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Abstract: Typical VLSI implementations of discrete-time cellular neural networks (DTCNN)
meorporate costly hardware to implement the basic DTCNN cell, resulting in a small grid size that
needs to be cascaded with many other chips for processing images of any practical size. In the
paper, a low-cost DTCNN cell that can be incorparated into a single chip in large numbers has
been proposed. Memory bandwidth considerations show that 236 DTCNN cells can be
incorporated into a single chip DTCNN processor to compute 4 236 x 256 image at 30 frames
per second. Techniques based on rectangular-shaped cell grids for use with video memaory have
been proposed to satisfy the memory bandwidth requiremnents. The architecture of the proposs
DTCNN processor is also capable of supporting the flexible grouping of basic cells. In addition, the
processor, whicll is capable of supporting the flexible grouping of cells, can be cascaded in a b ghly
scalable manner to facilitate the processing of larger images at high speed.

1 Introduction

Discrete-time cellular neural networks {DTCNN) [1] have
received growing attention due to their sase of implementa-
tion in hardware. These networks can be implemented
efther in analogue hardware [2. 3] or in digital hardware
[4-6]. A number of applications of the DTCNN have been
presented in [1]. The use of the DTCNN for text
segineniation and texture classification and segmentation
has been proposed in [7]. In all these cases, the neighbour-
hood size is 1 or 2. Larger templates can also be
decomposed [8] and it has been demonstrated that time-
vartant templates can be implemented due to the program-
mability of the architecture.

The DTCNN has several hardware implementations.
Analogue implementations [2, 3. 9] lack accuracy due to
device matching problems, and cannot be driven at high
speeds [4]. Furthermore, it 15 difficult to connect neurcchips
and reaise modifiable analogue synaptic weights [3].

Digital  approaches using a  digtal  neuren
model recommend the use of a digital phase-locked
loop (DPLL) [5] and a muld-input  multlevel-
quanused digital phase-locked loop (MM-DPLL) {10].
Although grealer accuracy is achieved (all the internal
components are digital), the system requires a phase
medulated analogue input signal and the digital phase-
locked loops have high hardware complexity. resulting in
lower cell density [4],

The digital architecture proposed in [4] and [11] uses
distributed arithmetic (DA). In this approach, a part of the
DTCNN equation is precalculated on a host computer and
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downloaded to internal memory. The time-variant part i3
caleulated using the DA function block. The internal
resolution of the architecture is 11 bits and the &-bit
templates are programmable. However, real-time processing
usmg this architecture {s limited by its reliance on external
circutry. In addition, one word of storage is required
for every pixel processed by the chip and the memory
requirements  explode to large values for real-world
mages.

CAM? [6] is a board-level solution, comprising a highly
parallel array of DTCNN cells, an FPGA that controls the
array, an RISC processor or DSP for serial data Processing
and some memory. The design has a high hardware cost
and is a board-based solution. Also, the FPGA needs to be
reprogrammed for every application.

In addition, their predecessors, cellular neural newworks
[12] (CN\) have also been implemented in analogue VLSI
and on FPGA. A comparison is offered in [13]. On the basis
of the tables in [4] and [13]. Table 1 compares the various
implementations, Most implementations do not cater for
real-time applications, have a high hardware cost and lack
support for processing large images. In addition, analogue
approaches tyvpically offer only 4-bit resolution. To aver-
come these shortcomings, a new digital implementation of
the DTCNN 1s required.

One of the major challenges in the desien of a
digital DTCNN' processor is 1o implament a Jow-cost
DTCNN newon that can be replicated to create
larger networks. In  addition, the proposed  archi-
tectwre  must  meet  the bandwidth  requirements
assoclaled with large images. This is patticularly so
if the neuron is small encugh to be embadded into the
IC in large numbers as all neurons must be kept fully
occupied.

