Available online at www.sciencedirect.com

SCIENGE @mnscrn

Microprocessors and Microsystems 27 (2003) 359-366

MICROPROCESSORS AND

MICROSYSTEMS

www.elsevier.com/locate/micpro

Systolic implementation of 2D block-based Hopfield neural network
for efficient pattern association

Ming-Jung Seow, Hau Ngo, Vijayan K. Asari*

Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA

Received 23 November 2002; revised 20 February 2003; accepted 25 February 2003

Abstract

A systolic array implementation of block-based Hopfield neural network architecture using completely digital circuits is presented in this
paper. The design is based on modelling the energy equation of Hopfield neural network to a systolic (or modular) form. It is shown
mathematically that the modified energy equation converges in all circumstances. In addition, it is shown that the architecture provides
massive parallelism and can be extended to a larger network by cascading identical chips. The performance of the proposed architecture is
evaluated by applying various binary inputs and it is observed that it exhibits the same characteristics of block-based Hopfield neural network

in terms of convergence and pattern association.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Computations in artificial neural network models are
developed based on the organizational principles of the
functional elements in brain and they employ many simple
computational elements that work concurrently to achieve
brain-like tasks. Although artificial neural networks have
shown great promise, their full potential has yet to be
realized as most implementations have been on sequential
machines that are unable to exploit the inherent parallelism
in these networks. Thus, dedicated chips implementing the
neural network in the VLSI form is required to realize the
full capability of neural network [1].

It has been observed by many researchers that systolic
arrays are very suitable for certain high-speed computations
[2]. Systolic architecture introduced by Kung [3,4] is
suitable for a large class of regular and symmetric
algorithms, such as the multiplication [5] and adaptive
filtering [6]. A systolic architecture consists of a large
number of processing elements connected together using an
interconnection network, which reflects the flow of data
among the processing elements. The trick of the architecture
is that once a data item has been retrieved from memory, it
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should be used by all the processing elements, which require
it. This helps alleviate the processing—memory communi-
cation bandwidth problem experienced even by the fastest
von-Neumann machine. Systolic architectures reduce the
complexity of the algorithms by exploiting the regularity in
the algorithm [7]. The efficiency of an algorithm to be
implemented in VLSI is based on the degree of complexity
of communication required between the arithmetic elements
rather than on the number of interconnection [8]. Thus,
structures ideally suited for VLSI are regular and modular
with only local short interconnections. Systolic arrays are
the simplest of such structures with each element commu-
nicating only with its nearest neighbour [9,10]. They have
been shown to be capable of implementing powerful
computational algorithms using very simple structures
made of arrays of identical processing elements. Systolic
architecture constitutes a good compromise between time
consuming sequential realization and silicon area consum-
ing parallel architecture [11]. For example, in a conven-
tional Hopfield neural network, if N is the number of
neurons required and S is the area of an individual physical
cell, we need an areas of O(N2S) for a parallel implemen-
tation and we have 1 cycle time for evaluation. On the other
hand, a sequential algorithm requires a silicon area of O(S),
but the computation time will be O(N?). A mean solution is
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provided by the systolic architecture with a silicon area of
O(NS) and a computation time of O(N) [12].

In this paper, we present a systolic implementation of 2D
block-based Hopfield neural network architecture [13] using
fully digital circuits. The proposed architecture requires pre-
computed synaptic weights to perform computation for
recognition of the input patterns. A block-based architecture
for the Hopfield neural network is presented in Section 2.
The systolic array implementation of the block-based
architecture is described in Section 3. The simulation
results and performance evaluation of the new architecture
is provided in Section 4 and the conclusions in Section 5.

