an expanded image. A scaling
circuitry is designed to keep the size of the warped image
same as the original image. Conversion of the spatial warp-
ing module to an enhanced structure to handle a larger
image is possible by the addition of similar modules. The
main constituents of the spatial warping architecture are the
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Fig. 1. Basic forward mapping module: (a) architecture for Cartesian co-ordinate to polar co-ordinate conversion in DIS, (b) structure for computation of new

radius in WIS.

forward mapping module, expanded image size computa-
tion module, back mapping module, linear interpolation
module and the scaling circuitry.

3.1. Module for forward mapping

The first step in the spatial warping procedure is to obtain
the size of the expanded image from the distorted image.
Once the new image size is obtained, all pixel locations
inside this image is filled with pixel information extracted
from the original image by back mapping. In order to get the
size of the warped image, forwarding mapping of the four
corner pixels of the distorted image is performed. Forward
mapping uses the values of the distortion centre (i, v'.) and
expansion coefficients a,s as the reference data. The magni-
tudes of the radii in the polar co-ordinate system corre-
sponding to four cormers of the distorted image are
computed by Eq. (1a). Since the cosine and sine values of
these angles are required for the computation of the pixel
locations in the warped space, the architecture is designed to
compute cos 6 and sin §' directly as:

! !
u =,

cos #' = ;
p

(16a)

! !
Vo Ve
!

p

sin §' = (16b)
The architecture for obtaining these functions is shown in
Fig. 1(a). The pixel co-ordinates (u", v’) are fed to the circui-
try for obtaining the radii and angle information. Timing
circuit required for the entire spatial warping system is

designed separately to synchronise various functions. The
expanded radius p is obtained by Eq. (3) and the corre-
sponding architecture for non-linear expansion of p’ is
shown in Fig. 1(b) where the expansion coefficients a,s
are stored in reference registers, which are not shown in
the figure. The expanded radius is obtained after N compu-
tational steps. The four expanded radii and angles corre-
sponding to the pixel locations (0, 0), (L'}, 0), (0, L',) and
(L'}, L'y) are obtained, where L', and L', are the maximum
width and height co-ordinate values of the distorted image.
The maximum width and height co-ordinate values L, and
L, of the expanded image are obtained by the implementa-
tion of the following equations:

Ly = |p(L}, 0)cos(L},0) — p(0, 0)cos(0, 0)| (17a)
Ly = |p(0, L%)cos(0, Ly) — p(Ly, Ly)cos(Ly, L) (17b)
L, = max{L,;,L,} (17¢)
Ly = |p(0, L3)sin(0, L3) + p(0, 0)sin(0, 0)| (18a)
Ly = |p(L}, 0)sin(L},0) + (L, Lysin(L}, Ly)| (18b)
L, = max{L,;,Ls,) (18c)

The expanded size computation module shown in Fig. 2
obtains the values of L, and L,. The register array consisting
of Ry, R;, R;, and R; holds the products of p(0,0) and
cos(0, 0), ,o(Ll,O) and cos(L},0), p(0,L5) and cos(0,L5),
and p(L',L5) and cos(L!,L}), respectively, where p(l;,1,)
represents the magnitude of the radius from the corrected
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Fig. 2. Architecture for computation of expanded image size.

centre (u., v.) to the pixel location at (I;, L) in WIS and
cos(l},l;) represents the corresponding cos 6 value. Simi-
larly, register array consisting of R'y, R';, R',, and R’;
holds the products of p(0,0) and sin(0,0), p(L},0) and
sin(L},0), p(0,L5) and sin(0,L5), and p(L;,L5) and
sin(L},L}) respectively. The maximum value of L
and L,; is selected by the subtractor—multiplexer configura-
tion, where the sign bit of the subtractor is used as the
selection signal for the multiplexer and the width of
the expanded image L, is obtained as its selected output.
Similarly L, is obtained from the second multiplexer.

