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Letters__________________________________________________________________________________________

Training of a Feedforward Multiple-Valued Neural
Network by Error Backpropagation With a Multilevel

Threshold Function

Vijayan K. Asari

Abstract—A technique for the training of multiple-valued neural net-
works based on backpropagation learning algorithm employing a multi-
level threshold function is proposed. The optimum threshold width of the
multilevel function and the range of the learning parameter to be chosen
for convergence are derived. Trials performed on a benchmark problem
demonstrate the convergence of the network within the specified range of
parameters.

Index Terms—Backpropagation, multilevel threshold function, multiple-
valued neural network.

I. INTRODUCTION

The binary model of the artificial neurons does not describe the com-
plexity of biological neurons fully since the neurons actually handle
continuous data. However, analog neurons implemented in an inte-
grated chip require high-precision resistors and are easily affected by
electrical noise. Because of the problems associated with the binary
and analog neurons, research on multilevel neural networks for mod-
eling the biological neurons has attracted great attention [1]–[3]. Mul-
tiple-valued logic establishes a balance between the quantized integrity
of binary and the information density of analog signaling. Multiple-
valued logic neuron has robust separation ability and a very fast op-
eration speed in pattern recognition when compared to an ordinary
linear neuron. Tanget al. introduced multiple-valued algebraic system
of learning incorporating a weighted sum and piecewise linear func-
tions [4]. An ARTMAP based multiple-valued neural network for the
recognition and prediction of multiple-valued patterns is presented in
[5]. A self-organizing neural network for the recognition of multiple-
valued patterns is explained in [6].

In this letter, it is shown that a multilayer feedforward multiple-
valued neural network can be trained by using a multilevel nonlinear
threshold function with backpropagation learning rule. Experiments
are performed on various sets of multiple-valued patterns to observe
the convergence characteristics of a multilayer quaternary network with
different hidden layer nodes.

II. TRAINING OF MULTILAYER NETWORKS

A. Multilevel Threshold Function

A q-level continuous nonlinearity can be constructed by the summa-
tion of (q � 1) number of shifted sigmoids as

fQ(Net) =
q�1

i=1

ai
1 + exp((�Net+ Ti)=�)

(1)

whereais are positive finite constants andTis are the transition points
[2]. The parameter� determines the slope and it is chosen in the range
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0 < � < 1, where� is called the slope parameter. For balanced
q-level neurons, the generalized expression for the activation function
with ai = A 8 i, can be written as

fQ(Net) =
q�1

i=1

A

1 + exp((�Net+ Ti)=�)
�

(q � 1)A

2
:

(2)

If the transition pointsTi are at equal intervals, i.e.,Ti+1 � Ti = D,
whereD is the threshold width

Ti = iD �
qD

2
for 1 � i � q � 1: (3)

For a quaternary network withA = 2, (2) reduces to

fQ(Net) =
3

i=1

2

1 + exp((�Net+ Ti)=�)
� 3 (4)

whereTi = (iD � 2D). In order to apply the backpropagation algo-
rithm for the training of the multilayer network, it is necessary that the
nonlinear function is differentiable [7].

The derivative of the multilevel threshold function of (2) is given by

f 0Q(Net) =
A

�

q�1

i=1

1

1 + exp((�Net+ Ti)=�)

� 1�
1

1 + exp((�Net+ Ti)=�)
: (5)

Since thef 0Q(Net) exists, the activation functionfQ(Net) can be used
for training a multilevel network with backpropagation learning rule.
The convergence of the network depends on the value of the threshold
widthD. If the threshold width is too large, the network requires more
number of training cycles for convergence. On the other hand, if the
threshold width is too small, a small change in Net can cause the output
to change by more than one level and this process may lead to an os-
cillation in the output. A criterion for choosing an appropriate value of
D for the multilevel continuous threshold function is discussed below.

