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Why a collider?

Easier to reach high CM energies (E_ 2 = s)

- s=4EE for colliders (e.g., 4 x 9 x 60 = 2160 GeV?)
« s=2EM for fixed target experiments (e.g., 2 x 11 x 0.938 =20 GeV?)

Spin physics with high figure of merit

* Unpolarized FOM = Rate = Luminosity - Cross Section + Acceptance
* Polarized FOM = Rate - (Target Polarization)* - (Target Dilution)’

* No dilution and high ion polarization (also transverse)

* No current (/luminosity) limitations, no holding fields (acceptance)

* No backgrounds from target (Mgller electrons)

Easier detection of reaction products

* Can optimize kinematics by adjusting beam energies

— Laws of physics do not depend on reference frame, but measured uncertainties do!
* More symmetric kinematics improve acceptance, resolution, particle identification, etc

e Access to neutron structure with deuteron beams through spectator tagging (p, #0)
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Past and future e-p and e-A colliders

HERA, Hamburg, 1992-2007
27 GeV eon 920 GeVp,L=5x10%

Jefferson Lab, Newport News, VA Brookhaven, Upton, NY
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Kinematic coverage
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* Medium-energy EIC
— Overlaps with and is complementary to the LHeC (both JLab and BNL versions)
— Overlaps with JLab 12 GeV (JLab version with moderate ring size)

— Provides high luminos_ity and excellent polarization for the range in between

* Currently only low-statistics fixed-target data available in this region
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Physics and luminosity
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MEIC@JLab — Detector Layout

prebooster
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colliderring
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Medium
energy P

* MEIC =EIC@JLAB

— 1-2 high-luminosity detectors
* Luminosity ~ 1034 cm2s™
* Low backgrounds

— Special detector?

< 1 km circumference

Note: RHIC 1s 3.8 km

injector

12 GeV CEBAF

ELIC = high-energy EIC@JLab
Future upgrade?

1.4 km circumference
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Hadronic background — a comparison with HERA

Random background

* Dominated by interaction of beam ions with residual gas

*  Worst case at maximum energy

Comparison of MEIC (11 on 60 62V) and HERA (27 on 920 GeV)

* Distance from arc to IP: 40 m / 120 m = 0.33

* Average hadron multiplicity: (2640 / 100000)"* = 0.4

* p-p cross section (fixed target): (60 GeV) / 6(920 GeV) = 0.7

* Atthe same current and vacuum, MEIC background is 10% of HERA

Hadronic background not a major problem for the MEIC

*  With HERA vacuum, the MEIC would at 60 GeV and 1 A have backgrounds like HERA at 0.1 A
— But good vacuum is much easier to maintain in a short section of a small ring!

*  MEIC luminosity is also about 100 times higher (depending on kinematics)

* Signal-to-background will be considerably better at the MEIC
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[on quadrupole apertures and the minimum energy
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Trigger, accelerator RF, and luminosity

1. Luminosity at high energy

* Naive scaling:
Luminosity ~ I, I/ p*

- E, scaling due to Lorentz boost is often shown, but is not always a good approximation

2. Luminosity at low energy

* “Hourglass effect” requires that the bunch length L = *
* Due to “space charge”, in rings with large circumference C one has:
I~ frp L/ C =1z B*/ C, and I, = constant

e Luminosity ~fp./C

3. Effective low-energy operation requires fpr ~ 1 6Hz

* Cannot trigger on each bunch crossing as in hadron machines!

* The solution is an asynchronous electron trigger
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Detector requirements

1. Mainly driven by exclusive physics

* Hermeticity (also for hadronic reconstruction methods in DIS)
* Particle identification (also SIDIS)

* Momentum resolution (kinematic fitting to ensure exclusivity)
* Forward detection of recoil baryons (also baryons from nuclei)
* Muon detection (J/'P)

* Photon detection (DVCS)

2. But not only ...

* Very forward detection (spectator tagging, diffractive, coherent nuclear, etc)
* Vertex resolution (charm, strangeness)

* Hadronic calorimetry (jet reconstruction)

3. More details in workshop reports tomorrow!
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diffractive

DIS
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no O’ cut
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4 on 250 GeV

4 on 30 GeV

Exclusive light meson kinematics (Q° > 10 GeV?)

scattered electrons
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Main detector challenges

1. Central Detector

* Particle ID (e/n/K/p)

*  Momentum resolution (tracker radius / layout)

2. Forward hadron detection

* Acceptance (3 stages needed)

* Momentum resolution at intermediate angles (0.5-5°)

3. Low-Q? electron tagging

* Endcap design (DIRC readout?)
* Common dipole for both beams?

