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What is QCD?

1. A  gauge  theory with a local SU(3) ‘color’ symmetry;

2. A manifestly gauge-invariant theory defined on a lattice in   
3+1 Euclidean space-time

3. An Effective Field Theory of massless Goldstone Bosons 
(pions, kaons) interacting with a broken chiral symmetry

Each is a valid definition, with useful and powerful 
computational consequences

Each is incomplete, and cannot fully describe the physics of 
the strong interaction without the other two.
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Dirac Equation
Consider the Lagrange density of a free dirac particle:

The gamma-matrices are representations of the Clifford Algebra:

The components of the metric tensor gµν  = gµν : 
g00=1=–gjj       j=1,2,3;          g0j=0=gjk   j≠k

 Upper and Lower components:
Aµ = [A0, A],         Aµ = gµν Aν  = [A0, –A]

The Action:

The classical equations of motion

  
L (x)= ψ(x) iγ µ ∂

∂xµ
−m

⎡

⎣⎢
⎤

⎦⎥
ψ(x)

µ=0

3

∑ ≡ψ(x) iγ µ ∂µ−m⎡⎣ ⎤⎦ψ(x)

γ µ ,γν{ } = γ µγν +γνγ µ = 2Igµν

 

δS
δψ(x)

= 0   ⇒    iγ µ ∂µ−m⎡⎣ ⎤⎦ψ(x)= 0

 
S = d 4x∫ L (x)

ψ(x)=ψ†(x)γ0
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Representations of the Dirac Matrices

Dirac Representation of gamma-matrices:

Dirac Equation: 

Solutions: 

γ 0 = I 0
0 −I

⎡

⎣
⎢

⎤

⎦
⎥,      γ j =

0 σ j

−σ j 0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

σ j ,σ k
⎡⎣ ⎤⎦= iε jklσ l    ⇒    σ 1 =

0 1
1 0

⎡

⎣
⎢

⎤

⎦
⎥,    σ 2 =

0 −i
i 0

⎡

⎣
⎢

⎤

⎦
⎥,    σ 3 =

1 0
0 −1

⎡

⎣
⎢

⎤

⎦
⎥

iγ µ ∂µ−m⎡⎣ ⎤⎦ψ(x)= 0

 

ψ(x)= E +m
χ(mz )

σ ⋅ p
E +m

χ(mz )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
e−ix⋅p/ ,      σ zχ(mz )= 2mzχ(mz ),     2mz =±1

ψ†(x)ψ(x)= 2E,             ψ(x)ψ(x)= 2m
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Gauge Invariance
The Lagrange density is invariant under a global phase change: 
ψ(x)→eiαψ(x) 

Causality suggests that the dynamics should be invariant under local 
phase changes: ψ(x)→eiΛ(x)ψ(x) 

The dynamics in Norfolk should not be affected by an instantaneous 
phase change of the wave-function in Boston.

Consider the variation of the Action: S =∫Ld4x as  ψ(x)→eiΛ(x)ψ(x)

The Action is invariant if we make the “minimal substitution”:
∂µ → Dµ = ∂µ–ieAµ  with Aµ transforming as Aµ → Aµ + ∂µΛ(x)/e

S→ S ' = ψ(x)e−iΛ(x ) iγ µ ∂µ−m⎡⎣ ⎤⎦e
iΛ(x )ψ(x)d 4x∫

= ψ(x) iγ µ ∂µ− ∂µΛ(x)⎡⎣ ⎤⎦−m{ }ψ(x)d 4x∫
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QED Lagrangian

Classical Equations of motion:

Gauge Invariance ➙ Fµν antisymmetric➙Conserved current ∂µjµ=0  

Maxwell Equations (Gaussian units):  

  

L (x)=ψ(x) γ µ i∂µ− eAµ (x)( )−m⎡⎣ ⎤⎦ψ(x)+
1
4
Fµν (x)F

µν (x)

Fµν (x)= ∂µ Aν (x)−∂ν Aµ (x)

