Evade Deep Image Retrieval by Stashing Private Images in the Hash Space

Yanru Xiao
Old Dominion University
Norfolk, VA
yxiao002@odu.edu

Cong Wang*
Old Dominion University
Norfolk, VA
c1wang@odu.edu

Xing Gao
University of Memphis
Memphis, TN
xgao1@memphis.edu

Abstract

With the rapid growth of visual content, deep learning to hash is gaining popularity in the image retrieval community recently. Although it greatly facilitates search efficiency, privacy is also at risk when images on the web are retrieved at a large scale and exploited as a rich mine of personal information. An adversary can extract private images by querying similar images from the targeted category for any usable model. Existing methods based on image processing preserve privacy at a sacrifice of perceptual quality. In this paper, we propose a new mechanism based on adversarial examples to “stash” private images in the deep hash space while maintaining perceptual similarity. We first find that a simple approach of hamming distance maximization is not robust against brute-force adversaries. Then we develop a new loss function by maximizing the hamming distance to not only the original category, but also the centers from all the classes, partitioned into clusters of various sizes. The extensive experiment shows that the proposed defense can harden the attacker’s efforts by 2-7 orders of magnitude, without significant increase of computational overhead and perceptual degradation. We also demonstrate 30-60% transferability in hash space with a black-box setting. The code is available at: https://github.com/sugarruy/hashstash

1. Introduction

A picture is worth a thousand words. The rapid growth of large image and video collections has made content-based image retrieval possible at a large scale, e.g. Google [1], Pinterest [2], Bing [3] and TinEye [4]. Powered by deep learning, they have been increasingly built into social networks [5], e-commerce [6,7] (e.g., Pailitao from Taobao [8]) and fashion design [9] to capture semantic similarities from visual queries for finer results. Social media, e-commerce websites and even the user’s query are utilized as a rich mine of images to train these systems. For instance, 100M photos and videos are uploaded everyday on Instagram [10]; more than 1G products are listed on Ebay [11]. Google also claims a 7-day storage of queried and uploaded images and utilizes them for further analysis [12].

Although legislation (e.g. GDPR [13]) imposes restrictions on the usage of personal data, for the exploding volume of visual content, there still remains a vague definition of ownership as well as a weak legal boundary between what can be learned and what cannot, from an image. Further, users’ awareness of their privacy remains quite subjective towards latent, but sensitive information in their images. The resourceful visual content can be exploited in bewildering ways to learn private information such as family member, location, income, personal interest or even sexual orientation for accurate contextual advertising [14–17] or spear phishing [18]. For example, Facebook has patented a new application of predicting household demographics based on image data [19]. Though these applications expedite search efficiency and product offering, they also compromise user privacy and make privacy trampling easier at a large scale. These issues stretch beyond social media and search engines: any platform with content-based image retrieval shares the same risk of privacy leakage.

Unfortunately, there is less incentive for the platforms to implement privacy guarantees, as long as they are faltering in the grey area of legislation. It is always up to the users to protect their own privacy. Previous approaches utilize image processing such as blurring, darkening and occlusion to evade face recognition [20] or disassociate friend tagging [21], at a sacrifice of degraded visual quality. Another thread of work is to establish a privacy-respecting protocol by an identifiable tag [22,23], so anyone wearing the privacy tag is excluded from the image. The success of these systems relies on building sophisticated, trusted protocols between the users and the platform, that demands commitments from both sides.

These techniques may be fragile in the eyes of deep learning, which can still extract useful information from the local descriptors. The state-of-the-art image retrieval adopts deep hashing for efficient similarity search [24–28]. It quantizes images in the database into low-dimensional binary codes during training, computes the hamming distance from the queried image, and returns relevant images (inadvertently) gathered by the database. A well-trained model would return images with high similarity (usually from the same category). With some categorical information, e.g., gathering a few images from the targeted category, an ad-
versary can query the database and retrieve all the images including those private ones. Thus, to evade retrieval, privacy preservation entails opening the box of deep hashing while maintaining perceptual similarity.