-~

2. Block-based Hopfield neural network

In this section, we present the development of a block-
based architecture for association of N XM images. To
recognize an image containing N XM pixels using a
conventional Hopfield neural network, it is necessary to
use a 2D array of fully interconnected neurons. Conse-
quently, it needs N>M? synaptic weights for the implemen-
tation of N X M network and it performs N’M? additions
and multiplications in one computational cycle. Hence,
training and recognition require considerable amount of
computational power if N X M is large. In the approach by
Seow and Asari [13] for image recognition using Hopfield
neural networks, an N X M image is partitioned into N*/M>
number of sub-blocks of size n X m, as shown in Fig. 1.
Although the number of neurons in this arrangement
remains N X M, the number of synaptic weights is reduced
to NMnm since each sub-block requires n*m* weights and
we have NM/mm such sub-blocks. Thus, each nXm
Hopfield neural network acts independently.

In a 2D Hopfield neural network with N X M neurons,
let the weight, wyy, be the interconnection strength from
the neuron in the kth row and I/th column to the neuron in
the ith row and jth column, and the encoding equation is
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where x,,, € [—1,+1] is the input at mth row and nth
column of the network from the sth fraining pattern and P
is the number of patterns used for training. The recall of the
Hopfield neural network is a combination of calculating
the net output and threshold function from each neuron.
The net output of the network is computed as

N=-1 M-1

Net,j = Z Z WiikiXiy

=0 =0 @
forO0=i=N—-land0=j=M-1
and the output is thresholded using a hard limiter

+1 if Net; =0

s (CRe) {—1 if Net; < 0 3)

for0=i=N—-1and0=j=M—1

The recalling process will continue until the network
reaches equilibrium. That is, the network said to be
converged when the current output is equal to the previous
output for all neurons.

In Eq. (1), each neuron is connected to every other
neuron through the corresponding synaptic weight. In a
neural network for an image processing application, which
is presented by Seow and Asari [15], each neuron represents
an image pixel and it can be observed that the influence of
the neighbouring pixels on a particular pixel is much larger
than that from the farther ones. Thus the energy function of
the neural network could be modified by incorporating a
distance based weighting factor D to reduce the influence
of farther neurons on a particular neuron. This reduces
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Fig. 1. Block-based neural network architecture.
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the value of the synaptic weights from a farther neuron to
the neuron under consideration. That is, the weights could
be modified by incorporating the D factor as [15]

wyki Z xi’.r' D ijkd
(€]

for0=ik=N-land0=jl=M-1

where Dy, is the distance from the (k, /)th neuron to the
(Z,/)th neuron. The D factor is a controlling parameter in
which the relationship between each group of neurons can
be distinguished. By specifying the point of reference of
each neuron with respect to every other neuron, the D factor
can be used for modelling the architecture. That is, the D
factor could be used to redistribute the energy function to
create a new modular architecture,

2.1. Network architecture based on distance factor

Let the input image of size N X M be divided into sub-
blocks of size n X m and let each sub-image applied to one
of the NM/nm sub-networks with each module working
independently. It can be noticed that an n X m sub-image
area and its neighbours in a larger image of size N X M have
very similar intensity values. Let the value of the distance
factor D for a cellular structure with cell size of n X m be
expressed as [13]

1 ifn=0 .
Dy = { )
where 7 is defined by

0 otherwise
r=ed|| S ]S M LS
n n m m

and « is a parameter that governs the effect of neurons from
the neighbouring modules and a = 1. It can be observed that
the influence of the neuron in the second cell-neighbour-
hood onwards on a particular neuron under consideration
will be reduced significantly. The network architecture can
be modelled as shown in Fig. 1. The selection of the smaller
spatial sub-blocks in a larger image can be justified by the
fact that there exists a possibility of the presence of similar
patterns in the sub-block neighbourhood area. That is, the
effective number of patterns to be trained into a sub-network
would be smaller when compared with the situation in a
total image perspective. One of the major advantages of the
D based training algorithm is that all the weights located
outside the boundary D are not necessary to be trained. This
considerably reduces the number of welghts to be trained
and hence the training time.