S = L (x)d 4x∫

 

δS
δψ(x)

= 0    ⇒     γ µ i∂µ− eAµ (x)( )ψ(x)= mψ(x)

δS
δAµ (x)

= 0    ⇒     ∂ν F
µν (x)= eψ(x)γ µψ(x)= jµ (x)

 

−∂ν F
0ν (x)=


∇⋅ −∂0


A+

∇A0⎡⎣ ⎤⎦=


∇⋅E = j0 (x)= ρ(x)

−
ei ∂ j F

ij (x)=

∇×


∇×

A( ) =


∇×

B =

j (x)
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The QED Lagrangian, Now What?
Path Integral Formalism:  Action with sources:

Expand Z[J] in powers of the interaction and source terms

Perturbation expansion in powers of α.

Feynman Diagrams

Challenge to restore Gauge Invariance.

  

Z[J ]= DψDψDA∫ eiS[ψ ,ψ ,A;J ]/

S[ψ,ψ,A;J ]= d 4x∫ L (0)(x)+L ( I )(x)+L (S )(x)⎡⎣ ⎤⎦

L (0)(x)=ψ(x) iγ ⋅∂−m[ ]ψ(x)+
1
4
Fµν (x)F

µν (x)

L ( I )(x)= −eψ(x)γ ⋅A(x)ψ(x)
L (S )(x)=ψ(x)Jµ (x)ψ(x)+…
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Hamiltonian Formalism
Momentum field conjugate to particle field

Pick a rest-frame

Equal Time Quantization (Dirac Fields anti-commute):

Hamiltonian Density:

 

π (x)= δS
δ ψ(x)

= iψ †(x)


Π(x)= δS

−δ
A(x)

=

E(x)

 
ψα (x,t),πβ (y,t){ } = iδα ,βδ

(3)(x − y)   ⇒    ψα (x,t),ψβ
† (y,t){ } = iδα ,βδ

(3)(x − y)

  

H (x)= π (x) ψ(x)−
A(x) ⋅


E(x)−L (x)

H = d 3x∫ H (x)
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Dirac’s Forms of Hamiltonian Dynamics

Instant Form

Quantize at equal time: 
Similar to non-relativistic Quantum Mechanics.

Front Form

Quantize “on the Light-Cone”:  
At equal light front times    x+ = (ct+z)
Hamiltonian = P– = (E–Pz)

Point Form

Quantize at equal proper time τ:
")τ2 = xµxµ
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Abelian vs. Non-Abelian 
The transformation ψ(x)→eiΛ(x)ψ(x) belongs to the group 
U(1) of unitary transformations of a complex function.  The 
group is commutative (Abelian).

SU(2) is the special unitary group defined by all possible 
unitary transformations,simply-connected to the identity, of 
the space of  2-component complex vectors: 

U ∈ SU(2)

x =
z1

z2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,     x ' =Ux

x '† x = x†x⇔U † =U −1

U = a b
c d

⎡

⎣
⎢

⎤

⎦
⎥,         

Det[U ]=ad −bc =1,

UU † = 1 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥⇒ (aa*+bb*)=1,    (ac*+bd*)= 0...
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Yang-Mills Theory:  A Strong Interaction Failure 

The proton and neutron make up a flavor SU(2) doublet.
The pions make up a flavor SU(2) triplet.

Following the success of QED, Yang and Mills proposed a non-
abelian gauge theory of pions coupled to nucleons:

ψ(x,tz) = 4-component  dirac spinor ⊗ 2-component isospinor:  

tz=+1/2 = proton spinor, tz=–1/2  neutron

τ‧Aµ(x) = Σa τa Aaµ(x) = pion field = Lorentz vector ⊗ su(2) isospin matrix

[τa, τb] = iεabc τc    a,b,c = 1,2,3,

The τa are su(2) isospin matrices (Pauli Matrices):