In this paper, we aim to minimize the chances for the private images to be extracted by introducing a small, crafted perturbation on the original image. Studied in [29, 32], deep neural networks are vulnerable to adversarial inputs - perturbations that are inconspicuous to human eyes can be added to cause misclassification. In principle, deep hashing should inherit these vulnerabilities by design. A recent work shows that maximizing the hamming distance from the original image in hash space would make the system return an irrelevant image to the query, which can be utilized directly to protect the private images. Nevertheless, by implementing the strategy, we find that it can only defend weak adversaries, who only exploit the original category. Strong adversaries are more common in reality; they could enumerate all the categories and expose the private images in brute force. To tackle this challenge, we propose a new cluster-based weighted distance maximization that can transform the hash code into the subspaces away from all the categories.

The main contributions are summarized below. First, we propose to utilize adversarial techniques for privacy preservation and identify the limitations of the existing approach against strong adversaries. Second, we develop a new mechanism to stash samples into the hash space that maximizes the hamming distance to all the classes, while maintaining perceptual similarity. Finally, we conduct experiments on various datasets and demonstrate that the proposed mechanism successfully hardens the attack efforts by 1-3 orders of magnitude compared to [33], while achieving minimal perceptual dissimilarity. We show that 30-60% of the protected images can successfully transfer to an unknown model in a blackbox setting.

The rest of the paper is organized as follows. Section 2 introduces the related works. Section 3 motivates this study by defining the threat model and identifying the limits of the existing approach. Section 4 presents a new defense against strong adversaries. Section 5 evaluates the proposed mechanism and Section 6 concludes this work.

2. Background and Related Works

2.1. Deep Image Retrieval

Traditional image retrieval works on a vector of hand-crafted visual descriptors [24, 35], followed by a separate process of projection and quantization to encode feature vectors into binary codes. Propelled by the success of deep learning, the new deep image retrieval enables learning of pairwise similarity from end-to-end [24, 27]. It transforms high-dimensional real-valued inputs into the binary hash codes so similarity search can be performed efficiently by calculating the hamming distance. These systems typically consist of a database and a model. The database contains a finite set of images as the retrieval results; the model accepts query and returns retrieved images. The objective is to learn a nonlinear hash function to map input $x \rightarrow h(x) \in \{-1, +1\}^m$ into an m-bit binary code. A typical range of m is between 16 to 128 depending on the application requirements, which is made less than the original image dimension.

In addition to the convolutional and densely connected layers, a hash layer is introduced for the binarization process, in order to mitigate the quantization error. It converts a continuous representation z into discrete hash code by the sign function $\text{sgn}(z)$. Since the sign function is not compatible with backpropagation due to non-smoothness, the key is to build a function for continuous approximation. For example, HashNet [26] adopts the hyperbolic tangent function, $\text{sgn}(z) = \lim_{\beta \to \infty} \tanh(\beta z)$. By tuning the scaling parameter β during the learning process, the function converges to the sign function when $\beta \to \infty$. Similar to deep features in their floating point format, hashing concentrates similar images into a Hamming ball. The system usually defines a retrieval threshold so any image with smaller hamming distance would be returned as the query results. We refer to the survey [28] for more details.

2.2. Adversarial Examples

In contrast to their super-human capabilities, neural networks are highly vulnerable to small perturbations, where purposely crafted perturbations added to the input can make the system misbehave at run-time [29, 32]. An efficient attack is the fast gradient sign method [30]. It takes a large step in the gradient directions to maximize the loss function, by finding a perturbed image x' with small additive noise ϵ such that $f(x') \neq f(x)$.

$$x' = x + \epsilon \cdot \text{sgn}(\nabla_x L(\theta, x,y)),$$ \hspace{1cm} (1)

where $L()$ is the loss function. θ is the model parameter. ∇ is the gradient. x is the data and y is the true label. Instead of making one-step gradient ascent, the method is extended in [31] as the basic iterative method to apply (1) multiple times and clip the image within the ϵ-constraint. Empirical experiments demonstrate that these adversarial examples can not only “fool” the classifier, but also transfer between different models for black-box attacks [36, 37].

