10th NASA Symposium on VLSI Design 2002 10.3.1
Vector Processor Based Architecture for

Gradient and Normal Computation in
Real-Time Volume Rendering

Rajkiran Gottumukkal and Vijayan K. Asari
Department of Electrical and Computer Engineering
Old Dominion University, Norfolk, VA 23529

Abstract- Volume rendering is a key technique in scientific visualization. The high
computational demands of real-time volume rendering and continued technological
advances in the area of VLSI give impetus to the development of special-purpose volume
rendering architectures. This paper presents the architecture for the preprocessing stage of
volume rendering. In the preprocessing stage the gradient and normal of all the pixels are
computed. There are 16 million pixels in a 256° dataset; real-time volume rendering cannot
be achieved by using traditional architectures to calculate the gradient and normal of such
a large dataset. To achieve the goal of real-time volume rendering the preprocessing stage
should be fast. An architecture using vector registers is proposed in this paper, which aims
at speeding up this preprocessing step. S :

-1 Introduction

Volume visualization is concerned with the representation, manipulation and display of
- volumetric data, typically represented by a 3D grid of scalar values. Volume visualization has
become a key factor in the understanding of the large amount of scientific data generated in a
variety of disciplines. Examples include sampled data from biomedical and geophysical
measurements, and simulated data from finite element models or computational fluid dynamics.
Another source of 3D data are various imaging systems like computer tomography (CT),
magnetic resonance imagery (MRI), ultrasound tomography (UST), and other systems which
produce large amounts of data in short time. The physician has to work with and analyze this
data for diagnostic and therapy planning purposes [1]. This huge amount of data forces the
physician to switch from investigating one slice after the other to view the 3D reconstructions.
Direct volume rendering algorithms are employed to reveal the internal structure of the data.
However, their high computational expense limits interactivity and real-time frame rates. The
main computational aspects of volume rendering are the massive amount of data to be processed
resulting in high storage, memory bandwidth, and arithmetic performance requirements. The
three-dimensional volume can be represented as identical cells called voxels, which are arranged,
in a fixed, regular, rectilinear grid. The volume can be visualized as slices of two-dimensional
grid. The volume rendering architecture was implemented using the shear warp factorization
algorithm. This algorithm was chosen because it was proved that it is capable of rendering large
data sets effectively [2-3]. The initial step involved in this algorithm is the computation of the
gradients and normals of all the voxels in the volume. The gradient shows the density changes in
the volume. Using the gradient and interpolated sample value, a local shading model is applied
and sample opacity is assigned. An efficient VLSI implementation of the gradient and normal

10.3.2

computation module for the volume-rendering unit is presented in this paper. The architecture for
the gradient computation is developed based on an array of vector registers to enable faster
computations and the architecture for surface normal is built in a look up table base.

2 Gradients and Normal Computation

The surface normal n (x, y, z) at any point in the volume is defined as a unit vector parallel to the
local gradient of the voxel scalar value d (x, y, z). The surface normal can be obtained as:

Vd(x,y,z)

1
|Vd(x,y,2) M

n(x,y,z) =

The gradient Vd (x, y, z) is approximated using the central difference gradient operator and it is
computed from the intensity values of the neighboring voxels as:

%[d(x +1,y,2z) —d(x~1y,2)]i

Vd(x,y,2) = +%[d(x,y+1,z)—d(x,y«'l,z)]j %)

+ %[d(x, y,z+1) — d(x,y,z-]k

3 Vector. Processor Based Architecture

The architecture proposed in this paper tries to exploit the parallelism available in the equations
of gradient and normal computations [4]. The dataset was assumed to be initially loaded into a
RAM, from where it will be transferred to the vector registers. The vector registers are a set of 8-
bit registers assembled in a parallel fashion. A vector register of length m can be defined as m
number of 8-bit registers in parallel. There are a total of nine such vector registers in .the
proposed architecture, of which six will be loaded with the gray levels of the pixels from the
RAM. The nine vector registers are labeled as VR1 to VRO. The first m pixels in the scanline are
loaded into VR1, and the next m pixels are loaded into VR2, where m is the length of the vector
register. The values in these two vector registers are fed to a subtractor for the parallel
computation of -the first term in the gradient equation. VR3 and VR4 are loaded with the
corresponding m pixels of the scanline above and below the current scanline. By feeding these to
a subtractor the second term of the gradient equation will be computed in parallel. Similarly the
corresponding m pixels of the slice after and before the current slice were loaded into VRS and
VR6 respectively. From VRS and VR6 the last term of the gradient equation was computed in
parallel. Fig. 1 shows the arrangement of the vector registers employed in this architecture for
loading data from the RAM.

Once the vector registers are loaded, the gradient and normal for m pixels can be computed
in parallel. The greater the length of the vector registers m, the greater will be the parallelism
available. But, increasing the vector register length increases the time to load the vector registers

10th NASA Symposium on VLSI Design 2002 10.3.3

This in turn increases the time to finish the preprocessing task. The number of gates required for
the hardware implementation of the architecture would also increase with the increase in m.
Hence there should be a trade off to fix the length of the vector registers. The criteria to select
ideal m will be discussed in the next section.

Slice Z+1

lice Z
Exzrees BN i R3 I
Slice Z-1
21
I

:{ VR2 |

> VR1
Scanline — P == L

o VR4

L VR6

Figure 1: Loading vector registers VR1-VR6

Vector registers VR1-VR6 are slightly different form VR7-VR9. VR1-VR6 has only one 8-bit
data input bus, which will feed all the registers in the vector register set. Individual registers in
these vector registers are selected by the write signal. In the case of VR7-VR9 there are m 8-bit
data buses, which will feed the corresponding registers in the vector register. Hence unlike VR1-
VR6, VR7-VRY can be loaded in parallel. VR7 is used to store the first term of the gradient
¢ equation, VRS is used to store the second term of the gradient equation and VR9 is used to store
the third term of the gradient equation. The block diagram for the preprocessing stage is shown
in Fig. 2.