τ1 =
0 1
1 0

⎡

⎣
⎢

⎤

⎦
⎥,    τ 2 =

0 −i
i 0

⎡

⎣
⎢

⎤

⎦
⎥,     τ 3 =

1 0
0 −1

⎡

⎣
⎢

⎤

⎦
⎥
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Yang-Mills Lagrangian

The matrix trace is over the isospin variables

The “Covariant Derivative” D is an isospin matrix

Gauge Transformation:

 

LYM (x)=ψN (x) iγ
µDµ (x)−m⎡⎣ ⎤⎦ψN (x)+

1
4
Tr Gµν (x)G

µν (x)⎡⎣ ⎤⎦

Gµν (x)= ∂µAν (x)−∂νAµ (x)− ig Aµ ,Aν
⎡⎣ ⎤⎦

Dµ (x)= ∂µ− ig
τ
2
⋅Aµ (x)

⎡

⎣⎢
⎤

⎦⎥

ψ(x)→ eiτ aθa (x )/2ψ(x)=U(x)ψ(x)

τ ⋅Aµ (x)→U †(x)τ ⋅AµU(x)− 1
g
τ ⋅ ∂µθ(x)⎡⎣ ⎤⎦

Dµ (x)ψ(x)→U(θ(x))Dµ (x)ψ(x)

τ ⋅Gµν (x)→U(θ(x)) τ ⋅Gµν (x)⎡⎣ ⎤⎦U †(θ(x))

Tr Gµν (x)Gµν (x)⎡⎣ ⎤⎦→ Tr Gµν (x)Gµν (x)⎡⎣ ⎤⎦  (invariant)
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From Yang-Mills to ElectroWeak & QCD
The Lagrangian ➙ Perturbation expansion (Feynman 
Diagrams) in powers of the πN coupling constant gπN.

This involves loop integrals, which diverge.

The cure is renormalization, but this only works for a massless 
gauge boson (the pion, in this case).  But pion mass ≠ 0.

In the 1950’s, it seemed that Gauge Theories were a failure at 
describing nuclear forces.

1960s and 1970s revival:

Higgs, Englert et al. showed how to give Gauge Bosons mass

Weinberg, Glashow, Salam, Electro-Weak Unification:  W±,Z0, H bosons

QCD:  SU(3) color symmetry, and a hidden massless boson 
(gluon)
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Massive Bosons

Gauge symmetry requires massless bosons.

Other than the photon, we do not observe massless bosons

Either:

Bosons (W±,Z) acquire mass via the Higgs-Englert mechanism in 
the Electro-Weak unification

Bosons in QCD (gluons) remain massless, but are hidden by 
confinement
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The Group SU(3)
The group defined by Unitary 3x3 matrices:  UU† = I

 U = eiω•λ,     

 λ is a vector of  3×3 matrices. ω is a vector of real numbers

Infinitessimal element:  1=UU† ≈(I+iω•λ)(I–iω•λ†) ≈I+iω•(λ–λ†)
The  λ are hermitian.

Det[U] = 1  -->  The  λ are traceless

Gell-Mann basis:
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Flavor vs. Color SU(3)
The pattern of hadron masses gave rise to the  quark-model 
of hadrons and baryons, with a flavor SU(3) symmetry.

Quarks have flavor u,d,s.

Other than a small mass splitting, the dynamics of hadrons 
are completely invariant under interchange of flavor.

Quark spinor  = Dirac Spinor ⊗Flavor vector 

The quark Lagrangian has a flavor SU(3) symmetry (except the  
mass terms)

The Quark-model has fully symmetric states:  
Δ++ = |uuu>,   Ω–– = |sss>...

To preserve the anti-symmetry of the quark wavefunction, 
SU(3) color symmetry was introduced.

 

u


s
↑

d
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From the Quark-Model to the QCD Lagrangian

The quark model consists of states that are symmetric 
under combined interchange of flavor and spin.

Anti-symmetry requires making the quark-fields 3-vectors in 
a color space.  This introduces a global SU(3) symmetry

Promote this symmetry to a local gauge symmetry, and voilá, 
we have a theory of interacting quarks.
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QCD Lagrangian

What can we do with it?