3.2. Module for back mapping

Once the expanded image size is obtained by forward
mapping, the pixel locations in this image should be filled
with the corresponding pixel values extracted from the
distorted image by back mapping. The radius p of each
pixel location from the corrected centre can be obtained
by Eq. (2a) where u takes all values from 0 to L, and v
takes all values from 0 to L,. The cosine and sine values
of the corresponding angles are obtained directly as:

U Uy
p

(19a)

cos =

-V

p

sin =~ (19b)

For the conversion of Cartesian co-ordinate values to the
corresponding polar co-ordinate values the same architec-
ture shown in Fig. 1(a) can be used with (u, v) as the input

Adder ‘—»x
Adder !_”;

Cos 6 Multiplier

o

Sin ' Multiplier

Ue V¢

Fig. 3. Computation of the pixel position in DIS.

and (i, v,) as the reference. The radius p’ of the pixel
location in DIS corresponding to each p in WIS is obtained
by using the back mapping coefficients b;s as the reference
inputs to Fig. 1(b). The polar co-ordinate values of the pixel
location obtained in the DIS are transformed into the corre-
sponding Cartesian co-ordinate values by the implementa-
tion of the following equations.

x'=u.+ p'cos (20a)

y' =v., + p'sin ¢ (20b)

The hardware schematic for obtaining (x’, y’) is shown in
Fig. 3, where the distortion centre (u', v'.) is kept as the
reference inputs. This pixel location obtained in the DIS can
be a fractional value too. The pixel value corresponding to
the pixel location (x’, y) is computed by linear interpolation
of the neighbouring pixel values in DIS.

3.3. Module for linear interpolation

The integer parts of the x’ and y’ are the x and y co-
ordinates of the first pixel location for linear interpolation
and they are denoted as A and B, respectively, as represented
in Eq. (21a), where the symbol |p] represents the lower
bound integer of the real number p.

A=k, B=]

The fractional parts of the co-ordinate values are repre-
sented as A’ and B’

A'=x" - A, B =y —-B
The four neighbouring pixel locations are (A, B), (A + 1, B),

(21a)

(21b)

A | A+

B B

A | A
B+l | B+l

Fig. 4. Pixel locations for linear interpolation.
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(A,B+ 1)and (A + 1, B + 1) as shown in Fig. 4. The linear
interpolation of the four pixels is performed as:

IN=I'AB)x(1—-A)Yx(1~B) (22a)

Ib=TI'A+1,B)xAY*x (1 —-B") (22b)

I5=I'A,B+ 1)x(1—AYx B (22¢)

Ii=TI'A+1,B+ 1)xAHYxB" (22d)
4

Iu,v)=>1; (23)
=

The hardware architecture to obtain the value of I(u,v) by
linear interpolation is shown in Fig. 5. The addresses corre-
sponding to the four pixels (A, B), (A + 1,B), (A.B + 1) and
(A+1,B+ 1) in the image RAM are generated and sent
sequentially to access the four pixel intensities I'(A, B),
I''A+1,B), I'A,B+1) and I'(A+1,B+1) from the
RAM. The four fractional product terms are generated by
the multipliers and they are fed to the final multiplier using
a 4% 1 multiplexer. The 2-bit selection input of the
multiplexer is from a 2-bit counter whose count sequence
is synchronised with the RAM reading operation and shift-
ing of the pixel intensity data from the pixel register. The
partial products are accumulated and after four cycles,

Address
bus
> Image RAM = Dual port
> RM, = data bus
> Image RAM |=B
|—> RM, ==
»cs [ i
= logic |
L: Image RAM [~9>
o= RMum =

Fig. 6. Schematic for pipelined architecture.

I(u,v) is available at the accumulator output. I(u,v) is
computed for all values of u# and v such that 0 = u < L,
and0=v =1L,

3.4. Banked memory architecture

Since massive computations are involved in the spatial
warping architecture, it is required to perform simultaneous
access and manipulations of image data to enable online
performance of the embedded warping module for real-
time applications. Hence a banked memory architecture is
proposed, which allows multiple data accesses at the same
time to perform spatial warping at different portions of the
image simultaneously. The basic structure of the pipelining
is shown in Fig. 6. The original image data is stored in M
different RAMs RM |, RM,, ..., RMy, of capacity (L; + 1) X
(L, + 1)/M each. The first (L, + 1)/M rows of the image are
stored in RM;. The next (L, + 1)/M rows of image in RM,
and so on and the last (L, + 1)/M rows of image are in RM,,.
The chip-select (CS) signals for the RAMs are created with
the upper significant bits of the original address bus by a
suitable CS logic circuitry. When one of the last row
elements of a RAM forms the first pixel I'(4,B) for
performing linear interpolation, the pipeline requires data
from the next RAM locations to be accessed as I'(A, B + 1)
and I'(A + 1,B + 1). In this situation, simultaneous data
access by two pipelines may occur from two different loca-
tions of the same RAM chip. Providing dual port memories
as shown in Fig. 6 to the RAMs efficiently rectifies this
situation.