2.3. Privacy Preserving

Previous efforts of preserving privacy online mainly focus on web analytics [14, 15], mobile advertising [16, 17] and behavioral tracking [38, 39]. To balance privacy and utility, a popular approach is through differential privacy that introduces noise to answers so the service provider cannot detect the presence or absence of a user. Though these mechanisms offer provable foundations on a statistical basis, they are not specialized in protecting inference of a single record, such as the private image being retrieved from the database. Privacy is a growing concern with the wide adoption of deep learning based search methods. Only a
few works have utilized adversarial examples for privacy preservation. In [40], a strategy based on adversarial examples is developed to disable the object detections so it cannot identify objects at the first place. An adversarial technique is also developed in [33] to corrupt semantic relationships and make the retrieval system return irrelevant images. Our work extends [33] to tackle strong and adaptive adversaries.

3. Motivation

This section motivates the research by defining the threat model and investigating the mechanism in [33] as defense.

3.1. Threat Model

We first present the scenario and assumptions made in this paper. Platforms such as social networks and search engines usually collect user information including profile, email, IP address and most importantly, pictures. The platform has deployed a deep image retrieval system such as HashNet-ResNet50 [26] to match imagery content from visual queries for marketing purposes. For profit, the platform also opens an interface for third-party advertisers or data brokers (escalated by calling them adversaries) [2-4], who can match and retrieve similar images from the database for accurate advertising [38, 39]. Since the service is rated per query, the platform does not impose any limit on the number of queries but the adversaries have a fixed amount of budget. Users (defenders) have no control over the privacy policy, therefore, they introduce perturbation to prevent personal images from being returned as the retrieval results. The flowchart is illustrated in Fig.1.

To maximize retrieval quality, the adversary collects a dataset (attack set) to resemble the database. Similarly, the user also collects a dataset to facilitate the generation of the perturbations. We assume both data sets are independent and identically distributed (i.i.d) with the training set. For simplicity, in this paper, it is implemented by random selections from the test set. As a first proof of concept in the hash space, we assume the user has complete knowledge about the model (white-box) as [32, 33], including the information of category, structure, parameters, hashing mechanism and loss function. Then we demonstrate the existence of black-box transferability of the proposed mechanism in hash space, when users estimate the model architecture and parameters at the best effort.

3.2. Hamming Distance Maximization as a Defense

The work of [33] fools the hash-based image retrieval system by adversarial examples, which can be also leveraged as a privacy-preserving technique. The objective is to maximize the distance between the perturbed image and the original one, such that the hamming distance exceeds the retrieval threshold for that category. More formally, it transforms x into x' by maximizing their hamming distance $D_h(x, x')$. $D_h(x, x')$ can be deduced from the inner produc
we evaluate the average number of queries for the adversary to extract the private images, when a random image is queried from the attack set each time. If a private image is mapped to the vicinity of \(n \) images in the attack set of size \(N \), the probability of retrieving this image is \(n/N \). The expected number of queries is \(N/n \).

Fig. [3] shows the expected number of queries against strong attackers and the defense efforts in terms of iterations to generate the crafted perturbations [33]. The retrieval threshold \(T_h \) is selected according to the best F-1 score and precision.

Observation 3. When the categorical features are more dispersed in the hamming space, the protected image is more prone to fall into the retrieval threshold of some samples. It is validated in Fig. [3] given that the attacks on CIFAR10 require less effort than MNIST, due to higher intra-class diversity of CIFAR10. This makes the defense using hamming distance maximization flimsy in the real world, where data has complex and high intra/inter-class diversity.

We can see from these observations that defense is challenging against strong adversaries. Instead of naive maximization from the original category, the optimization should be guided within a narrow subspace to avoid being: 1) exposed from the original category; 2) extracted via querying the rest categories; 3) degrading visual quality. To meet these requirements, we propose a new mechanism in the next section.