B. Choice of the Threshold Width

The change in the Net value of a neuronj in lth layer designated as
�Netjl due to one weight update operation is given by

�Netjl =

N �1

i=0

yi(l�1)�wjil (6)

whereyi(l�1), is the output of theith neuron in the(l � 1)th layer
andNl�1, is the number of neurons in the(l� 1)th layer. The weight
update for a neuron in a multilayer network is given by

�wjil = ��jlyi(l�1) (7)

where the error signal�jl is defined as

�jl = f
0(Netjl)

N �1

k=0

�k(l+1)wkl(l+1) (7.a)

for a neuron in the hidden layer and

�jl = f
0(Netj)(oj � yj): (7.b)
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for a neuron in the output layer, whereoj represents the desired output.
From (6) and (7)

�Netjl =

N �1

i=0

��jly
2
i(l�1) = ��jl

N �1

i=0

y2i(l�1): (8)

The maximum change in Netjl, for a given� occurs whenyi(l�1) =
�xmax for all i and �jl assumes the maximum value. For aq-level
network using balanced threshold function,xmax = (q � 1)A=2 and
hence

(�Netjl)max = �(�jl)maxx
2
maxNl�1: (9)

Assume that the difference between the actual and desired outputs at
thejth neuron of the output layerL is equal tomA. From (7b) we have

(�jL)max = (f 0(NetjL))maxmA: (10)

(f 0(Netjl))max occurs at the transition pointsTi and using (5) it can
be shown that

(f 0(Netjl))max =
A

4�
: (11)

The value of the threshold width,D should be chosen such that the
resulting(�Netjl)max does not cause more thanm transition points in
order to avoid oscillations in the output signal. That is

mD � �(�jl)maxNl�1x
2
max: (12)

From (10) to (12), we get

mD � �
A

4�
mANl�1x

2
max (13)

or

D � �Nl�1x
2
max

A2

4�
: (14)

Equation (14) gives a sufficient condition for the convergence of the
q-level network. For a balanced quaternary network using the threshold
function of (2) withxmax = 3 andA = 2, (14) reduces toD �

(9�NL�1=�).

C. Choice of the Learning Rate Parameter

Assume that for the balancedq-level network using the threshold
function of (2),D is selected such that

D = kA (15)

wherek is an integer. The slope parameter� is chosen in the range
0 < � < 1. Once the appropriate values forD and� are selected, the
range of the values of the learning rate parameter� can be determined
using (14) and (15) as

0 < � �
4k�

Nl�1x2maxA
(16)

wherexmax = (q� 1)A=2. If � is selected according to (16), then the
convergence of the network for any set of patterns is ensured. How-
ever, a value of� greater than the one given by (16) may also lead to
convergence depending upon the patterns. For the balanced quaternary

Fig. 1. Effect of
 on convergence of multilayer quaternary network withD =
2.

network using the threshold function of (4) withxmax = 3 andA = 2,
(16) reduces to

0 < � �
2k�

9Nl�1
: (17)

Hence the maximum value of the learning rate parameter for a partic-
ular layer can be written as

� =



Nl�1
(18)

where
 is a real-valued parameter in the range0 < 
 � (2�k=9).

III. EXPERIMENTAL RESULTS

Various experiments are performed on a quaternary network with
one hidden layer to evaluate the performance of the proposed tech-
nique in a pattern-mapping problem. The network is presented with
a sequence of character patterns together with the corresponding de-
sired outputs and it is trained to identify the individual patterns. The
quaternary network had eight input and eight output neurons. The gray
levels of the patterns are encoded as�3,�1, 1, and 3. The effect of
the learning rate on the convergence characteristics is studied. Fig. 1
depicts the number of iterations required for convergence versus the
real valued parameter
 for D = 2 with Nh = 8; 10; 12 and16. For
this experiment the values of the slope parameter�, the momentum
term", and the number of training patternsP are 0.7, 0.25, and 40, re-
spectively. It is observed that, the network fails to converge for values
of 
 greater than a critical value
c. The parameter
 is related to the
learning parameter� by (18), which in turn related toD by (14). In
Fig. 1, the values of
 less than 0.1 are found to be more appropriate
for the smoother gradient descent learning of the network. However,
for smaller values, i.e.,
 < 0:03, the learning is very slow. In an-
other experiment, the plots depicting the root mean square error versus
the number of iterations forD = 2 with P = 24, 32, 40 and 48
are obtained. The values of other parameters for this experiment are
Nh = 10; 
 = 0:07, " = 0:25 and� = 0:7. Fig. 2 demonstrates
the characteristic behavior of the backpropagation learning with gra-
dient descent in the mean square error surface. It can be noted that
the network performance improves rapidly during the initial iterations
and then undergoes a prolonged phase. This may be attributed to the
fact that the magnitude of the weight update�w is more when Net is
near the transition points and nonupdates are observed to occur more
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Fig. 2. Convergence characteristics of multilayer quaternary network with
D = 2.