10.3.4

Vector Register Bank

Input Volume : R
i . . . -

i 16MB RAM

I £ B

ﬂ (Volume Data) ——=P| Gradient Pipelinc f=—ip-)

VR? '
ves > To next stagé
VR -

=P Normal Pipeling i

Normal Lookup Table .

AETEIEAE AR

¥

Control Unit
{Generates control
sigmals for all the
blocks)

Address Generator

Figure 2: Block diagram of the preprocessing stage.

The gradient pipeline consists of m 8-bit subtractors and. m 8-bit multipliers. Once the data is
loaded into VR1 and VR2 the pipeline operation begins. The output from the subtractor asserts
the overflow signal if the result is negative. When the overflow signal is asserted the result will
become 2’s complemented. These results are stored in VR7 and the registers in a pipelined
fashion. The registers in the pipeline are used to accumulate the three terms of the gradient
equation. Meanwhile VR3 and VR4 are being loaded one after the other. Once they are loaded
fully the same process is performed on VR3 and VR4 and the results will be stored in VR8 and
added to the registers in the pipeline and stored back in these registers. At the same time, VRS
and VR6 are loaded and the same process is performed on them. The results are stored in VR9
and added to the registers in the pipeline and stored back. The values accumulated in the
registers are fed to a divider where they are divided by 2 to compute the gradient. The outputs
from the registers in the gradient pipeline are also fed into the normal pipeline, where they are
stored in registers of the normal pipeline. Now new set of data is loaded into VRI1 and the
process continues for the entire dataset. i

Once the sum of the three terms in the gradient equation is accumulated in the registers of
the gradient pipeline, it is loaded into the registers in the normal pipeline. The normal pipeline
uses the 7 8-bit divider in the gradient pipeline since it is free at this stage. The divider is used to
<divide the corresponding values in the registers of the normal pipeline and VR7. The result is
accumulated in another set of registers in the normal pipeline. In the same way the divider is
used on VR8 and VRY and the results are added with the contents of the second set of registers
and stored back in them. In the next stage of the pipeline, VRS and the results accumulated in the
second set of registers in the pipeline are fed in to a multiplier. Using the result of the
multiplication as the index, the normal value is read from the lookup table. The lookup table was
loaded with the normal values at the initialization phase.

-

10th NASA Symposium on VLSI Design 2002 10.3.5

4 Simulation Results and Discussion

The vector processor based architecture for the gradient and normal computation module of the

- volume-rendering unit was implemented in Altera Quartus II FPGA design platform for eventual

programming of the Apex 20K device. The hardware design was performed for various sizes of

. the vector registers to study the effectiveness of the proposed design and to obtain an ideal size

configuration of the architecture in terms of the VLSI area requirement and time of computation.
The length of the vector registers m, was varied from 8 to 128 to obtain an optimum level of
parallelism. The simulation result describing the number of flip-flops needed to implement the
architecture with respect to the length of the vector registers is shown in Fig. 3. It also illustrates
the time taken for the preprocessing stage with respect to the vector register size. By varying the
vector register length, the number of adders, multipliers and dividers required for the
implementation would also vary. For a vector register length of 64, there would be 64 adders,
multipliers and dividers functioning in parallel. So the number of flip-flops used by the

 architecture increases exponentially with the increases in m: It was also observed that increasing

m beyond 64 doesn’t increase the preprocessing speed, since the pipeline would be idle for the
duration of loading the vector registers. A preprocessing time of .74 seconds was achieved with
the above implementation for a volume data of size 256° voxels by choosing the length of the

- vector registers m—64. Real-time volume rendering requires at least 30 frames per second. Hence

for real-time volume rendering of the above data set, the entire process has to be completed in
about 0.2 seconds. This computational speed can be achieved by using several parallel nodes
consisting similar architecture. :

12000 - 25

g 10000 2 =
= : O o
& 8000 ¢ “coaw
= vgee
s 6000 1 s g
= @
8 4000 Ea®
£ 05 F e
> 2000 5 a

0 0

8 16 32 64 128
Length of vector register (m)
| —— Number of flip-flops —a— Time taken for preprocessing |

Figure 3: Time taken for preprocessing and number of flip-flops used with respect
to the length of vector register.

10.3.6

5 Conclusio_n

A vector processor based architecture for the computation of gradient and normal in a real-time
volume rendering system has been presented in this paper. The simulation results of the FPGA
based implementation of the proposed architecture were encouraging. The speed of the
preprocessing stage in real time volume rendering can be improved by providing several nodes in
parallel, where each node consists of a vector processor based architecture as the one presented
in this paper. '

References

[1] J.A. Adam, “Medical Electronics,” IEEE Spectrum, pp. 80-83, Jan. 1995,

[2] P. Lacroute and M. Levoy, “Fast Volume Rendering Using a Shear-Warp Factorization of
the Viewing Transformation,” Proc. SIGGRAPH '94, Orlando, Florida, pp. 451-458, July,
1994.

[3] J. Hesser, R. Maenner, G. Knittel, W. Strasser, H. Pfister, and A. Kaufman, “Three
Architectures for Volume Rendering,” Computer Graphics Forum, vol. 14, no. 3, pp. 111-
122, Aug. 1995.

[4] M. J. Flynn, Computer Architecture Pipelined and Parallel Processor Design, Jones and
Bartlett Publishers, pp. 435-438, 1995.