2.2. Energy function of systolic structure

By considering the nXm sub-block of 2D neural
network shown in Fig. 1 into the form of a 1D network,

the total energy of an individual block of neurons can be
expressed as:

1 n¥Xm—1 nxm—1

E=-3 Z WiX;; (6)
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Rewriting and redistributing the energy of the network, we
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where b is the number of neurons in each module in the
block of neurons. The energy due to a single neuron at
(IX b + k) becomes:

(nxmib)—1 b1
Eorry = Z Z W (i) (xb-i) X (b)Y (b )]
=0 =0 .

The output function becomes:

(nxm/b)—1 b—1

Netgprry = Wi k) (- X (b-+i) (10)
=0 =0

In Eq. (10), it can be seen that the organization of the output
function is in a systolic form. That is, b neurons are grouped
together to form (n X m)/b modules.

2.3. Convergence of the energy function

From Egq. (9), the change in energy in the (I X b + k)th
neuron due to its update from yJ%,.z 10 ¥ieper can be
derived as

1 [(xmin)—16-1 o
AEgpiy=— > Z Z W(ixb-+R) b+ X xb-+0) Y (b-+E)
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which can be simplified as:
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Now the following three specific cases can be considered:

e If the (IXb+k)th neuron does not change state, i.e. if
J’?Ebw) =Y(p+1) then by Eq. (12), AE 44 will become

e If the (IXb+k)th neuron is changed from — 1 to + 1, then
y?ffb +b) ~ Yikh+ry=2 and according to Eq. (3), Net;; will
be greater than or equal to 0 so that the change in energy
will be less than or equal to 0, and

e If the (IXb+k)th neuron changes from +1 to — 1, then
YOy ~ Yiieb+# = —2 and according to Eq. (3) Net;; will
be less than 0 so that the change in energy will be less
than 0.

Thus, it can be concluded that in all state transitions of
the neural network, the energy of the network either remains
the same or it decreases. Furthermore, it can be observed
that a stable energy minimum state would be achieved when
all neurons stop changing their states.

3. Systolic array implementation of block-based
Hopfield neural network

A detailed architecture for each module with two neurons
is shown in Fig. 2 where x; represents the jth bit of the
pattern and w;; is a weight obtained during training process.
Input weights are latched into registers (reg) before feeding
them to the 2’s complement units (2°s compl.), which has
the following functionalities: (1) pass the data from input to
output when controlling signal x; = 0 or (2) negate input
and output the result when controlling signal x; = 1, for
synchronizing the data. Registers are introduced between
2’s-complement units and adders to reduce output delay at
each adder. Fig. 3 shows the architecture for an 8-bit neural

network that is designed and implemented for the purpose of
demonstrating our technique. The network consists of eight
neurons, and each neuron is responsible for a single bit in
the pattern.

The complexities of modular structures (or systolic
implementation) with respect to the non-modular structures
(or conventional implementation) are well studied. For
instance, three possible complexity discriminations of
modular structures with respect to non-modular structures
can be the following: (1) neuron counting approach in which
the complexity of the network is proportional to the number
of neurons in the network, (2) the weight counting approach
in which the neurons of the network are all labelled a certain
weight and networks are compared based on their total
weights, and (3) the dimensional approach in which all
neurons of the network take up some space and networks are
compared based on the minimum possible volume of the
space containing the network.

The neuron counting approach is usually a standard
method of complexity analysis because in essence, the
amount of memory needed to store the network increases
with number of neurons. Modular models usually require
extra modules to control the modular learning process or to
ordered results of multiple modules. In a non-modular
network there is a higher degree of connectivity between all
the neurons while in a modular network there are few
connections between neurons in different modules. This
suggests that modular networks have fewer conmnections
overall, especially when very large problems are under-
taken. As a result, a modular network is less structurally
complex than a non-modular one as the complexity of the
problem increases.