In this paper, we propose the design of a DTCNN
processor that can be cascaded to support the real-time
processing of large images, A low-cost digital DTCNN cell
has also been designed to ensure that 256 DTCNN cells can
be incorporated into a single chip. A number of such chips
can be cascaded to form a highly integrated DTCNN
Processor,




Table 1: Comparison of some current architectures

No. of neurons

Process Area Precision Frequency
CNN; analogue [13] 0.8um 30mm? (~60k gates eq.} gbit 32 1MHz
CNN: FPGA [13] — 160k gates 8-bit . 48 14 MHz
DTCNN: distributed arithmetic [4] 0.8um 389 pm x 463 um 8-bit 9 30 MHz
DTCNN: OTA-based [3] 165um 280 um % 276 pm 4-bit 1 cell 3.3MHz

2 DTCNN model

A discrete-time cellular neural network consists of a grid of
processing units called cells. Each unit is connected only to
adjacent cells (neighbours). The cell on the ith row and jth
column in a two-dimensional DTCNN is labelled as CG,
or represented as u. The r-neighbourhood N, of a cell ((G,j)
is defined by N(i,j) = {C(k,))|i—k|< = r & J—kl< =r}.
The following variables are defined for a cell 7

() Cell state: this is defined as
)= 3" ai,yn)+ Do b+l (1)

AeN(g) AEN(y)
@ and b are (2r+1) x (2r+ 1) matrices called feedback and
control templates, I is the cell bias and, » is the iteration
count,
(i) Cell outpur: this is obtained from the cell state via the
following equation:

yn(?_%) = SGN (x,(n)) )

(iil) Cell input: u; represents external activation.

The next state, x,(n+1) does not depend on x,(n); this
makes the hardware implementation of the DTCNN
simpler. Also, local interconnections between cells and the
translation invariance of the templates mean that the basic
cells are regular and identical. :

A block diagram of the DTCNN neuron is presented in
Fig. 1. As shown in (1), the cell state consists of two parts:

(1) The part that stays constant while processing any image
(written as XBu+ ).

(i) The part that varies with every iteration (written as
ZAy(m)).

The part that varies with every iteration depends on the
output of the neighbouring cell in the previous iteration.
According to (2), this will be +1 or —1. Thus, the variable
part of (1), will become

@i, yi{n) = a;_, if y(n) =41 (3)
=ty i) =-1

Yrgwy(®

yit)

Uity

+1

clock
Fig. 1 Block diagram of a DTCNN neuron
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Clearly, the variable part of (1) can be implemented as a

series of additions or subtractions (no multiplication

necessary) and the frame-constant part can be precalcu-
ted.

3 Design overview

In this Section, some of the design specific considerations
of the DTCNN processor are discussed, along with some of
the applicable solutions.

3.1 Processing large images

Since the DTCNN is a one-processor-per-pixel network, a
256 x 256 image requires 65536 DTCNN cells. Since it is
not practicable to incorporate such a large number of
DTCNN cells on a single chip, alternate algorithms for
processing large images must be introduced. These include
time multiplexing the DTCNN Cell Grid (divide the image
into blocks and process it one block at a time), cascading
multiple chips (divide the image into blocks and process
each block on a separate DTCNN chip) or a combination
of both approaches. Table 2 compares the requirements for
processing a 1024 x 1024 image in the various configura-
tions, for a DTCNN chip containing 256 neurons (block
size = 256 pixels). As can be seen, processing more than
256 blocks per chip (65536 pixels per chip) results in very
high on-chip RAM requirements and takes significantly
longer to process. However, cascading multiple chips makes
1t possible to better cope with such concerns.

3.2 Memory bandwidth

A cell-based approach allows designers to embed ‘a large
number of DTCNN cells into a single chip to achieve high
performance. However, integrating a large number of

Table 2: Requirements to process a 1024 x 1024 image on
256-neuron DTCNN chips’

Configuration  Blocks No.of  Time On-chip.

processed  chips RAM?*
Cascading 1 4096 X' 0 units
Combined 16 256 16x 4096 units
Combined 32 128 32x 8192 units
Combined 64 64 128x 16384 units
Combined 256 16 256x 65536 units
Combined 1024 4 1024x 262144 units
Combined 2048 2048x 524288 units
Time 4096 1 4096x 1048576 units

