Jefferson Laboratory Users Group
07-09 June 2010

Summary of EIC Detector Workshop
4—5 June 2010
Talks on web
http://conferences.jlab.org/eic2010/

Charles E. Hyde
Université Blaise Pascal, and
Old Dominion University

Organizing Committee
Pawel Nadel-Turonski (JLab)
Tanja Horn (Catholic U.)
C.E.H.



EIC Detector

e Status of concept for a Collider Detector
= Optimize for 6 GeV x 60 GeV
= Range from 3x20 to 11x60
= At least two detectors desired

e Review of critical detector technologies
= Focus on particle ID
= Tracking

e Integration of Detector, Interaction Point, Accelerator
Lattice

= Forward meson detection and far-forward baryon tagging.
= Small angle and/or 0° electron tagging
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Electron energy: 3-11 GeV
Proton energy: 20-60 GeV

s = 250 - 2650 GeV?

Can operate in parallel
with fixed-target program

MEIC = EIC@JLAB
— 1-2 high-luminosity detectors

eLuminosity ~ 103* cm2s?!

eLow backgrounds

— Special detector?

ELIC = high-energy EIC@JLab
Phase-Il upgrade?
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Detector requirements

1. Mainly driven by exclusive physics

» Hermeticity (also for hadronic reconstruction methods in DIS)
 Particle identification (also SIDIS)

* Momentum resolution (kinematic fitting to ensure exclusivity)
» Forward detection of recoil baryons (also baryons from nuclei)
* Muon detection (J/\)

» Photon detection (DVCYS)

2. But not only ...

» \ery forward detection (spectator tagging, diffractive, coherent
nuclear, etc)

» \ertex resolution (charm, strangeness)
» Hadronic calorimetry (jet reconstruction)



no Q2 cut

Q2> 10 GeV?

Low O° (J/ W) vs high (7 (light mesons) — 4 on 30 GeV, (x5<0.1)
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Particle ID:

PMT based RICH counter
= HERMES dual RICH (Aerogel+CF4) E. Cisbani (INFN)
DIRC: Jochen Schwiening (GSI)

= “images” of Cerenkov cone propagated by total internal reflection in
solid fused Silica

= BABAR + proposals for PANDA, Super-B etc.
= 1t/K/p separation up to 5 GeV/c
dEdX / TOF / RICH N. Smirnov (Yale)

= ALICE high momentum RICH R&D (p>10 GeV) :
Cs or Csl photo-cathode evaporated onto micro-pattern amplifier/
readout

EM Calorimetry (e/y/m) S. Stepanyan
= PbWO, Crystals
= Sampling : Pb-Scin, W-Si, Shashlyk
Hadronic Calorimeter : S. While (BNL)
= Zero Degree Neutron Detection



The DIRC in BABAR

DIRC thickness:
8 cm radial incl. supports
19% radiation length
at normal incidence

DIRC photon detection array:

10,752 PMTs ETL 9125
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DIRC RECONSTRUCTION: (x,y,t)

= For BABAR DIRC time information provided powerful t00]  ————
O(At) =1.7 nsec F

to reject accelerator and event related background. x10F

2000

Calculate expected arrival time of Cherenkov photon based on
e track TOF
e photon propagation in radiator bar and in water

1500

1000

entries per 0.2nsec

500

At: difference between measured and expected arrival time 0
At (nsec)
+ 300 nsec trigger window — + 8 nsec At window

(~500-1300 background hits/event) (1-2 background hits/sector/event) At also used to
: determine event

time for
“self-triggering”

of DIRC.




BABAR DIRC PERFORMANCE EXAMPLE

* 0 - . : : .
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w 50T example:
e calculate selection efficiency and mis-id E wh 2.5<|p|=3GeV/c
e Correct for combinatorial background I
. . 20
(avg. 6%) with sideband method. -
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ALICE HMPID R&D

charged particle °

L e - /;/photon detector
electronics volume S s )

Windowless designs also use C,F,, or
CF, as both Cerenkov and amplifier
medium.
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Focusing RICH, C,F,, gas radiator

L~ 80 cm
Photon detector a la HMPID,

baseline option: MWPC with Csl

pad (8x8 mm) segmented
photocathode; alternative: Csl-
TGEM or GEM

Spherical (or parabolic) mirror,
composite substrate, Al/MgF2
coating

FEE based on HMPID Gassiplex
chip, analogue readout for
localization via centroid
measurement
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PID performance: ID range