Asymptotic Freedom allows for perturbation expansion for 
high momentum transfer processes.

e+e–  ➙ hadrons

Deep Inelastic Scattering

 

LQCD (x)= ψ f (x) γ
µDµ (x)−mf

⎡⎣ ⎤⎦ψ f (x)
f =u ,d ,s,c...
∑ +

1
4
Tr Gµν (x)G

µν (x)⎡⎣ ⎤⎦

Gµν (x)= ∂µAν (x)−∂νAµ (x)− ig Aµ ,Aν
⎡⎣ ⎤⎦

Aµ (x)= λaAµ
(a)(x)

Dµ (x)= ∂µ− ig Aµ (x)⎡⎣ ⎤⎦
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The su(3) Lie-Algebra
The  λ-matrices are the generators of SU(3).

Lie Algebra:  Anti-symmetric “multiplication”, which is linear over 
addition and scaler multiplication  

They can also be defined by their commutation relations:

The structure constants are antisymmetric under 
interchange of any two indices, with: 

λa ,λb[ ] = λaλb −λbλa = ifa,bc λc

 f1,2
3 =1

f1,4
7 = f1,6

5 = f2,4
6 = f2,5

7 = f3,4
5 = f3,7

6 =
1
2

f4,5
8 = f6,7

8 =
3

2
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QCD:  Beyond the Lagrangian
How to calculate low energy phenomena?

Hadron Masses

NN potential...

Reformulate the Action:

Lattice QCD

Quarks on discrete lattice sites

Gluon field G on the links between adjacent sites

Gluon Potential A disappears  from the theory

Chiral Perturbation Theory

Pions, kaons are manifestation of spontaneous breaking of the chiral 
symmetry (1±γ5)ψ

20



Chiral Perturbation Theory

A Chiral Perturbation Theory Primer arXiv:hep-ph/0505265
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3.4 The Lowest-Order Effective Lagrangian

Our goal is the construction of the most general theory describing the dy-
namics of the Goldstone bosons associated with the spontaneous symmetry
breakdown in QCD. In the chiral limit, we want the effective Lagrangian
to be invariant under SU(3)L × SU(3)R × U(1)V . It should contain exactly
eight pseudoscalar degrees of freedom transforming as an octet under the
subgroup H = SU(3)V . Moreover, taking account of spontaneous symmetry
breaking, the ground state should only be invariant under SU(3)V ×U(1)V .

Following the discussion of Section 3.3.2 we collect the dynamical vari-
ables in the SU(3) matrix U(x),

U(x) = exp

(
i
φ(x)

F0

)
,

φ(x) =
8∑

a=1

λaφa(x) ≡




π0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K−

√
2K̄0 − 2√

3
η



 . (3.28)

The most general, chirally invariant, effective Lagrangian density with the
minimal number of derivatives reads

Leff =
F 2

0

4
Tr

(
∂µU∂µU †) , (3.29)

where F0 ≈ 93 MeV is a free parameter which later on will be related to
the pion decay π+ → µ+νµ. (see Section 3.7).

First of all, the Lagrangian is invariant under the global SU(3)L×SU(3)R

transformations of Eq. (3.23):

U '→ RUL†,

∂µU '→ ∂µ(RUL†) = ∂µR︸︷︷︸
0

UL† + R∂µUL† + RU ∂µL†

︸︷︷︸
0

= R∂µUL†,

U † '→ LU †R†,

∂µU
† '→ L∂µU

†R†,

because

Leff '→ F 2
0

4
Tr

(
R∂µU L†L︸︷︷︸

1

∂µU †R†
)

=
F 2

0

4
Tr

(
R†R︸︷︷︸

1

∂µU∂µU †
)

= Leff ,

70

+ an infinite series of terms 
with higher derivatives.



The Quark Model

The mesons and baryons form degenerate multiplets of a 
flavor SU(3) symmetry:
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