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ABSTRACT

‘We consider an improved least square algorithtn based on
subspace rofations using Procrustes approximation.
Robust estirnation of the poles of a narrowband signal is
achieved by reducing the bias of the estimates. The key
idea is to consider the signal as a vector in multi-
dimensional space, and to separate the “pure signal” and
the noise into two mutually orthogonat components lying
in different subspaces. Though the quality of the estimated
signal is not much improved as compared to the
conventional least square based subspace approaches, the
advansage of using the proposed algorithm is the
asympiotically unbiased nature of the estimates,

L. INTRODUCTION

The objective of robust estimation is to improve noisy
signals and alse to obtain robust estimates of the signal
parameters. An important application is the enhancement
of narrowband signals degraded by broadband noise, as
in the case of hands-free mobile telephony where speech
communication is affected by the presence of acoustic
noise. This effect is particularly serious when linear
predictive coding (LPC) is used for digital representation
of speech signals at low bit rares as in digital mobile
telephony. Therefore , there is a great need for using
robust noise reduction approaches leading to a better set
of LPC coefficients for the synthesis stage.

Scveral signal estimation approaches have been
proposed, and two categories of algorithms deminate in
the current literature. One of them is based on spectral
d=composition [1] and the other is based on structured
approaches for denoising [2,3,4]. The latter method uses
least squares (LS), total least squares (TLS) or partial least
squares (PLS) approaches for estimating a clean signal,

. Though LS based approaches are computationally more
viable, they suffer from biased parameter estimates due to
an improper noise structure in the meodel [3]. In the
present paper, we use a modified LS approach based on
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the signal subspace paradigm, which overcomes the abave
limitation.

Signal subspace methods have been used frequently
in connection with, for example, frequency estirnation
problems {3,4]. In all these approaches, the data is first
arranged in a Hankel/Toeplitz form. A LS estimate of the
signal-only data matrix is then obtained, which preserves
the structured form of the matrix. The key ides is to
consider the signal as a vector in multi-dimensional space
(of dimension &), and to separate the “pure signal” {of
dimension p) and the noise into two mutually orthogonal
components lying in differeni subspaces. H is well known
that with degradation of the SNR, the predictability of the
signal deteriorates, with the result that the dimension p to
be chosen becomes a large fraction of N. A further
consequence of low SNR is that the signal subspace
eigenvectors, i.e. those corresponding to the large and
well separated (in magnimde) eigenvalues and which are
less perturbed from their noiscless direction become less
in number as compared to those eigenvectors that change
direction depending on the noise perturbation. In the
preposed method, we show that the LS estimation
performed on a matrix constructed by projecting the
columns of the reduced rank approximant of the data
matrix onto an orthonormal set of basis vectors results in a
reduced spread of the eigenvalues in the signal subspace,
This leads to an improved accuracy of the parameter
gstimates involving large subspace dimensions.

2. LSPROJECTION ALGORITHM USING
FROCRUSTES ROTATIONS

Thie noisy signal z is represented by the additive noise
model .

z{ny=x(m)+wn), n=01,---N-—1 N
where Z represenis the noisy signal, X represents the
clean signal and w represents ii.d Gaussian noise. We
define the data matrices X" and X® to be:
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XY = (%, %, %)
X (€3]
and
xﬂ) = (xp"*l) Xz, s X]) (3)

In the noise-free case, the matrices X® and X® have
rank 4 and span the same column space and row space.
Under noisy conditions, the matrices Z® and Z® are of
full rank p+1 and they no longer span the same column
space and row space. A key step that is followed in our
method is the search for a common d-dimensional
subspace obtained as the intersection of the subspaces
denoted by the matrix pair Z® and Z®. The Procrustes
approximation of the intersecting space is then carried out
with a view to construct an orthonormal basis onto which
the measured data vectors are projected to obtain a rank-d
approximation of the signal vectors in the signal domain,
The Hankel matrix representing the signal subspace is
reconstructed by projecting the column space of the
reduced rank-d LS approximation of the noisy matrix onto
an orthonormal set of basis vectors representing the
common d-dimensional subspace constructed via the
Procrustes approximation. A physical interpretation of this
result may be attributed to the statistical orthogonality
existing between the signal and noise components, which
accounts for the reduced amount of noise components
being projected onto the cleaned up version of the
intersecting subspace obtained via the Procrustes
approximation. The desired orthonormal bases are
obtained via the QR factorizations of the respective data
matrices.

Let £and I denote the spaces spanned by the column

space of Z® and Z® in R?*' . If the columns of Q.and

Qw define orthonormal bases for £ and W respectively,
then

max max -

eceld, =1 wemw,=15"
max S T

e Rl =1 SCQQD @

Using the minimax characterization of the singular values,
ST(QIQW)T:diag({ls'"’é’p) )

is the SVD of Q7 O, . The principal angles

{6,,--,8,.}€ 10, _’25] between £and W are defined by [6]:

cos(8)= &, (6)
- fork=1, ", p. The principal vector matrices E and W are
defined as:
E = [e’b "y ep'i-[]
= Q.S O

and

W= [w, ", W]
= QuT ®
In the noise-free case, the matrix pair X" and X® span
the same d-dimensional space. The QR factorization of
the noise-free matrix pair is then given by:

R R
1 11_ X(I}P = 11 12
loijQi [ x®p, [ N O] ©

and

R, R
21Q27 [ XWp, =| " 2 2 10
21027 xR, =" 2 "2 1 qo
Since the matrix pair spans the same column space, it can
be easily verified that