25 GeV/c, 80 cm C4F10
B T[N <0>;=0.0546rad
120~ K 6, =1.15 mrad
- {\ Signal Absence of
100 _ .
: p <>, =0.0507 rad (GeV/C) S|gna|
B o, = 1.23 mrad
80| (GeV/c)
- 7T 4-24
60—
B K 11-24
40—
B P 18-38 11-18
20—
- Lower limit: Cherenkov threshold
W — e Sl L) L | . .
%03 0035 004 0045 005 0.055 006 0065 007 Upper limit: 30 separation
angle(rad)

TestBeam and AliIROOT simulation



EFEC

. Area to cover - ~40 m2 (similar to CLAS)
The most economical solution - lead-
scintillator sandwich
O Extruded scintillators with WS fiber
readout (CLAS12 PCAL)
a Will provide required hermeticity and
needed granularity
0 Expected energy resolution 6/E=10%/V E
. Somewhat better resolution can be achieved :
with “shashlyk” type configuration, used in CLAS12EC
ALICE, LHCb (LHC), HERA-B (DESY),
PHENIX (RHIC), PANDA (GSI)

e ! | PP | 1 L | PP | L !
0 2 4 6 8 10 12 14 16 18 20
E, GeV

OF FDCE OF

@ EIC detector worlfshit:pj;g: - 5, 2010, JLAB ( 0 SClENCE



(2-plzewjdbisomagnetic calorimeter in the target spectrometer
Barrel 11360 crystals

Backward
Endcap

592 crystals 600 crystals

Forward

15552
crystals

Scintillator
Compact geometry small Radiation length
Nearly 4 1 coverage

. e Small Moliere radius
High rate capabilities Fast response

Lead tungstate
(POWO,)

e Photo sensors APD (Barrel)
ﬁ
Magnetic field 2T VPT (Endcap)

Energy from 10 MeV to 15 GeV

S. Stepanyan | 7 ot
m EIC detector workshop, June 4 & 5, 2010, JLAB @SClENCE
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Tracking/ Triggering / Simulations

 Tracking: F. Klein (CUA)
= Pattern recognition
= Technologies:
e Si
e Drift Chambers

e Micro Pattern Detectors (GEM, MicroMegas)
« TPC

e Triggering : B. Raydo (JLab)
= Challenge of asynchronous triggering with 1.5 GHz beam structure
= JLab 6 GeV : analog
= Pipeline DAQ/Triggering
e CLAS12, HallD
e Simulations: T. Horn (CUA)
= Event Generators
= GEANT based framework for simulations



Activities of the Simulation Working Group

 Event Generators (standardized format)
— Rate predictions including simulations of the detector restrictions
— Input for detector design

0 Momentum and angular distributions for various particles

e Fast MC

— Input: resolution function

e GEANT MC
— Based on the CLAS12 simulation package GEMC

e Event Reconstruction/Tracking (for GEANT data)

e Semi weekly meetings with Physics+Accelerator EIC group

®©p3/10
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Exclusive Generators: n*/K*
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e Simulation for charged nt* production,
assuming 100 days at a luminosity of 1034,
with 5 on 50 GeV (s = 1000)

e Pion cross section models:
—Ch. Weiss: Regge model
—T. Horn: " empirical parameterization

e Kaon cross section model:

—T. Horn: K* empirical parameterization based
on DESY, Cornell, JLab data

Pushes for high luminosity ~103* and lower and more
symmetric energies



Summary - main detector challenges (P. Nadel-Turonski)

1. Central Detector

» Particle ID (e/n/K/p)

 Momentum resolution (tracker radius / layout)
» Electron beam on Solenoid Axis

» lon beam crossing angle 50 — 100 mrad.

2. Forward hadron detection

» Acceptance (3 stages needed)
« Momentum resolution at intermediate angles (0.5-5°)

3. Low-Q? electron tagging

» Endcap design (DIRC readout?)
o Common dipole for both beams?

4. Integration with accelerator



Central detector and End caps

TOF » Crossing angle: 3-5°

Solenoid yoke + Muon Detector

»  Magnet apertures for
Solenoid yoke + Hadronic Calorimeter small-angle ion and
electron detection not
shown

meter
tector

Tagger

[
Tracking : F%rwa rd hadrons

4
«

electrons

3
M

Hadron

e TOF (5cm)

« DIRC (10 cm)

5m « EmCal (20 cm)

* Low Threshold Cer 65cm

A

v

» The IP the IP is offset within the solenoid towards the electron endcap to provide more tracking
space

» Barrel has ~1 m radial tracking + ~1 m [Cerenkov+DIRC+TOF+EMCal]

* Only active elements are shown. Detector can be “closed” magnetically
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Forward Tracking

— Solenoid Yoke and HCal
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e 1.2 Tm vertical bend Dipole
= Cancels 1 B-field of Solenoid

= Tracking + EMCal + NeutronCal

between dipole and Q1

 Trajectories in shadow of Q1 are tracked

» 12 GeV/c for < 10mr

* Wide angle neutrons detected by annular HCal.