4. Cluster-based Weighted Distance Maximization

We propose a new mechanism called *cluster-based weighted distance maximization*. The idea is parallel to the center loss [44], which aims to enhance the discrimination of inter-class features and pull the intra-class features towards their centers for better classification. Here, however, we are learning through the adversarial lens for generating a hashcode via perturbing the input image, such that the distance to the hash centers is maximized. To account for intra-class variations, we represent each class with several centers, rather than a single one [44]. The hamming distance to the centers also exhibits heterogeneous distributions across various categories. Samples may have high density around the center for some categories while others may scatter more evenly. Thus, the optimization should be aware of the intra-class distributions and their hamming distance to the center; otherwise, the protected image may fall into high-density regions, where all the samples have similar hash codes. The attacker can easily exploit these regions to retrieve the private image with high chances.

Our Mechanism. To address intra-class variations, we further partition the hash codes by a clustering method. For the set of hash codes \(\{h(x_i)\}_{i=1,\ldots,N} \), we re-organize them into a number of \(k \) distinct clusters \(C_i \), \(1 \leq i \leq k \). Existing clustering techniques such as \(k \)-means [45] and density-based DBSCAN [46] can be adopted (their pros and cons will be compared in Sec. [5.1]).

After the clusters are found, we develop a weighted loss function to characterize the in-cluster hamming distance distribution. The goal is to push \(x' \) away from the cluster centers such that the number of samples returned by a query using \(x' \) is minimized. Because hamming distance is symmetric, this is equivalent to our original intention that maximizes \(D_h(x, x') \), so \(x' \) is not returned by the query, when the attacker queries any image \(x \) from \(C_i \). Define \(F_i(d) \) as the cumulative distribution of the number of samples with distance \(d \) from center \(c_i \). For a total number of \(k \) clusters,
the new objective minimizes a new loss function \(L_c \) defined as,

\[
\min_{x'} L_c(x') = \sum_{i=1}^{k} \| F_i \left(\frac{1}{2} (m - h(x') h(c_i)^T) \right) \|_2^2,
\]

s.t. |\(x - x' \) - \(x' \)\| < \(\epsilon \).

where \(h(c_i) \) is the hash code of the \(i \)-th cluster center \(c_i \), \(m \) is the total hash bits (\(m = 48 \)).

Optimization. Set the initial image of \(x' \) as \(x \), \(x' \) can be updated in an iterative manner,

\[
x' = \text{clip}_{x,\epsilon}(x' + \epsilon \cdot \nabla_x L_c(\theta, h(x'), \{ h(c_i) \}_{i=1}^{k}))
\]

The gradient of the loss function can be calculated as,

\[
\frac{\partial L_c}{\partial h(x')} = \sum_{i=1}^{k} 2 F_i(D_h(x', c_i)) \frac{\partial F_i(D_h(x', c_i))}{\partial D_h(x', c_i)} \frac{\partial D_h(x', c_i)}{\partial h(x')}
= - \sum_{i=1}^{k} F_i(D_h(x', c_i)) \frac{\partial F_i(D_h(x', c_i))}{\partial h(x')} h(c_i).
\]

To use gradient-based optimization, \(F_i(\cdot) \) should be a differentiable function. We learn a least square regression for each cluster \(1 \leq i \leq k \), based on the hamming distance \(j \) to the center (\(j \in [1, 30] \)) and the number of samples \(y_j \),

\[
\hat{F}_i = \arg \min_F \sum_{j=1}^{m} \| F_i(d_j) - y_j \|_2^2.
\]

The parameters can be derived by a closed form solution, \(\beta = (d^T d)^{-1} d^T y \).

To examine the effectiveness of regression, we plot the relationships between the \(d \) and \(y \) (shown as “Original”) in Fig.4 for CIFAR10. In most of the cases, the images are concentrated around the cluster centers (Fig.4(a)). There are also some clusters that samples are more scattered (Fig.4(b)). To minimize the square error, it is tempting to adopt high-order polynomials for better characterization, but they would slow down the defense process due to high computations. For training stability, we adopt quadratic regression and compare them with nonlinear regressions of hyperbolic tangent and exponential in Fig.4. The quadratic regression demonstrates empirical advantages summarized by the following properties.

Property 1. The convexity of quadratic function facilitates the convergence of the loss function. Though both hyperbolic tangent and exponential functions fit the distribution better (almost perfectly for tanh), they are not stable during training.