3.5. Scaling of the expanded image

It is obvious that the warped image size is larger than the
original distorted image as the pixel areas farther from the
distortion centre get expanded. The size of the warped
image varies depending on the expansion coefficients and
it need not be a regular size too. Hence, it is impossible to
pre-compute the warped image size and fix the output image
RAM size. In this case, the regularisation of the warped
image size has become a necessity. This led to the design
of a scaling circuitry, for bringing down the size of
the warped image to that of the original image. Scaling
depends on the horizontal expansion ratio &, and the vertical
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Fig. 7. Schematic for the generation of pixel intensities to the scaled image.

expansion ratio &,, which are defined as:
_ L

L,
—_— 3 24
7 14 (24)

&n = .
Pixel values of the scaled image are obtained by:
1w",v"
1 [1-11&1=1 . )
= [ETxTE] Zﬂ ; (g, X u"] + 11, 1 x "] + /D
(25)

where u” and v" are the co-ordinates of the scaled image
such that 0 = u” =L} and 0 <v" < L}. The hardware
schematic for obtaining the scaled image is shown in Fig.
7, where the symbol [p] represents the upper bound integer
of the real number p. The counter outputs u; and v; are
generated in such a way that all pixel positions (u;, v;)

250 +
200 +
150 +

100 -

p (Corrected image)

p’ (Distorted image)

Fig. 8. Relationship between the vector magnitudes before and after radial
expansion: (a) distorted image of the experimental grid, (b) warped image
after back mapping and scaling.

occur such that 0 =i <[&] and 0 = j <[£,] These pixel
positions are fed to the back mapping and linear interpola-
tion modules so that the pixel values corresponding to these
pixel locations are generated. The average value of these
pixels is the required pixel intensity of the location (", v").
The pixel value I(u",v") is transferred to the output RAM.
This process is repeated for all values of 1" and v".

4. Performance evaluation

For the performance evaluation of the spatial warping
procedure, an experimental grid containing a rectangular
array of dots of 1 mm diameter was used. The distance
between the dot centres was chosen as 2.5 mm in horizontal
as well as vertical directions. An electronic video-endo-
scopy system, which utilises a CCD camera with 200 000
pixel resolution and three light sources red, green and blue
was used for capturing the images. The captured images
were digitised by a frame grabber and stored in an image
buffer. The grid was attached to a copy stand platform and
the camera of the endoscope was oriented perpendicular to
the grid surface at a distance of 10 mm. After imaging, it
was observed that the distance between the test dot centres
decreases as they move away from the distortion centre.
This implies that the spatial warping procedure will have
to produce an image in which distances between grid dot
centres, away from the distortion centre are approximately
equal to those that are close to the centre. The digitised
image of size 256 X192 pixels was binarised using
histogram thresholding approach by considering the
second valley of the histogram as the threshold point. A
total of 58 dots were extracted for the spatial warping
model formulation.

Before computing the expansion polynomial, it is neces-
sary to compute the distortion centre of the endoscopic
image. The distortion centre was estimated by using curva-
ture criterion and was found to be (134, 89) while the co-
ordinate system was fixed at the bottom left corner of the
image. To obtain the expansion polynomial, first of all the
degree of polynomial was ascertained. For this purpose,
the relationship between the degree of polynomial and the
least total error E;, was examined experimentally and it
was found that the variation in error was negligible for the
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Fig. 9. Spatial warping on the experimental grid image: () distorted endo-
scopic image, (b) warped image after back mapping and scaling.

polynomial of order more than 3. The order of expansion
polynomial as 4 was chosen. The four expansion coefficients
were obtained using the algorithm described in Section 2.
The expansion coefficients were computed from the itera-
tive relation given in Eq. (12) for different values of the
convergence rate parameter . The value of the expansion
index S was found to be optimum at 2.3, which decides the
weight of the nth coefficient. It can be observed that as «
increases, convergence becomes faster. As a decreases, Epn
reduces while the number of iterations required for conver-
gence increases. But E,;, does not decrease significantly
after a particular value of «, Qop, though the number of

(b)

Fig. 10. Spatial warping on a typical endoscopic image. (a) distorted endo-
scopic image; (b) warped image after back mapping and scaling.

iterations required for convergence increases exponentially.
Hence, to restrict the computation time to make it suitable
for online camera calibration, the value of & was chosen as a
trade off between the accuracy and the computation time. In
the present experimental set up, o, Was chosen as 0.005.
For the set of expansion coefficients obtained, the relation-
ship between the distorted radius and the corresponding
corrected radius is shown in Fig. 8. It can be observed that
the outer areas of the distorted image having large radii
expand more after spatial warping.