frequently when the network approaches convergence. The simulation
results presented in this section provide preliminary evidence for the
convergence properties of a multilevel network using backpropagation
algorithm.

IV. CONCLUSION

In this letter, a novel technique for the training of multiple-valued
neural networks based on backpropagation learning algorithm using a
multilevel threshold function has been presented. A suitable multilevel
threshold function has been developed. The backpropagation learning
algorithm has been used for training the multilevel network. The value
of the threshold width of the multilevel function suitable for the con-
vergence of the network has been derived. The range of learning rate
parameter to be chosen for ensuring convergence of the network has
been computed for a chosen value of threshold width and slope param-
eter. Experiments have been performed using various sets of quater-
nary patterns with different values of threshold width, slope, learning
parameter, and hidden layer size. These experiments show that the mul-
tiple-valued network performs satisfactorily if the learning rate param-
eter is chosen within the proposed range. An important advantage of the
multiple-valued neural network is that it can be implemented in very
large scale integration with reduced number of neurons and synaptic
weights.
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Qualitative Analysis of a Recurrent Neural Network
for Nonlinear Continuously Differentiable Convex

Minimization Over a Nonempty Closed Convex Subset

Xue-Bin Liang

Abstract—We investigate the qualitative properties of a recurrent neural
network (RNN) for minimizing a nonlinear continuously differentiable
and convex objective function over any given nonempty, closed, and
convex subset which may be bounded or unbounded, by exploiting some
key inequalities in mathematical programming. The global existence and
boundedness of the solution of the RNN are proved when the objective
function is convex and has a nonempty constrained minimum set. Under
the same assumption, the RNN is shown to be globally convergent in the
sense that every trajectory of the RNN converges to some equilibrium
point of the RNN. If the objective function itself is uniformly convex and its
gradient vector is a locally Lipschitz continuous mapping, then the RNN is
globally exponentially convergent in the sense that every trajectory of the
RNN converges to the unique equilibrium point of the RNN exponentially.
These qualitative properties of the RNN render the network model well
suitable for solving the convex minimization over any given nonempty,
closed, and convex subset, no matter whether the given constrained subset
is bounded or not.

Index Terms—Closed convex subsets, convex minimization, global con-
vergence, global existence of solutions, global exponential convergence, re-
current neural networks (RNNs), uniform convexity.

I. INTRODUCTION

Since the seminal work of Tank and Hopfield [1] and Kennedy and
Chua [2], there has been considerable investigation in the literature
of artificial neural networks to construct recurrent neural networks
(RNNs) for solving linear and nonlinear programming problems (see,
e.g., [3] and references therein). It is the parallel and distributive
structure inherent in the artificial neural network scheme that renders
the neural network, especially the RNN, a preferable approach for
solving a numerous variety of problems in mathematical programming
and optimization. For the success of the RNN in practice, it is critical
for the RNN to have qualitative properties such as the existence
of equilibrium of the network, the correspondence between the
equilibrium of the network and the solution to the original problem
to be solved, the global existence and boundedness of the network’s
solution trajectory from any initial point in the whole space, and the
convergence of the network’s solution trajectory to the equilibrium set
or some equilibrium point of the network.

In the letter, we consider the following nonlinear minimization
problem formulated as

minimizingE(x) subject tox 2 
 (1)
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