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A universally
correct statement
for the
nucleon spin

W e Nucleon spin comes from
the spin and orbital motion
of quarks and gluons
--- Chairman Mao




Deeply Virtual Exclusive Processes -
Kinematic Coverages

Study of high x;
domain requires
high luminosity

3/25/09 Volker Burkert, Workshop on Positrons at JLab



Bethe-Heitler and Virtual Compton Scattering (VCS)

epepy /_/ _/ A

K k'
Ty =X ‘A Y A ¢
— e [

p '

D 1

— T %-’%k%

_ Bethe-Heitler (BH) y

P

 BH-DVCS interference
= Access to DVCS amplitude, linear in GPDs



Leading Order (LO) QCD Factorization of DVCS
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SCHC
= Tranversely polarized virtual photons dominate to O(1/Q)



HERA-H1 DVCS-dominated and BH-dominated events
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X is ultra-forward,

no visible energy -
dominated by exclusive
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HERA DVCS, fits by D.Miiller et al., 2012 for EIC whitepaper

good DVCS fits at LO, NLO, and NNLO with flexible GPD ansatz
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What do DVCS experiments measure?

* dofep—2>epy) = twist-2 (GPD) terms + Z  [twist-n]/Q"2
= [solate twist-2 terms = cross sections vs Q¢ at fixed (Xg; t).

* GPD terms are Compton Form Factors’
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DVCS, GPDs, Compton Form Factors(CFF), and Lattice QCD
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Exploiting the harmonic structure of DVCS with polarization
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The difference of cross-sections is a key LS
observable to extract GPDs
Z
With polarized beam and unpolarized target:
Aoy, - sing {FH + &(F + F)H + (t/ 4M*RE Ko

With unpolarized beam and Long. polarized target:

Aoy~ Sing{FH +E(F + B)H +(t/ 4M*)FE ldg

With unpolarized beam and Transversely polarized target:

AGy; ~ cospsin(gs - ) {(t / AMP)RH — (t/ AMPFE +..}d g

Separations of CFFs H(+E 5 1), E(£E.E,1),...



27.6 GeV e+/e- HERA beam
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HERMES overview

Access to valence and sea

Electron and Hadron ID
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HERMES-Transversely Polarized H(e,e'y)X, SSA

Azimuthal moments

Differential in
Xpj Q?4, or t, integrated

sing moments ——
= Sensitive to E(§,E,t)
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Theoretically cleanest
way to access GPDs

@ HERMES:

Large BH amplitude enhances
DVCS signal via interference

Complete set of beam helicity, beam charge, target polarization asymmetries

( )
Recoil detector to tag exclusivity
\ /
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s : o € data
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0.2_— mm associated BH
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Unpolarized H and D targets ol |

%M Contalbrigo M. DESY PRC 71, 28" April 2011, Hamburg 22



Without Recoil Detector T
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' HERMES 3.4% scale uncertainty
' PRELIMINARY

® with Recoil Det. e"p—e'py @
5006/07 data [ | A in Recoil Det. accept. |
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Within the present level of precision, the signal is stable with respect background subtraction

Indication that the leading amplitude for pure elastic process (background < 0.1%)
is slightly larger in magnitude than the one for not-resolved elastic+associated processes
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HERMES
summary 2011

 next to final

* averaged
over Q?and t

* Transversely
polarized H-
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THE CLAS DETECTOR

Toroidal magnetic field

CEBAF 1=t _

Large (6 supercondicting coils)
Acceptance Drift chambers (argon/CO?2
Spectrometer

Gas, 35000 cells)
Time-of-flight scintillators
Electromagnetic calorimeters
Cherenkov counters

(e/rn separation)

4

Performances:

Nearly 4n acceptance
Large kinematical coverage
Detection of charged

and neutral particles

o
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CC: Cerenkov Counter
SC: Scintillation Counter
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CLAS: Longitudinally Polarized Protons 4

AUL

JLab/Hall B - Eg1 Non-dedicated experiment(no inner calorimeter), but
H(e.e'yp) fully exclusive.
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¢ 2 FIG. 6: The left panel shows the —t dependence of the sin ¢-

moment of Ayur for exclusive electroproduction of photons,
while the right shows the £ dependence. Curves as in Fig. 5.