For tanh, the gradient vanishes for most of the clusters and the loss function is unable to converge. We conjecture that the failure is due to the original distance distribution having a high concentration of samples close to the cluster center and a flat, long tail with gradients almost equal to zero. Since tanh fits such distribution perfectly, the flat tail is causing the gradient to vanish and no subsequent updates from the backpropagation. For the exponential function, it tends to overfit when \(d \) is small (overshoots around the cluster center with small distance). Our test indicates that when \(d \to 0 \), \(\hat{F}_i(d) \to \infty \) for some clusters and this brings instability to the backpropagation process.

Property 2. Denote the quadratic parameters as \((\beta^0_i, \beta^1_i, \beta^2_i) \), \(1 \leq i \leq k \), and the largest hamming distance to the center (radius) as, \(r_i = \max D_h(x, c_i), x \in C_i \). If \(-\frac{\beta^2_i}{2\beta^0} > r_i + T_h \), the distance corresponds to the minimum value of the quadratic function, which is the optimization goal. If it is larger than the sum of the retrieval threshold and the radius, using any sample from the cluster will not be able to fetch \(x' \). This condition holds for most clusters because the samples tend to concentrate in high density around the centers. For the rest of clusters like shown in Fig.4(b), though optimization is able to reach the minimum value (around 30 in hamming distance), it has to balance the influence from other clusters as well. That is, maximizing the distance to a single cluster may accidentally push the protected image into the proximity of other clusters. Our loss function is designed in a way to mitigate such effects based on the in-cluster distributions.

5. Evaluation

The main goal of evaluation is to investigate: 1) effectiveness of the proposed mechanism in both white-box and black-box settings; 2) defense budget in terms of computational efforts; 3) perceptual similarity from the original image.

Dataset. We conduct the experiments on four datasets: CIFAR10 [43], Fashion-MNIST [47], ImageNet [48] and Places365 [49]. Places365 mimics the scenario when privacy is exploited from location similarity. Following [26], we randomly select 10% categories of ImageNet and Places365.

Implementation Details. We train HashNet-ResNet50 for CIFAR10/Fashion and HashNet-ResNet152 for ImageNet/Places365. We randomly select 500 images from the
test set as the private images to be protected and use the rest of the test set as the attack set. The retrieval threshold T_h is selected when the best F-1 score ($T_h = 15, 16, 12, 10$) and the best precision ($T_h = 8, 6, 8, 8$) are achieved for the four datasets, respectively.

Baselines. We compare our mechanism with a combination of baselines: no defense and hamming distance maximization [33] against the weak adversary and strong adversary. The weak adversary has some knowledge about the private image so he only queries the original category. The strong adversary enumerates through the entire test set of all categories.

Metrics. Based on the threat model, the adversary randomly picks images from the attack set to expose the private images. The mechanisms are evaluated thoroughly based on the following metrics: 1) Expected number of queries of weak adversary E_{w},

$$E_w = \frac{\text{total # attack images}}{\text{avg # img retrieved (same class)}}.$$

2) Expected number of queries of strong adversary E_s,

$$E_s = \frac{\text{total # attack images}}{\text{avg # img retrieved (all class)}}.$$

These metrics quantify the efforts from the attacker. 3) Defense effort in terms of the number of iterations and computational time using a sole Nvidia GTX1070 GPU. 4) Perceptual difference between x and x' by the two metrics, a) mean square error, $\text{MSE} = \frac{1}{N} \sum (x'_i - x_i)^2$, where x_i, x'_i are the normalized pixel values of the original and protected images and N is the dimensionality of the image; b) Structural similarity index that captures structural similarities to emulate human visual [50].

