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Letters

Training of a Feedforward Multiple-Valued Neural 0 < a < 1, wherea is called the slope parameter. For balanced
Network by Error Backpropagation With a Multilevel q-level neurons, the generalized expression for the activation function
Threshold Eunction with a; = AV i, can be written as
g—1
Vijayan K. Asari Net) — A _(g=1)A
fa(Ney ; 1+ exp((—Net+ 13) /) 2 )
Abstract—A technique for the training of multiple-valued neural net- @

works based on backpropagation learning algorithm employing a multi- . . . .
level threshold function is proposed. The optimum threshold width of the If the trar}sﬂmn points; are_ at equal intervals, i.el;+1 — T: = D,
multilevel function and the range of the learning parameter to be chosen WhereD is the threshold width

for convergence are derived. Trials performed on a benchmark problem D

demonstrate the convergence of the network within the specified range of T, =D — e forl1 <i<g-1. 3)
parameters. 2

Index Terms—Backpropagation, multilevel threshold function, multiple- ~ FOr @ quaternary network with = 2, (2) reduces to

valued neural network. 5
2
‘o(Net) = -3 4
fo(Ney Z |:1—|—exp((—Net+ Ti)/cu):| “)
I. INTRODUCTION =1

The binary model of the artificial neurons does not describe the coiiereZ: = (iD —2D). In order to apply the backpropagation algo-
plexity of biological neurons fully since the neurons actually handfdthm for the training of the multilayer network, it is necessary that the
continuous data. However, analog neurons implemented in an inf@nlinear function is differentiable [7]. . o
grated chip require high-precision resistors and are easily affected b))'he derivative of the multilevel threshold function of (2) is given by
electrical noise. Because of the problems associated with the binary

4 4L

and analog neurons, research on multilevel neural networks for mod- f6,(Net) = A Z { 1 ‘ }

eling the biological neurons has attracted great attention [1]-[3]. Mul- a & [1+exp((=Net+T;)/«)
tiple-valued logic establishes a balance between the quantized integrity 1

of binary and the information density of analog signaling. Multiple- ' {1 " 1+ exp((—Net+ T,;)/(v):| . ®)

valued logic neuron has robust separation ability and a very fast op-

eration speed in pattern recognition when compared to an ordinggmce thef¢, (Net) exists, the activation functiof, (Net) can be used

linear neuron. Tangt al.introduced multiple-valued algebraic systenfor training a multilevel network with backpropagation learning rule.

of learning incorporating a weighted sum and piecewise linear funEb€ convergence of the network depends on the value of the threshold

tions [4]. An ARTMAP based multiple-valued neural network for thewidth D. If the threshold width is too large, the network requires more

recognition and prediction of multiple-valued patterns is presented#mber of training cycles for convergence. On the other hand, if the

[5]. A self-organizing neural network for the recognition of mu|tip|elhreshold width is too small, a small change in Net can cause the output

valued patterns is explained in [6]. to change by more than one level and this process may lead to an os-
In this letter, it is shown that a multilayer feedforward multiple€illation in the output. A criterion for choosing an appropriate value of

valued neural network can be trained by using a multilevel nonline&t for the multilevel continuous threshold function is discussed below.

threshold function with backpropagation learning rule. Experiments . )

are performed on various sets of multiple-valued patterns to obse eCh0|ce of the Threshold Width

the convergence characteristics of a multilayer quaternary network withThe change in the Net value of a neuroim /th layer designated as

different hidden layer nodes. ANet;; due to one weight update operation is given by
Ny_q—1
Il. TRAINING OF MULTILAYER NETWORKS ANet; = Z Yii—1) A (6)
A. Multilevel Threshold Function =0
A g-level continuous nonlinearity can be constructed by the summéherey;—1), is the output of theth neuron in the(l — 1)th layer
tion of (¢ — 1) number of shifted sigmoids as andN;_1, is the number of neurons in tlie— 1)th layer. The weight
update for a neuron in a multilayer network is given by
q—1
) a;
N — l A g — {S o
fQ( Et) Z {1+exp((—Net+ T,)/a) ( ) Au’]zl Noj1Yi(1—1) (7)

