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basics: charyed particle tracking

» charged particle tracking in B field:
5 d.o.f. — typical: k=(q/p,)\,<p,d¢,d|| )

» track based on associated hits in detectors:;

quality depends critically on track multiplicity, detector geometry/
alignment/ calibration, B-fields

» procedure:

1. exploration - pattern recognition (segments)

2. selection - track finding (seeds)

3. fit - global fit (spline, global track model)
or recursive fitting (Kalman filter)

4. final selection - multi-track fit, global vertex fit

» requirements: precision, efficiency (, speed, memory)

» considerations: multiple scattering and energy loss,
reconstruction and rejection efficiency



prineiples of patteri recognion

» collection of detector hits (position, time and maybe energy deposit)
— detector cell position, time (TDC), charge (fADC)

- features and correlations in patterns  #

— linear feature extraction

(coordinate transformation) / e e o
— template matching -
- YA Y Lf;{}iigﬂ’» b%fé
(expected pattern — training sample) « ¥ % 0% )

— neural network
(e.g. Hopfield net, simulated annealing)

— minimum weighted spanning tree
(consider tracks as clusters of points)



« working in projection or space 20

— treating track overlaps

— compatibility of tracks

— efficiency (and speed)
of track finding

10

"

standard residual

* hit collection and o
point removal (noise, outliers) ' | | | | I

0 10 20 30 40 50

(significance test, biweight test, MCD (multi-variate covariant distance)
least trimmed square)

- robust filtering and fitting (track model, quintic spline, Kalman filter)
— weight matrix, detector resolution, alignment, material (mult. scatt., energy loss)

- ghost (mirror) track detection
 vertex reconstruction (in part. decay vertices)



driit chambers

little material in large volume, strong E-field via sets of field wires (or cathode strips)
operational in strong B-field (distorted drift path)

not very sensitive to small changes of gas mixture & wire position

good spatial resolution & two-track separation (for sufficiently large stereo angles)

Left-Right ambiguity — staggering of drift cells

Electron drift lines from a track

Cell: New wire configuration Particle: 300 equally spaced points
Gas: C,H, 50%, Ar 50%, T=300 K, p=1 atm
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fitting procedure: minimize rms between track
and calculated distance



lead-glass detector
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CLAS12

Solenoid

CLAS12
Silicon Tracker
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CLAS!?
Forward Drift Chambers

FST: Forward Silicon Tracker (3 layers)
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lime projeciion chambex

« drift space extends mainly on one side of the sense wire (no LR ambiguity)
» row of small pads receive induced pulse from avalanche at the sense wire
* (strong) B-field parallel to E-field: confines the drifting electron cloud

» wire chamber gated to reduce out-of-time noise o5 volume with E
* position resolution up to 50um \ g B fields
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« wire plane y-coord. from cathode pads




‘ a. ITS SPD Pixel

e b. ITS SDD Drift
e 1 ] N c. ITS 550 Strip
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12, MUON TRACKING
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15, DIPOLE
16. PMD
17. 2DC

high magnetic field parallel to E-field reduces

transverse diffusion by 1/wT
w = cyclotron freq.; T=mean time between collisions
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» charge dispersion readout:
modified anode with high-resistivity film
insulated from readout plane
2 drifting
.electrons




micro mesh gas structure (umegas) EE@ 9)@35 @JMMM@@M[@M
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Metallic woven or electro-produced
micromesh sustained by 50-100 um
pillars over anode plane.

Very high gain electron multiplication
between anode and mesh.

He-isobutane (80:20):
gain ~ 20,000



Solill-state detectors

Single sided devices Double sided devices

FNAL

Al

E4
=)

Bias line

bias
re

Immunity to DC reverse currents caused
by radiation.
Capacitgrs must withstand bias voltage.

100pm

coupli.ng bond strip
capacitor

aluminization

) p-stop: add blocking p+ strips on n-side to ensure
pad  implant strip isolation at full depletion



DO silicon tracker 4

(800k channels, double-
layer, 50 um pitch)

Hybrid system:
barrel detectors measuring primarily r-¢ of vertices for low 1 tracks, _
disk detectors measuring r-z as well as r-¢ of vertices for high m tracks (3D) 3 | j v
- disk separation must be kept small to minimize extrapolation errors

- each plane of disks represents a dead region (~8 mm gap) between the barrels which lowers
overall efficiency of the detector
- 3D track reconstruction capabilities, - detectors and onboard electronics radiation hard up to 1 MRad

- axial hit resolution: ~ 10 um, - Z hit resolution: ~35 um for 90° stereo, ~450 um for 20 stereo

20 side of completed 9-chip
ladder

SVXille chips




microstrip and pixel deteciors

* resolution:
~8-30 pum for 25-200 um strips
* pixel detector without
double-track ambiguities
« radiation tolerant to ~10 kGy

» CMS: 16,500 pstrip detectors
(76 M channels)

cooled to -10 °C,
320 or 500 um thick,
80-180 um pitch,
25 ns ASIC readout time,
¢ ~23-53 um for strips and
¢ ~15-20 um for pixels.

» CMS alignment goal <10 ym CMS-38T



ATLAS tracker s - e inside 2 T solenoid:
:_ R =1082 mm
_______ N

TRT

\_R =554 mm
R =514 mm
R =443 mm

SCT

R =371 mm

R =299 mm

6.3 M chan. - | scT

R =50.5mm

R=122.5 mm
Pixels ¢« R = 88.5 mm
R=0mm I

End-cap semiconductor tracker

E' oy ATLAS preliminary
= 3 f’.f e un 141811 Nominal performances in barrel region:
A o O(ps)/pe ~ 3.4x10* x(p/GeV) & 0.015
500 7 _|Pixel:
~10 @
5,,~10 um; 5, ~115 pm O(do) 10 ©140/(p/GeV) pm
Nov/Dec. collision data:
SCT: alignment to ~80 um (goal 30 um)
500 "0,,~17 pm; 6, ~580 ym
4980 TRT (73 straw layers):

-1000 -500

A c,~130 ym



suinmary

to be considered when choosing the tracking detector:

» efficiency of available tracking algorithms
» material budget (multiple scattering, energy loss)

» TPC (maybe divided into smaller volumes) optimal for solenoid spectrometer,
readout via GEMs or micromegas

» supported by additional GEM layers in radial direction
» solid-state (strip and/or pixel detector) or micromegas (?) as vertex detector

» drift chambers with large stereo angles or GEM/ustrip wedges as endcap detectors
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