- multiplexed

TEach chip has 256 DTCNN neurons
" x is the time taken to complete one iteration

- *RAM requirements are given for each chip (can be shifted off-chip)
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DTCNN cells onto a single chip necessitates large data
paths between the input image and the DTCNN cell grid.
There are three possible ways to tackle the issue of
memory bandwidth. The simplest and most effective way is
to buffer the image. We could choose to store the entire
input image on the chip itself. This is an expensive option
that may only be considered for very time-critical cases. A
more practical approach would be to use a larger data bus.
By using a wider bus, more data can be read into the system
at one time. A 32-bit bus relaxes the requirements by a
factor of four, against an 8-bit bus. This might be a
preferred option, if sufficient number of port lines could be
made available for memory access. Of the various memory
buffering techniques that can be employed, we have chosen
to model our architecture to benefit from the high-speed
serial ports of video memory, which is discussed next.

3.2.1 Video memory: Video memory modules are
attractive as the data corresponding to an entire row of
pixels can be moved into a shift register in a single access.
The shift register can then be clocked at very high rates to
provide data serially on a single data line. Since video RAM
is dual-ported, it serves well to satisfy the bandwidth

requirements of the DTCNN processor provided the data _

to all on-chip neurons can be loaded serially.

Since the entire row of data is available, the processing
elements should ideally be arranged in a single row so that
all the data coming out of the shift register can be catered
for simultaneously. Although it is typical to expect the
DTCNN cell grid to be square, we incorporated rectangular
grids to benefit from the video RAM. It has been verified
that the DTCNN works equally well in rectangular grids,
such as 1 x 256. The data is clocked out of the shift register
and passes into the DTCNN chip on a single input line as
shown in Fig. 2. Internally, the data passes to each of the
processing elements. Processing can start as soon as the data
corresponding to the neighbourhood has been loaded.

This arrangement requires more on-chip memory since
the row of processing elements needs all the data within its
two-neighbourhood. The neighbourhood of a 1 x 256
DTCNN grid is shown in Fig 3. This necessitates the
storage of five rows of data consisting of 1280 pixels
(256 x 5) on-chip.

0100010101001001010100
0100111011 >
shift register ———w—s
------
¢ 1 2 3 255
1x 256 DTCNN

video memory

Fig.2 [ x256 DTCNN grid connected to video memory

rown-—2

L row n—1

’ row n

I: row n+1
L row o+ 2 I

Fig. 3 Two-neighbourhood for a 1 x 256 DTCNN grid

IEE Proc.-Circuits Devices Syst. Vol 149, No. 3, June 2002

In this approach to computation, increase in on-chip
memory does not affect the data rate. This is because after
the first four rows have been loaded, only one row of data
(ie. 256 pixels) needs to be fetched at a time. After a
particular row has been processed, ‘row n—2" can be
overwritten. The other four rows of data can be shifted up
and only ‘row n+2 needs to be loaded. This is easily
implemented in hardware by using a counter-based
approach that creates a circular queue to simulate the
shifting.

4 DTCNN processor

Fig. 4 shows a flexible and scalable DTCNN processor. The
architecture is designed to handle 8-bit grayscale inputs with
12-bit templates. The neighbourhood size is fixed at two and
the processor comtains an M x N grid of processing
clements. The regular and identical structure of the
processing elements permits the use of a global control unit
(GCU) that generates the necessary control signals. Each
unit is directly connected to its closest two neighbours in all
directions. The memory interface-1 unit obtains the image
from the input as a series of M x N blocks. The templates
are stored in the template RAM. Since the weights are
stored in RAM, they can be overwritten to make the system
programmable to facilitate reconfigurability. The program-
ming unit allows the programming of parameters such as
the templates, the number of iterations and the number of
blocks that the image is divided into. The outputs are
transferred to the outside world by the memory interface-2
unit. The cascade controller interfaces to other DTCNN
chips cascaded with this one.

cascade controller

N I
|
Hal | .
rnemary I : :
% 8 A . ! memory
input : H T8 =
1 1
] e 2
RAM .