=1
o N _where the error signdl;; is defined as
wherea; s are positive finite constants affigls are the transition points

[2]. The parameter determines the slope and it is chosen in the range , Nii=
651 = f (Net;) Z Bk(t4+1) Whii+1) (7.9)
k=0
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for a neuron in the output layer, whergrepresents the desired output. 400 4

From (6) and (7)

350
Ny_1—1 Ny_1—1 300 -
; 2
ANeti = > néuyia-n =néin Y, Y- ()
i=0 i=0 250 4

The maximum change in Ngt for a givens; occurs wheny;_1) =
Famax for all i andéj; assumes the maximum value. Foy-devel
network using balanced threshold function,.x = (¢ — 1)4/2 and
hence

-

w

o
1

-

o

o
L

(ANEt ) max = 1(8;1)max T iax Ni—1- 9)

No. of iterations for convergence
n
(¢ [=]
(=) o

Assume that the difference between the actual and desired output :
thejth neuron of the output laydr is equal ton A. From (7b) we have ] 0.05 0.1 0.15 0.2

o
1

(6jL)maX = (f’(Neth))maXﬂlA. (10)
Fig.1. Effectofy on convergence of multilayer quaternary network wiith=
(f'(Net;;))max OCcurs at the transition poin§ and using (5) it can 2.
be shown that

, A network using the threshold function of (4) with,.. = 3 andA4 = 2,
(f'(Net))max = — (11)  (16) reduces to
The value of the threshold widtl) should be chosen such that the 0<n< Zka . (17)
resulting{ ANet;;)max does not cause more thantransition points in NI
order to avoid oscillations in the output signal. That is Hence the maximum value of the learning rate parameter for a partic-
ular layer can be written as
mD 2 7’((511)1'1']3‘)(-‘7\7!—1‘1:;211&1,‘(' (12) ~
n= JVILI (18)
From (10) to (12), we get
N where~ is a real-valued parameter in the rarige v < (2ak/9).
mD > n — mAN_ 2% .. (13)
4o Ill. EXPERIMENTAL RESULTS
or Various experiments are performed on a quaternary network with
42 one hidden layer to evaluate the performance of the proposed tech-

D > gN; 2, — (14) nique in a pattern-mapping problem. The network is presented with
da a sequence of character patterns together with the corresponding de-
Equation (14) gives a sufficient condition for the convergence of thered outputs and it is trained to identify the individual patterns. The
q-level network. For a balanced quaternary network using the threshaldaternary network had eight input and eight output neurons. The gray

function of (2) withz..x = 3 and 4 = 2, (14) reduces td> > levels of the patterns are encoded-&3, —1, 1, and 3. The effect of

(MNL_1/a). the learning rate on the convergence characteristics is studied. Fig. 1
depicts the number of iterations required for convergence versus the
C. Choice of the Learning Rate Parameter real valued parameterfor D = 2 with Vv, = 8,10,12 and16. For

Assume that for the balancedlevel network using the threshold this experiment the values of the slope paramatethe momentum
function of (2),D is selected such that terme, and the number of training patterfsare 0.7, 0.25, and 40, re-

spectively. It is observed that, the network fails to converge for values
of v greater than a critical valug.. The parametey, is related to the
learning parametey by (18), which in turn related t& by (14). In

Fig. 1, the values of; less than 0.1 are found to be more appropriate
wherek is an integer. The slope parameteiis chosen in the range for the smoother gradient descent learning of the network. However,
0 < a < 1. Once the appropriate values fbranda are selected, the for smaller values, i.ey < 0.03, the learning is very slow. In an-
range of the values of the learning rate paramgteain be determined other experiment, the plots depicting the root mean square error versus