T T

Q,Q,=Q,Q,=1,, (1D
where [Q ] Q"] is a unitary square matrix and P, and P,
denote permutation matrices. The d columns of the sub-
matrix Q represent the orthonormal set of basis vectors for
the subspace pair. R;; and R; represent nonsingular
upper triangular matrices of order 4. Under perturbed
conditions, the matrix pair Z” and Z® have full column
rank and hence the desired orthonormal basis vectors can

be obtained via the QR factorization of the reduced rank-d
approximants of the matrix pair, which yields:

~ A A R, R
[Q.lQ%]rZ‘”PF[ (;‘ C‘;) (12)

6,182 R, R
|QJ_ Z{Z}P — 21 22 13
2 z]r 2 o o (13)

For the noisy case, the orthonormal basis vectors for
the d-dimensional subspace is constructed from the SVD

of the matrix 6],1 = 6{61 , Which is no longer unitary

. and

(unlike in the noise-free case). The SVD of 6]'215
expressed as: '

Q,,=SIT (14)
where T =diag({,, +,¢,). The dimension of the

intersecting subspace corresponds to the number of
principal singular values, which is close to unity. A rank-d
Procrustes approximant is constructed by replacing the 4

singular values of T to unity, denoted by: )
Q,,=51" (15)
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o= _"_?_,L i . .
where Q,,=Q/Q, is a unitary matrix,. The
arthonormal basizs  for the
subspace is then evaluated using:

E=QS (16)

common  d-dimensional

and

w=q,T (17)
where 6] and 62 denote matrices having orthonormal
columns and satisfying the relationship '

Q1TQ;, = Qg‘l . {18)
The intersecting space denoted by R(Z)(R(Z™) is
given by:
R(Z"NR(Z®) = span{E}

= spani{e, ", eq4}
= span{W}
= span{wy, ", wWap  (19)
The equality between the two sets of orthonormal vectors
results {rom the observation that if fk =1, then & = w;
and leads to the condition

QS=0Q.1. (20)
It is clear from Egs. (14)-{18) that ths matrices 61 and
62 can be expressed as:

Q,=E§ @1)

Q,=ET" 22)
The mairix E is determined by minimizing ”d) - EYTII B

where © ={Q,,Q,] and e =[ST,TT}.
Theorem I: Let @, E and Y represent matrices of
dimensions mXg,mxXnand ¢Xr respectively with

M > F, ¢. The matrix E with orthonormal columns that
minimizes [[(D— EYTHF is such that E =II"E, where
Z and [T denote the left and right singular vector matrices

of Y@, respectively, and where IT represents the first »
colurnns of the matrix I1. The objective function o be
minimized is equivalent to that of minimizing

Hq: ~EY” L :
|o-EY?| i

=Tr{{®-EY )@  —-YE")}
=7r{@O }+T+EY YE"} - 2T-{(EY ®@"}

=Tr{®® )+ Tr{Y Y} -2Tr{EY D7} (23)
From Eq. (23), it is clear that minimizing “(D—-EYT#F

is equivalent to maximizing TI‘{EYT@T} _ Also, let the
SVD of Y D7 be expressed as
Y@ ==All", (24)
From Eq. (24),
TH{EY @7} =Tr{EZAX"}
= 7r{lI'EEA}
=Tr{@A}

=226,

i=l j=l

- i 9“- 5:‘; (23)
i=1

{ since 5ﬂ-= 0 for i%jandi>r)
Since ® is of rank r and has orthonommal columns,

Nt?i,. u <1. Hence, an upper hound for the trace in Eq. (25)

is obtained by setring &, =1, so that

o
THEY'®"}<3° 5, . (26)
i=1
Again, using the fact that @ has orthonormal columns, the
upper bound is obtained for

Iﬂ
O=..]. (27

The minimizing value of E follows from the definition of
@ and is given by:
I,x \‘5

i T
[-—l

o)

T

™
i
=

[&]

iI (28)
Withm = N - p, g =2d and r = 4, the estimation of E
can be performed by extending Theorem 1 to the case

where O = [61,62} and Y’ =[§T,'i‘r]. The filtered
data matrix X is then obtained by projecting the noisy

mafrix 2(1) onto the column space of E ¢
X=EE"ZO
:1‘—[1—"[72(1) (29)
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The matrix 5( is no longer in Hankel form. )A( is
transformed into Hankel form by averaging the elements
of the cross diagonal elements [4]. The samples of the

noise-free signal X, are then given by the vector formed
by lining up the elements of the first column and last row
of the Hankel form of X in a conti ZUOUS MAnner.

3. SIMULATIONS

Data was generated according to the ARMA (2,2) model
y(n)—0.8y(n—1D+0.65y(n—2)=u(n) +u(n—-2) .
The poles are located at 0.4+ 0.7 . The input u(1) was
drawn from an ii.d , zero mean, unity variance, Gaussian-
distributed noise. Thirty independent realizations of the
noisy data, containing z(n)=y(n)+w(n), were
generated, each consisting of 1024 points. The variance of
w(n) was adjusted in order to obtain SNRs of 20, 10,
and 0 dB. Normalized singular values of the matrices used
in our method suggests an AR order of 2. The realizations
were performed for subspace dimensions ranging from 2
to 10. Fig. 1(a) shows the angular frequency estimates
obtained by using standard LS. Fig. 1(b) shows the plots
of the angular frequencies estimated using the proposed

approach.
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Figure 1(a). Angular frequency estimates obtained
with standard LS.

Each figure shows the estimatecs obtained for SNRs
of 20 dB, 10 dB and 0 dB. It is clear that the estimates
obtained using the Procrustes approximation of the
intersecting subspaces are clearly asymptotically
unbiased, while the conventional method displays a clear
bias on the estimated poles of the system. In both
methods, the variance of the estimates is shown to
increase with reduction in SNR.
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Figure 1(b). Angular frequency estimates obtained with
LS projection using Procrustes rotation.
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