I
i M= N cell grid !

programming unit

Fig. 4 DTCNN processor

~ Large images are processed by time multiplexing the
DTCNN cell grid. The image is divided into a set of blocks
(of size M x N), each block is loaded onto the cell grid and
processed, the results stored and then the next block is
loaded. At each iteration, there are two parts to the context
of the block, namely the constant part and the result part.
The first part requires one word of data for every single
pixel that is processed. This explodes to a very large
memory requirement while the second part only requires
one bit of storage for every pixel processed.

To avoid the large memory requirements of the first part,
we have opted to recompute the constant part for every
block at every iteration. This requires more processing time
but results in significant hardware savings, thereby reducing
the memory requirements essentially to one bit per pixel
processed. Although this results in a higher memory
bandwidth requirement, it is easily met by using modern
video memory.
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The architecture also has a cascade controller that
interfaces to other DTCNN chips to be cascaded. This
allows a large image to be divided into a number of
macroblocks, each of which is processed on one chip.
Neighbourhood information is propagated to the connected
chips by the cascade controller and each macroblock
may be processed by time multiplexing the DTCNN
cell grid.

The optimal size of the DTCNN cell grid is influenced by
a number of factors; memory data bandwidth requirements,
processing time, frame rate, on-chip memory and the size of
the image to be processed. Based on our analysis, it was
decided that 256 DTCNN neurons are embedded onto a
single chip. A 256 x 256 image can be processed in real-time
(30 frames per second) by time multiplexing the DTCNN
cell grid. In addition, it can be connected to other DTCNN
processor chips through the cascade controller for proces-
sing large images (as shown in Table 2). The increased
bandwidth requirement is satisfied through the use of
appropriate video memory. The desired properties and
basic timing constraints for the design of the DTCNN
Processor for Image Processing are shown in Tables 3
and 4.

Table 3: Constraints for the DTCNN processor design

Frame rate 30 frames/second [real-time]
Frame size 256 x 256

Maximum iterations to 100

convergence :

Input image 8-bit grey-scale

Template precision : 12 bits

Neighbourhood depth 2

Output image binary (1—biﬂ

Table 4: Timing constraints with a 256-neuron cell grid

To process 1 frame 33.333ms
Time per iteration 333.33pus
Number of blocks 256
Processing time per block-iteration 1.302us

4.1 Implementation of the DTCNN cell in VLS|
The cell-state equation can be divided into a constant part
and a variable part (as discussed in Section 2). A multiply—
accumulate unit (MAC) is required for calculating the
constant part. The variable part of (1) can be implemented
as a series of additions and subtractions.

The processing for the neuron is divided into three steps:

Step 1. Multiplication of the control template element [‘6]
by the input pixel value [%] (This is a 12-bit by 8-bit
multiplication and requires a' 12-bit adder). The result is a
20-bit product, which is too high a resolution for a system in
which the final value depends on only the sign of the final
~accumulation. Thus, only the more significant 12 bits are
used for further steps.

Step 2. Depending on the sign of the output from the
corresponding neighbour, the feedback template element
[@] is added or subtracted from the truncated product
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obtained in step 1. To avoid overflow, it is advisable to use a
13-bit adder at this stage.

Step 3. This is followed by the accumulate stage. In this
stage, the result obtamned in step 2 is added to the value
stored In the accumulator.

The algorithm for the processing carried out by the neuron
is shown in Fig. 5 and the architecture of the DTCNN
neuron is shown in Fig. 6. '

I Upon RESET, load bias into Accumuiator (ACC « bias)
Il. FOR the desired number of iterations {maximum 100)

A. FOR allinput and output cells in the neighborhood
1. Multiply input by template (temp1 « U, % by )
2. Add result to Accumuiator (AGC « ACC + temp1)
3. Multiply output by template (temp2 « Y- xa,_)
4. Add result to Accumulator (ACC « ACC + tempz2)
B. ENDFOR
Il END FOR
IV. Qutput is the sign of the Accumulatar (Ylu(”) = ACC.MSB}
- V. STOP. .