5.1. Attack Efforts

Fig 5 compares the attack efforts of the cluster-based weighted hamming distance maximization (CWDM) with the hamming distance maximization (HDM) [33] and the no defense baseline. We can see that with “no defense”, the adversary can simply extract the private images from the database within 10 queries for CIFAR10/Fashion and 100 queries for ImageNet/Places365. For weak adversary, our mechanism CWDM is a little worse or on par with HDM. This is because the hash code found by CWDM is not as far as HDM from the original image, because CWDM has to consider distance from the rest categories to defend strong adversary. As a result, for strong adversary, CWDM effectively hardens the attack effort by 1-3 orders of magnitude than HDM, and 2-7 orders of magnitude than “no defense”. E.g., for best precision, 1.1M, 58M, 0.77M and 20K number of queries are required on average, which are prohibitive for attackers with finite resources. In practice, adversaries may not know exactly what categories the private images are from, so a viable way is to explore all possible categories. CWDM successfully enlarges the attack efforts in this case.

Clustering Techniques. We assess the impact from the clustering techniques in Fig 6 between k-means [45] and DBSCAN [46]. For k-means, we increase the number of clusters k from 15 to 30 for CIFAR10/Fashion, 150 to 300 for ImageNet and 54 to 108 for Places365; for DBSCAN, we increase EPS (maximum distance between two samples in order to be clustered) from 0.5 to 3.5. With a larger k, k-means tends to result more compact clusters with less intra-cluster distance, which leads to a general trend of higher robustness against strong adversaries. DBSCAN is more sensitive to distribution density and the value of EPS (e.g., the surge when $\text{eps} = 2.5$). k-means offers better predictability, and performance than DBSCAN by almost an order of magnitude. The main reason is because DBSCAN explicitly categorizes samples with distance larger than the EPS as outliers; CWDM does not account for these outliers during optimization thus leaving some risks, if the attack sample is identical to the outliers. An exception is Places365 where the learned hashcodes of selected categories are more concentrated than ImageNet and the outliers are less. This makes DBSCAN better than k-means on Places365.

5.2. Defense Efforts

Defense efforts are measured by the hardness of finding the adversarial example in hash space. HDM only pays attention to the original category, thus should be much easier to optimize in general (which takes about 20 iterations to reach equilibrium as shown in Fig 7(b)). On the other hand, CWDM balances the influence from all the class distributions and the quadratic regression introduce additional com-
5.3. Useability

Perturbation Artifacts. We compare the amount of perturbations introduced onto the private images with some examples in Fig. 8. To visualize the noise clearly, we scale up their values by four times with a 0.5 uplift to offset any negative adversarial values. We can see that noise from CWDM concentrates more around the object, whereas HDM tends to distribute the noise across the entire image. To quantify the nuances, we further evaluate the average MSE and SSIM from the original image in Table 1. The MSE is averaged per pixel value by dividing $224 \times 224 \times 3$. SSIM falls in the range of $[0, 1]$, where 1 means the image is identical to the original one, and a less value means the distortion is higher. For CWDM, the MSE is 37% less than HDM for CIFAR10/Fashion and SSIM is almost identical to the original image by reaching a score over 0.9 on average. This is because the objective of maximized hamming distance would push the protected image further away from the original sample in hash space, whereas CWDM is more moderately looking for a subspace not far from the decision boundaries (retrieval threshold). The noise for ImageNet/Places365 is slightly higher because more scattered samples and clusters make it harder to find a subspace to hide, thereby demanding strengthened perturbations. Fortunately, the additive noise does not turn out to be significant measured by SSIM (last two columns).

Classification Tasks. Social platforms also provide functions such as automatic photo classification, object and text recognition. These tasks typically adopt different loss functions (e.g., softmax). Since the perturbations are applied globally, we show that they do not transfer to the normal feature space, and mislead softmax classifications. Table 2 demonstrates the accuracy loss of classification tasks by applying CWDM samples to the original models. The first
Table 2: Evaluation of potential accuracy loss on classification tasks.

<table>
<thead>
<tr>
<th>Original</th>
<th>Adversarial (CWDM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HashNet</td>
</tr>
<tr>
<td>CIFAR10</td>
<td>0.870</td>
</tr>
<tr>
<td>Fashion</td>
<td>0.896</td>
</tr>
<tr>
<td>ImageNet</td>
<td>0.882</td>
</tr>
<tr>
<td>Places365</td>
<td>0.862</td>
</tr>
</tbody>
</table>

Table 3: Defense success rate of black-box transferability from ResNet50* and ResNet152* to different architectures (%).