4. Integration with accelerator

4-5 June 2010 EIC Detector Workshop at JLab
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Three stage forward detection strategy

very forward detection

lenoid detectors
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Analyzing magnet - dipole
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Analyzing magnets - quadrupoles?

very forward detection

' detectors
solenoid analyzing magnet |
with detectors jion FFQs R
I - 1
Oo ..........
- S — T 1 «
- electron FFQs electrons
2+3 m 5m -

(approximately to scale)

* By bending all charged particles, a dipole on the ion beam line
— provides excellent resolution at small angles and does not interfere with optics
— will bent away low-momentum particles scattered at small angles prior to quads

— may limit very forward acceptance for neutrals within the quad aperture if field is too strong

*  Weak, large-aperture quads would not bend the ion beam and may impact forward detection less, but
— asingle quad, even if weak, will defocus the beam, reducing luminosity
— a doublet will not affect the optics adversely, but makes tracking more complicated
— a quad solution will provide less resolution, in particular at small angles
— Needs to be explored. Maybe an argument two detectors?
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Very forward detection (< 0.5°)

Figure-8 ColliderRing - Footprint
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*  Quad gradient and aperture scale with distance

« Aperture angle depends only on E___and quad length
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Central detector

TOF *  Crossing angle: 3-5°
Solenoid yoke + Muon Detector
* Magnet apertures for

Solenoid yoke + Hadronic Calorimeter small—angle ion and
electron detection not
shown

: B ions
Tracking e85 -
i —
k o 8
— T +—
< 1A
2 = electrons
HIE
2 |=
ac|

* TOF (5-10 cm)
- - * DIRC (10 cm)

5m

* The IP the IP is offset within the solenoid towars the electron endcap to provide more tracking space

* Only active elements are shown. Detector can be “closed” magnetically
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Identification of exclusive mesons at higher energies
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* At higher ion energies a DIRC alone is no longer sufficient for n/K separation
* Need to cover meson momenta up to 7-9 GeV/c for operations at 60 GeV

* Two options
— Supplement the DIRC with a gas Cerenkov (threshold or RICH)
— Replace it with a dual radiator (aerogel / gas) RICH
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Central Detector

Solenoid yoke + Muon Detector

Solenoid yoke + Hadronic Calorimeter

Tracking

3

Tracking

Vertex tracker (silicon pixel?)

Central tracker (DC, micropattern?)

Tracking planes (DC)

— Configuration to be optimized

4-5 June 2010

Solenoid Yoke, Hadron Calorimeter, Muons
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3-4 T solenoid with about 4 m diameter

Hadronic calorimeter and muon detector
integrated with the return yoke (c.f. CMS)

Particle Identification

TOF for low momenta

— Precise timing also important for trigger

p/K separation
— DIRC or dual radiator (aerogel) RICH

n/K separation options
— DIRC + LTCC up to 9 GeV (higher if RICH)
— dual radiator RICH up to ~8 GeV (?)

e/m separation
- C,F(OLTCC/RICH upto3/5GeV

— EC: Tungsten powder / scintillating fiber?
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Detector Endcaps

Tracking

]

HTCC

Muon Detector

=
]
1D
5]
£
f
=
<
O
=
]
3
<
a

Tracking

* Forward / Backward
— [P shifted to electron side (2+3 m)
— Vertical planes in central tracker

— Drift chambers on either side

Electron side (left)

Bore angle: ~45° (line-of-sight from IP)
High-Threshold Cerenkov
Time-of-Flight Detectors

Electromagnetic Calorimeter

Ton side (right)

Bore angle: 30-40° (line-of-sight from IP)
Dual-radiator RICH (HERMES / LHCb ?)
Time-of-Flight Detectors

Electromagnetic Calorimeter

Hadronic Calorimeter

Muon detector (at least at small angles)
— Important for J/¥ photoproduction (at low Q?)

EIC Detector Workshop at JLab
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Low-(F tagging — very conceptual!

endcap detectors (not to scale)
“tagger” detector
electrons electron FFQs _
\
ions ... | >
- - - .............................................................. 0
ion FFQs steering dipoles,
compensating dipole
solenoid?

* Synchrotron radiation is not an issue for outgoing electrons
— Can use dipole covering small scattering angles

— Effect on electron emittance of strong dipole in high-3 region?

* Common dipole requires additional steering to allow independently
adjustable beam energies

* Endcap layout required for detailed design!
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Electron endcap options

Solenoid yoke + Muon Detector

Solenoid yoke + Hadronic Calorimete:

Tracking

Hadron Calorimeter

Muon Detector

Solenoid yoke + Muon Detector

Solenoid voke + Hadronic Calorimeter,

Tracking

* The exact endcap configuration will to a large extent depend on the readout for the DIRC

* The alternative configuration on the right provides easier access to the DIRC

4-5 June 2010
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Hadron Calorimeter

Muon Detector
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Summary - main detector challenges

1. Central Detector

* Particle ID (e/n/K/p)

*  Momentum resolution (tracker radius / layout)

2. Forward hadron detection

* Acceptance (3 stages needed)

* Momentum resolution at intermediate angles (0.5-5°)

3. Low-Q? electron tagging

* Endcap design (DIRC readout?)
* Common dipole for both beams?

4. Integration with accelerator

4-5 June 2010 EIC Detector Workshop at JLab
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