S.Chen, et al, PRL 97, 072002 (2006)

Higher statistics and larger acceptance (Inner Calorimeter)
run Feb-Sept. 2009



DVCS@Hall B

ep= epy

S Tesla Solenoid
420 PbWO, crystals :
~10x10x160 mm?
APD+preamp
readout

Orsay / Saclay /
ITEP/ Jlab



CLAS 6 GeV: Exclusivity and Kinematics

* H(e,e’yp)x

« QOvercomplete
triple
coincidence
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« Example angular
distribution of Beam
Spin Asymmetry

*One (Q?,xg) bin

*Two f-bins.



CLAS, 6 GeV Beam Helicity Asymmetry

« F.X Girod et al,
Phys.Rev.Lett.100,
162002, 2008

* sing moments of
ALy

= Solid blue
curves: VGG
GPD model

 Data set doubled
by Fall/Winter
2008/2009 run

- Q7




CLAS DVCS Longitudinal Target w/ Inner Calorimeter

DVCS TARGET SPIN ASYMMETRY

4 Nt —-—N— I N+0): number of DVCS
UL — N e events with a positive
f(P N*™ + PTN ) (negative) target
polarization
Fitting function: ) P+(): target polarization

: : - F: dilution facto
Ayp~asin® + sin2¢ T ]

9.3 Xg ™~ 0.21 2% Xg ™~ 0.46
G5 ‘ Q2 ~ 2.15 GeV? a3 /{ Q2 ~ 3.00 GeV?
!

0.2 0.2

045" 0.15F

0.1 RE

0.05- /ll 35 | |

O T T OF - .
0.05° \ 0,05,
0.1 o1 } *
.15 0155 ' ‘
0.3 50" 100 150 200 250 300 350 Py I P PR AR P
o % 50 100 150 200 250 300 350

¢
Plots and analysis done by Erin Seder




DVCS: JLab Hall A 2004, 2010

L 2 1037 cm2/s (e.6)X HRS
Precision cross sections trigger
-Test factorization e |

*Calibrate Asymmetries

'-'.n‘. ”(v'_

16chan VMEGU: ARS

128 samples@1GHz Digital Trigger 132 PbE
Validation =



Beam helicity-independent cross sections at Q?=2.3 GeV?, x3=0.36

«Contribution of Re[DVCS*BH] + |DVCS|? large. PRL97:262002 (2006) C.
*Positron beam or measurements at multiple incident MUNOZ CAMACHO, et al.,
energies to separate these two terms and isolate Twist 2

from Twist-3 contributions
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DVCS-Deuteron, Hall A

E03-106:

= D(e,ey)X=
d(e,e’y)d+n(e,e’y)n+p(e,e’y)p

= Sensitivity to E,(§,&,t) in
Im[DVCS*BH]

E08-025 (5.5 GeV- 2010)
= Reduce the systematic errors

« Expanded PbF, calorimeter for s

subtraction

= Separate the Re[DVCS*BH] and
|DVCSJ? terms on the neutron via two

beam energies.

neutron
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DVCS with CLAS at 12 GeV

80 days on H, target at ~103> /cm?/s

120 days on Longitudinally Polarized NH; target
= Total Luminosity 103 /cm?/s, dilution factor ~1/10
D(e,e’yn)p;
Ambitions/options for Transversely polarized targets
= NH, target has 5T transverse field

* need to shield detectors from “sheet of flame”
e Reduce (Luminosity)(Acceptance) by factor of 10 (my guess)

= HD-ice target (weak holding field, less dilution)
* Currently taking data with photon beam

* Polarization measurements incomplete
* Test with electron beam in 1-2 months.



DVCS at 12 GeV in Hall A:

100 days HRS xPbF,

DVCS measurements in Hall A/JLab

Ready for beam !