Fig.5 Algorithm for processing by the DTCNN neuron

template
pixel
As
add*/sub I
\_:t e o conirol multiply
13 - bits I 8 - bits |
A Q Q
2
- 13
accumulate
13 legic
/]
5 - bit counter I 13-bitreg|'ster|
‘am(17)
yim

Fig. 6 DITCNN neuron

Since all steps require an adder/subtractor circuit,
resource utilization can be maximised by reusing the same
adder. The multiplication, performed using Booth’s algo-
rithm, takes eight cycles for a 12-bit by 8-bit multiplication.
In.the next cycle, the ‘@’ template value is added to or
subtracted from the 12-bit result obtained in the previous
step. Since the addition is of two 12-bit values, the adder
width is maintained at 13 bits to avoid overflow.

This is followed by the accumulate step. This is the
addition of an 18-bit value stored in the accumulator with a
13-bit value produced at the end of step &. For this addition,
the 13-bit value needs to be sign-extended. Sign extension
requires the replication of the MSB of the 13-bit value to the
remaining five most significant bits.

Since the multiplication circuit already consists of a 13-bit

adder, it is reutilised to add the lower 13 bits at this
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step. The upper five bits are added separately. The
operation of this five-bit adder depends on the carry
produced in the addition of the lower 13 bits and the sign of
the result produced in step 2. The possible operations are
summarised in Table 5. Consequently, the five-bit adder
was implemented as an up/down counter with ‘zero’
control. Combinational logic decides whether the five-bit
counter increments by one decrements by one, or simply
retains the old value. '

Table 5: Operation of the five-bit adder

Carry* MSB™ Sign Decimal Operation Result
extended
value
o 0 00000B 0 Acc = Acc+0+0 Acc
0 | TMMB -1 Acc = Acc+0-1  Acc—1
1 0 000008 0 Acc = Acc+1+0  Acc+1
1 1 11111B =1 Acc = Acc+1-1  Acc

#Carry is the carry generated from the addition of the lower 13-bits
"MSB is the most significant bit of the value produced in step 5 of
the algorithm

The hardware neuron requires a 13-bit adder, combina-
tional logic for control, a 5-bit up/down counter and 35 bits

of memory. In addition, a 1-bit register is required to -

remember the previous output.

4.2 13-bit hybrid adder
It was found that implementing a 13-bit ripple carry adder
(RCA) was producing the result too close to the required

~ deadline and a 13-bit carry-look-ahead adder (CLA) had a

significantly higher hardware cost, but provided no gains

since our deadlines were met with large margins by the CLA -

implementation. This led to the hybrid design in which the
combination of an eight-bit tipple carry adder with a five-bit
carry-look-ahead adder was used.

4.3 Area-time measures

The design was simulated for functional verification in
Synopsys VSS version 2000.02 and area parameters were
obtained after synthesis, place and route of the architecture
in the Synopsys Design Analyzer version 1999.10 and
Apollo 2000.2.3. In 0.35 um VLSI technology, the DTCNN
neuron requires a total cell area (including interconnect) of
Just under 1700 units. The critical path consists of adders.
Each block-iteration requires 250 cycles. At 200MHz, a
single iteration takes 1.25 microsecond, which is less than
the timing constraint of 1.302 microseconds. With a 1 x 256
or 16 x 16 cell grid at 200 MHz, a 256 x 256 image can be
processed in real time (30 frames per second).
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5 Conclusions

The local interconnection, translation invariant templates,
inherent parallelism and ease of implementation of the
system equation make the DTCNN extremely attractive for
VLSI implementation. A low-cost DTCNN cell, with a cell
area of 1700 units, has been implemented and tested using
Synopsys Design Compiler 1999.10. It has been placed and
routed using- Apollo 2000.2.3 and the area—time analyses
show that 256 DTCNN cells can be easily incorporated into
a single IC. The DTCNN “cell grid for the proposed
processor has been organised as a rectangular grid to benefit
from the high-speed serial port of VRAMSs. It has been
shown that a single processor is capable of processing a
256 X 256 image at 30 frames per second. Finally, the
proposed DTCNN processor can be dynamically reconfi-
gured to support a variety of image processing tasks as well
as readily cascaded to cater for large images and different
neighbourhood sizes.
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