<table>
<thead>
<tr>
<th></th>
<th>ResN18</th>
<th>ResN34</th>
<th>VGG16</th>
<th>No def.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR10</td>
<td>44.13</td>
<td>40.96</td>
<td>22.39</td>
<td>9.8</td>
</tr>
<tr>
<td>Fashion</td>
<td>56.99</td>
<td>60.32</td>
<td>51.85</td>
<td>5.8</td>
</tr>
<tr>
<td>ImageNet</td>
<td>22.40</td>
<td>36.40</td>
<td>33.40</td>
<td>13.20</td>
</tr>
<tr>
<td>Places365</td>
<td>45.09</td>
<td>40.36</td>
<td>30.79</td>
<td>11.86</td>
</tr>
</tbody>
</table>

5.4. Black-box Defense

The previous subsections evaluate the scenario when users have full knowledge of the architecture and parameters of the model on the server (white-box). In practice, the proprietary model usually remains a black box to the users, such that they can only make their best guess of the target model. Empirical evidence has shown that adversarial perturbations can transfer across models in normal feature space [36, 37]. Here, we demonstrate transferability of our mechanism in the hash space.

We fix the target model (server side) and generate the protected image using different source models (user side). Black-box transferability is difficult given that the source and target models usually have different decision boundaries. Strong adversary from the server side can further take advantages of any nuance in such boundaries to expose the protected image. Thus, we consider the black-box scenario to be successful, as long as there are less than n samples that can be exploited to extract a protected image. We define the defense success rate as the ratio between the number of protected images that have less than n retrieval results in the target model and the total number of protected images. We set n = 100 here since it would take the adversary considerable efforts to find these 100 images from the 50K/60K/100K/36K attack sets. We adopt different architectures on the four datasets due to the performance gap from the original HashNet, i.e., ResNet50 and architectures of less complexity exhibit much lower accuracy on the ImageNet. Thus, we set ResNet50* and ResNet152* as the target models for CIFAR10/Fashion and ImageNet/Places365 respectively, use ResNet18, ResNet34 and VGG16 as the source model for CIFAR10/Fashion, and ResNet50, ResNet101 and ResNext101 for ImageNet/Places365.

Table 3 shows the success rate of transferability to target models (col.2-4) and benchmarks the results with the “no defense” baseline as the lower bound (col.5). For CIFAR10/Fashion, CWDM-protected image can successfully transfer with a rate of 40-60% within the ResNet family, possibly due to similar decision boundaries. Transferability also exists for ImageNet/Places365 about 20-40%. VGG16 has less chance to transfer. Thus, in a blackbox setting, if the user makes the correct guess of the target architecture, her images can be protected almost perfectly based on the previous white-box experiments; if the guess falls off a little, she still enjoys nearly 30-50% on average, which offers considerable improvement over “no defense” (col. 5).

5.5. Discussion

Without knowing our defense, the attacker strives to collect a dataset that resembles the training set to extract the private, similar images. Our mechanism successfully defends against these attackers when their attack sets are i.i.d. with the training set. Due to space limit, we will conduct more experiments to evaluate active attackers when they deviate from the i.i.d settings. The accuracy from the original HashNet also affects the effectiveness of the defense. For example, ResNet18-50 do not achieve satisfied accuracy to map semantically similar images into identical and compact hash codes on ImageNet/Places365. The learned codes are more scattered, thereby squeezing the optimization space to successfully perturb the image and prevent from retrieval. Since the service providers typically finetune their models, we expect the proposed mechanism to be effective against the production models with high accuracy.

6. Conclusion

In this paper, we describe efforts to protect private images from malicious deep image retrieval. We first identify and experimentally validate the effectiveness of using adversarial perturbations as a defense in the hash space. By showing vulnerabilities against strong adversaries, we propose a new mechanism to find an alternative subspace that maximizes the weighted hamming distance to all the classes. We evaluate the efforts from both the attack and defense perspectives, useability, and black-box transferability with extensive experimental results.

7. Acknowledgement

This work was supported in part by the U.S. National Science Foundation under grant number CCF-1850045.
References