All equipment in-hand.
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COMPASS 2014+ DVCS & DVES
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Figure 50: Top view of the 2010 COMPASS spectrometer setup.



COMPASS Recoil Proton Detector + ECALO




COMPASS DVCS Projections
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Leading Order (LO) QCD Factorization of DVES

”’
”’
DA(z)
+
X+ & X+ E X-c
P+A/2 GPD(x,E t=A2) P72 GPD(x, & ,1=A?)
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+ X+ & X-&
Gluon and quar.k GPDs enter to — _I_ '%
same order in as.
SCHC: o~ [Q4]3 or~ [Q?]* GPD(x, 2 1=4%)
Spin/Flavor selectivity [Diffractive channels only]




Semi Universal behavior of exclusive

reactions at high W?

e Two views:

= Extracting leading twist
information is hopeless for
Q2+qg’2<10 GeV?

= Perturbative t-channel
exchange even for modest Q?,
but convolution of finite size
of nucleon and probe.

e Fitting data (cf C.Weiss)
requires setting scale of
gluon pdf u? <<Q?

= Finite transverse spatial size
b=1/u of y=>V amplitude
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OL/OTin vector meson production at HERA

SCHC: p=2nm, w=2nnm, ¢p—=2 KK
= Validate SCHC from decay angular distribution (Schilling & Wolf)
= Extract do, from

. ER edo
Rapid rise in r%vs Q?: oy = = L
= Validation of I+eR dor+edop
perturbative
exchange in ZEUS
t-channel. 33 1 ' ' ]
Sub-asymptotic  osf ; t i =
saturation osb : ¢ 4 E
of do,/do; . E}Jé ]
" Extra 04F o ZEUS(98-00 -
mechanism 0ol m ZEUS ¢ 94 -
for d()'T? N s ZEUS p 94+95 ]
ol 4 0 ZEUS JAp 96-00 ]
0 10 20 30

Q’m?



Vector Mesons at JLab

* Deepp
= SCHC observed at 20% level
= Anomalous rise in do, at low W
 Deep w
= SCHC strongly violated in CLAS data
= No (??) SCHC tests from HERMES or HERA.

* Deep ¢
= SHCH validated
= Model of P. Kroll consistent with world data set

- Perturbative t-channel exchange (2g), but
factor of 10 suppression relative to colinear
factorization from Sudakov effects in y=>¢



LONGITUDINAL CROSS SECTION ; (Y{P — Pp;?)

S. Morrow et al., Eur. Phys. J. A 39 (2009) 5.

o lyp—pp i {nb) a (1 p—ppTiin b)

o (v p— p" i b)
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+ CLAS(5.754 GeV)
CLAS (4.2 GeV)

o CORMELL

¢ HERMES

o EBBS

W (GeV]I0

— GK [*]

W (Gevil0

- thin blue VGG [*]
- thick blue VGG + strong D-term [*]

-.-.- dash-dotted JLM calculation & la Regge [*] } Hadronic approach
* K. Goeke et al., Prog. Part. Nucl. Phys. 47 (2001) 401.
* M. Guidal, M.V. Polyakov, A.V. Radyushkin and M. Vanderhaeghen, Phys. Rev. D72 (2005) 054013.
* F. Cano and J.-M. Laget, Phys. Rev. D 65 (2002) 074022

J

Two different
behaviors:

« low W:c;, drops

« high W:co;, slowly rises

Double-Distributions

GPD approaches based on




Deep ¢

¢« Q%=2 GeV? - 10°
= CLAS, HERMES, =
HERA &
* Model of =
o

S.Goloskokov and P.
Kroll

10°
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Proposals/LOIl in Hall B and Hall A

LOI for J/¥ in Halls B and C.