The weight counting approach of complexity is similar
to the neurons counting approach measurement. For
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Fig. 2. Each module of neuron architecture.
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network, the number of weights usually increases.
However, the weight counting approach provides a
more practical comparison of the amount of hardware
needed for the network and usually provides a good
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Fig. 3. 8-bit Hopfield neural network architecture.
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a typical weight counting approach measurement may
have connections proportional to their length. Such a
measure would be useful in estimating the amount of
hardware needed to hard-wire the network. Since
modular networks tend to have fewer connections than
an equivalent non-modular network, they will generally
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Fig. 4. Internal structure of the VLSI chips of 16 X 8 cells of 4 X 2 neurons.

have ‘a lower number of weights. As a result, the speed
of the network is faster.

The dimensional measurement is a very useful indication
of the complexity of a network and as in the case with
the weight counting measurement, has implications
concerning the hardware requirement of the network. For
example, the dimension of a neuron is larger than that of the
weight connection. So, neurons may take a larger space
compared to the weight connections. In addition, weight
connections will be required to maintain a certain minimum
separation to prevent signal conflicts. With such an analysis,
the dimension in a growingly connected network will be
primarily determined by the number of neurons in the net as
suggested, while the dimension in a highly connected
network will be determined by the number of connections. It
is likely that a modular network will show a lower overall
dimension on most large complex problems, given the lower

neuron to connection weight ratio. As a result, the systolic
array implementation of modular Hopfield neural network
shows less complexity compared to the conventional way of
implementation.

4. Simulation results and performance evaluation

For the performance evaluation of the designed Hopfield
neural network, the 8-bit architecture for the neural network
is implemented and simulated with Altera’s Quartus II
version 1.1 design tool. The entire architecture is fitted into
a FPGA from Altera’s APEX family. Specifically, the
EP20K60EFC324-1X FPGA is selected for compilation and
simulation purposes. Based on simulation results, the
maximum clock frequency that can be applied to
the network is 83 MHz. The total number of logic cells
that the entire architecture resides on is 1941, and the total
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Fig. 5. 256 X 256 neuron expanded architecture with 32 X 32 neuron chips.
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Fig. 7. Reconstruction of the corrupted image of size 32 X 32,

number of flip-flops used for this design is 1696. The latency
of each neuron is 2 clock cycles for each input; the results of
these neurons are then summed and produce the Net; as
described in Eq. (1).

The block-based architecture used in Fig. 3 for a 4 X 2
neuron network is expanded to construct a VLSI ¢hip for a
32 X 32 peuron architecture as shown in Fig. 4. A larger
network can be built with 64 such chips for the reconstruction
of animage of size 256 X 256 with the cascaded arrangement
as shown in Fig. 5. A set of 32 X 32 simulated characters are
used for training the block-based neural network as shown in
Fig. 6. The training was done off line and it takes less than a
second (0.89 s) to train using MATLARB version 6.1 in a dual
processor PC environment with Xeon 1.5 GHz processors. A
set of test patterns was generated by introducing various
amount of salt and pepper error. To evaluate the performance
of the architecture, the 32 X 32 network was initially trained
using 61 characters. After adding 30% uniformly distributed
random noise to the original images, they were fed to the
network for reconstruction. Reconstruction process of the
character ‘A’ is shown in Fig. 7 where the output patterns in
successive iterations are shown from left to right. It starts
from the noisy image and regenerates the original image from
the distorted image in two iterations for a total of
48 x 107 s. Tt can be observed that the quality of the
regenerated image is as good as the original image used for
training the network.

5, Conclusion

A systolic array implementation scheme for the block-
based Hopfield neural network using completely digital

circuit has been described. The design is based on a modified
energy equation of Hopfield neural network to facilitate the
development of a systolic form. It has been shown
mathematically that the modified energy equation converges
in all circumstances. In addition, it has been shown that the
architecture provides massive parallelism and the core
architecture can be extended to alarger network by cascading
identical chips for training larger images.
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