D=FkA (15)

using (14) and (15) as the number of iterations fob = 2 with P = 24, 32, 40 and 48
are obtained. The values of other parameters for this experiment are

dko N, = 10, v = 0.07, e = 0.25 anda = 0.7. Fig. 2 demonstrates
Ni_ja2, A the characteristic behavior of the backpropagation learning with gra-

dient descent in the mean square error surface. It can be noted that
whererm.x = (¢ — 1)A/2. If 5 is selected according to (16), then thethe network performance improves rapidly during the initial iterations
convergence of the network for any set of patterns is ensured. Haand then undergoes a prolonged phase. This may be attributed to the
ever, a value of; greater than the one given by (16) may also lead tiact that the magnitude of the weight update is more when Net is
convergence depending upon the patterns. For the balanced quaternasay the transition points and nonupdates are observed to occur more
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Qualitative Analysis of a Recurrent Neural Network
for Nonlinear Continuously Differentiable Convex

Minimization Over a Nonempty Closed Convex Subset

-
:

[=]
[+]

Xue-Bin Liang

0.50

Abstract—We investigate the qualitative properties of a recurrent neural
0.00 PSRRI ALALAEE S ALY LSS network (RNN) for minimizing a nonlinear continuously differentiable
. . and convex objective function over any given nonempty, closed, and
No. of iterations convex subset which may be bounded or unbounded, by exploiting some
key inequalities in mathematical programming. The global existence and

Fig. 2. Convergence characteristics of multilayer quaternary network witoundedness of the solution of the RNN are proved when the objective

D

frequently when the network approaches convergence. The simula

= 2. function is convex and has a nonempty constrained minimum set. Under
the same assumption, the RNN is shown to be globally convergent in the
sense that every trajectory of the RNN converges to some equilibrium
ﬂ?@ﬁ“ of the RNN. If the objective function itself is uniformly convex and its
radient vector is a locally Lipschitz continuous mapping, then the RNN is

results presented in this section provide preliminary evidence for t Rbally exponentially convergent in the sense that every trajectory of the

co

nvergence properties of a multilevel network using backpropagatiRNN converges to the unique equilibrium point of the RNN exponentially.

algorithm. These qualitative properties of the RNN render the network model well

suitable for solving the convex minimization over any given nonempty,
closed, and convex subset, no matter whether the given constrained subset
IV. CONCLUSION is bounded or not.

In this letter, a novel technique for the training of multiple-valued Index Terms—Closed convex subsets, convex minimization, global con-

neural networks based on backpropagation learning algorithm usingesgence, global existence of solutions, global exponential convergence, re-
multilevel threshold function has been presented. A suitable multiley&irent neural networks (RNNs), uniform convexity.

threshold function has been developed. The backpropagation learning

algorithm has been used for training the multilevel network. The value I. INTRODUCTION

of

the threshold width of the multilevel function suitable for the con-

vergence of the network has been derived. The range of learning rat&ince the seminal work of Tank and Hopfield [1] and Kennedy and
parameter to be chosen for ensuring convergence of the network Ré¥ia [2], there has been considerable investigation in the literature
been computed for a chosen value of threshold width and slope par&hartificial neural networks to construct recurrent neural networks
eter. Experiments have been performed using various sets of quat&NNS) for solving linear and nonlinear programming problems (see,
nary patterns with different values of threshold width, slope, learniyd-, [3] and references therein). It is the parallel and distributive
parameter, and hidden layer size. These experiments show that the iBiilcture inherent in the artificial neural network scheme that renders
tiple-valued network performs satisfactorily if the learning rate parar#€ neural network, especially the RNN, a preferable approach for
eter is chosen within the proposed range. An important advantage of $/ing @ numerous variety of problems in mathematical programming
multiple-valued neural network is that it can be implemented in ve@nd optimization. For the success of the RNN in practice, it is critical
large scale integration with reduced number of neurons and synap@t the RNN to have qualitative properties such as the existence

weights.

of equilibrium of the network, the correspondence between the
equilibrium of the network and the solution to the original problem
to be solved, the global existence and boundedness of the network’s
solution trajectory from any initial point in the whole space, and the
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