4 6 8 10 20 40
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The next 20 years of DVCS experiments

* First 5 years

= Precision tests of factorization with Q2 range = 2:1 for
* xg€[0.25,0.6]. tnin-t <1 GeV? + COMPASS : xge[0.01,0.1]
* Proton unpolarized target observables
« Im[DVCS*BH], Re [DVCS*BH], IDVCSJ?.
= Longitudinal, target spin observables
e Primary sensitivity to H, "H, at x = £& = txg/(2-Xg) point.
= Partial u,d flavor separations from quasi-free neutron.
= Coherent Nuclear DVCS on D, He
 5-10 years
= Transversely Polarized H, D, 3He in JLab Halls A,B,C
e Optimize targets
* Improved recoil/spectator detection?
= Polarized targets at COMPASS

« 10-15 years: Build electron ion collider with s=21000 GeV?
and L > 21034 /cm?/s.




Back-up Slides



HERA DVCS
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Unraveling DVCS
observables

Twist-2 terms =
1, cosg, sing
Twist-2 terms =
Sin2¢

Not a pure Fourier series:

1/[A + Bcos¢ + Ccos2¢/
from BH propagators.

GPDs enter with different weights for each azim
different polarization (lepton helicity, target-longitudinal or —
transverse) observables

= Single and Double spin observables

= Energy dependence (JLab)

Complete separation of Re and Im parts of CFF of E, H,... in-principle
possible ( D.Mueller, next)

u, d flavor separations require neutron targets (or deep meson
electroproduction)
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<t>=-0.33GeV?2 <t>=-0.28GeV?2 <t>=-0.23GeV?2 <t>=-0.17 GeV?

1.5 GeV ?

Hall A Helicity
Dependent Cross
Sections E00-110
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PRL97:262002 (2006)
C. MUNOZ CAMACHO,
et al.,

DVCS cross section (nb/GeV?)
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GPD results fr'om JLab Hall A (EOO-IIO) (C.MUNOZ CAMACHO et al PRL 97:262002)

* Q2-independance of ImM[DVCS*BH]
 Twist-2 Dominance (GPD)
* Model « Vanderhaeghen-Guichon-Guidal (VGG) »
accurate to =30%

~ 5
O A Q°=1.5GeV?
- B Q°=1.9GeV?
T g Q%= 2.3 GeV?
2 RN — VGG model
!
2— A ‘%‘*5 %*‘?
1 L
0 1 1 1 ] | ] ] 1 ] | 1 ] 1 1 | 1 1 1 1
0.15 0.2 0.25 0.3 0.35
-t (GeV?)

Compensate the small lever-arm in Q2 with precision in do.



— Central Detector SV I, CTTOF

Charged particle
tracking in 5T field

AT < 60psec in for
particle id

Moller electron shield

Polarized target
operation AB/B<10-4




HD ice : a transversely polarized target for CLAS

Operates at T~500-750mK
‘Long spin relaxation times (months)
*Weak transverse magnetic field

- 25+ years of development...

- Successful oper‘a‘rion at Material | gm/em” |mass fraction
LEGS photon beam ‘ HD 0.735 77%
- Just in time for DVCS!II Al 0.155 16%
CTFE 0.065 7 %
(C,CIF3)
Test in 2010 with electron beam, Heat extraction is accomplished
Experiment conditionally scheduled with thin aluminum wires running
in 2011 through the target




CLAS: Coherent “He(e e'ya)

. HHe(-an,t)

* A single GPD H oy (x,0,1)
* HEE1)=(4/9)H,+(1/9) H.. | |
= Ge=/dx[(2/9)H,-(1/9)H,]. | He ,/
» E08-024, Autumn 2009 13 |+ Gomerctaprosan ||

= BoNuS GEM radial TPC

0 01 02 03 04 05 06 07 08 09 1
X

[t=0.0] >EMC effect,
[t=-0.1]> GPD

(Liuti & Taneja, Guzey &
Strickman)
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AN



DVCS in Hall A

e Elastic form factors, Real Compton Scattering:
Correlated two-body final state,

= Spectrometers have the advantage over large acceptance:
* product of (Luminosity)(Acceptance)
* Precision of absolute cross sections

 DVCSis a 3-body final state
= For —t/Q?<<1, final photon close to q-direction.

" Quasi two-body final state for limited t coverage