= 0° neutrons and Charged particles aligned through Q1-Q5
e 20 Tm Dipole at 20 m : ZDC for neutrons, Tracking for P’<0.995P



Precession of Trajectories in Solenoid

Solenoid

= 4 Teslax3m
at 100 mrad

Q1-Q3
= G~10T/m

= Qversized quad
7 T max. field

Primary N=Z beam, proton and
neutron spectators in Q1
acceptance

Need B,dl=-1.2 Tm from Dipole
to align charged and neutral
trajectories through Q1-Q3

10 GeV/c forward hadrons
tracking dp/p ~1%

Detect n,p Spectators after 20 Tm
dipole at 20 m

= Tracking acceptance P’<0.995 P
= Resolution dP/P <3107,

6/8/10
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Conclusion

Active detector design effort

= Need lots of input from users on requirements for
individual physics processes

= Dynamic interaction with accelerator group
Close to a “Zero Design Concept”

= Next project, a “Fast Monte Carlo”
e Analytic, not GEANT, easy to analyse output

Happy to hear proposals for a more specialized
second detector

Join us !



Momentum Resolution of Forward Tracker

 Measure points to 100u over 0.5 m length before
and after dipole

= 350 ~0.3 mrad.

e Dipole Bdl=-1.2 Tm

= Bending angle

= 9 = (ecBdl)/(pc) = (0.3GeV)/(pc)
e Momentum Resolution

= dp/p = 006/6 = pc/(1000 GeV)

= 1% at 10 GeV/c

= 0.5% at 5 GeV/c



lon Ring — Beam envelopes

Mon Apr 05 16:00:00 2010 OptiM - MAIN: - C:\Working\ELIC\MEIC\Optics\lon Ring\Arc_Straight_IR_Str_90_in_1.opt
: e =0.55x10°m  °
FF Quads @ er =0.11x10"m
about 10 m,

_ Oxy = 2-3 mm _

5 Véry
forward
tagging?

302 Ax_b; g_ba /:_di&-Ay_disp k . m l352
I~
IP ~ 20 meters Oy, = 0.2 mm

Beam-stay-clear area near IP, before Q1: 10-12 6> 25cm @ 7 m=0.2 deg
Beam-stay-clear area away from IP: 8-10c>2mm @20m=01mr
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Forward Particles of a 6x60 GeV collider

“Forward” is defined relative to ion beam

= |mportant issues also for low Q2 tagging on electron side, not addressed here.
SIDIS and exclusive processes produce “jet” fragmentation particles (y, x,
K, etc).

= These particles fill the full 4m [aboratory detector space,
Exclusive, DIS, Rapidity gap events produce ultra forward baryons, and
forward mesons from dissociation.

= Exclusive: ep =2 epy

= SIDIS or RapGap: ep =2 e’K...A...

= Deep Exclusive or SIDIS production of forward A, A will produce forward
mesons and nucleons
* mesons: momenta ~(m/M)P ~8 GeV/c 06~ (0.2 GeV/c)/ (8 GeV/c) ~25 mrad
* nucleons: P~50 GeV/c, 0 ~4 mrad

Photoproduction can produce forward mesons [nearly] up to beam
momentum



Far Forward Tracking

20-40 Tm Dipole at 20m
= Need 1-2 m drift space:
= Dispersion~1m /100%

* Not [anti-symmetric] Lattice dispersion:
Dispersion of a 0° particle at IP

= f~D
Lattice Admittance AP/P ~0.003 = 10 6P/P
“Recoil” ion with (P’-P)/P > 0.005
= x>5mm
= BSC ~10[efA1¥2~1 mm
= 0x=100u - dp,,/p =107* -> better than intrinsic beam spread
Neutron Detection in ZDC
= Neutron P,<60 MeV/c cone is 20 mm radius

= Separated from Beam by 200 mm after 2m drift
= 10 mm resolution at 25 m = 06 = 0.4 mr = 0p =12 MeV/c