The back mapping coefficients are found by using a
finite number of image dots. For back mapping, the
pixel location in the distorted image corresponding to
the corrected centre was found as (142, 78). Each pixel
in the scaled image space corresponds to a set of pixels
in the expanded image and its intensity is obtained by
averaging those pixel intensities as shown in Eq. (25).
The pixel intensities of the expanded image are
obtained by back mapping and linear interpolation.
The distorted and warped images of the experimental
grid are shown in Fig. 9(a) and (b), respectively. It
can be seen that the grid is straightened within practical
limits. The same expansion polynomial can be used for
spatial warping of the images taken by the video-endo-
scope until the time the camera lens is not changed or
relocated from the CCD array. Typical endoscopic
images are taken within a range of less than 20 mm
during clinical procedures. The same spatial warping
polynomial was applied to several test images captured
within a viewing range of 20 mm and it was observed
that the warped images were acceptable for further
analysis. A typical gastrointestinal image is shown in
Fig. 10(a) and the corresponding warped image is
shown in Fig. 10(b). It can be noted that the original
image was corrected and its outer areas expanded
considerably due to the spatial warping.

For the construction of the spatial warping architec-
ture for an image of size 256 X 192, the image RAM
size was fixed as 4KB. Hence, there were 12 such dual
port RAMs to store the image data and 12 similar pipe-
lines for the entire architecture. Each functional module
transfers data to its mearest neighbour after completing
its computation. The reference data obtained by theore-
tical analysis of the spatial warping algorithm such as
expansion coefficients, back mapping coefficients,
distortion centre, and corrected centre are fed to the
corresponding reference registers in the architecture. In
addition to that, the four corner pixel locations, which
define the size of the input image, are also fed to the
forward mapping module. The forward mapping module
comprising the architectures for co-ordinate conversion
and polynomial expansion outputs the new radius and
angles corresponding to the four corner pixel positions
in the DIS. This data is then fed to the expanded size
computation unit, which outputs the new values of L,
and L,. The module consisting of the forward mapping
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unit and the expanded size computation unit of the
architecture is a separate module and it is not a part
of the pipeline.

The scaling circuitry is an important part of the architec-
ture, which determines the actual pixel positions to be
accessed in the back mapping and linear interpolation
modules. The architecture of the back mapping module is
the same as the architecture of the forward mapping module
except the reference data. The scaling, back mapping, and
linear interpolation are performed in all pipelines simulta-
neously by reading image data from the corresponding
image RAMs. A separate timing circuitry for the system is
built taking care of the timing requirements of the various
computing modules in the architecture. The performance
evaluation of the proposed hardware using Altera Quartus
II version 1.1 for Apex II FPGA with 20 MHz clock
frequency confirms that the overall time latency was about
0.17 ms making it suitable for real-time applications even
for a larger image size. The entire architecture is being
implemented for eventval fabrication using 0.35 pm
CMOS technology. It is envisaged that an improved systolic
design with increased parallelism in deep sub-micron tech-
nology will significantly shorten the computation time.

The proposed hardware scheme is a generalised architec-
ture, which is suitable for any image size and camera. The
camera parameters such as the expansion coefficients, back
mapping coefficients, distortion centre, and corrected centre
are fed into the system externally. The image size and the
image data are obtained from the frame grabber. The
corrected image is fed back to the display RAM of the
frame grabber for real-time visualisation and diagnosis of
the corrected gastrointestinal image by the endoscopist on
the endoscope screen.

5. Conclusion

A novel method for the online correction of non-linear
distortion in endoscopic images has been presented. The
expansion coefficients were obtained by using least-squares
estimation and were applied to different grid patterns for
testing. It was observed that expansion polynomial obtained
for a particular endoscope camera lens was capable of
correcting the distortion satisfactorily. This procedure is
an essential step for the accurate measurement of the regions
of interest in the endoscopic images to facilitate quantitative
parameter extraction for online decision-making. Further
research is in progress to find a relationship between the
expansion coefficients and the distance of the camera lens
from the object. The spatial warping algorithm is mapped to
an appropriate architecture for building an embedded unit
for the endoscopy system to facilitate online camera calibra-
tion. A pipelined architecture for the implementation of the

spatial warping technique was implemented such that differ-
ent computational steps in the algorithm by accessing differ-
ent portions of the image data are carried out
simultaneously. Further research work is in progress to
explore a reconfigurable architecture by appropriate parti-
tioning of the different computing modules in the system.
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