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What is QCD7

A gauge ’meorg with a local sU 3) ‘color’ sgmmetry;

A manifest Yy gauge~invariant theorg defined on a lattice in

At Fuclidean sPace~time

An Effective Field Theorg of massless Goldstone Bosons

(Pions, kaons) interacting with a broken chiral symmetry

Each is a valid definition, with useful and Powergul

com Dutational COI"!SCC]UCI"IC@S

Eachis iﬂcompletej and cannot Fu”g describe the Phgsics of
the strong interaction without the other two.



Dirac Equation

* Cons:cler the Lagrange Aensxtu o1C a free dirac Partlcle
0
B Ewm ihy! = m w<x>sw<x>[zhy 9,—m|p(x)
o The gamma -matrices are rePre-sentatlons of the Clitford Algebra:
L =y = ket PO = (O,

* The comPonents of the metric tensor O 10
gW=]=—gi j=]23; gl=0=g* jtk

* UPPer and Lower components:
A* = [A40 A], Ay=gnwA” = [A° —A]

o TheAction:, DS fd4x[(x)

o The classical equations of motion

88
o (x)

=0 = [ihy“ d,— m]lp(x) =0



Representations of the Dirac Matrices

o T Rel:)resentation of gamma-matrices:

0.t a0 ; 0 o,
2T T x -0, O
[G"Gk]=i8'klal - 0o, = 0 1 O 0 —i ], ()'3=[1 0 ]
i J 1 0 P e
Bty E‘qua’cion:
iy a,—m]y(x)=0
* Solutions:
x(m,)
Y()=NE+m| o-p e, o x(m)=2m,x(m,), 2m, ==l
x(m,)
i E+m _
Y (OY(x)=2E, Y(xWY(x)=2m



Gauge Invariance

The Lagrange densitg is invariant under a global Phase change:

W(x)—e"y(x)
\ Causalitg suggests that the dgnamics should be invariant under local
phase changes: w(x)—e1®y(x)

® The dgnamics in Norfolk should not be atfected bg an instantaneous

phase change of the wave-function in Boston.

Consider the variation of the Action: S =[Ld*x as w(x)—e1®y(x)
S—S'= fq_J(x)e‘iA(x) [iy“ 9,— m]ei’\(x)w(x)d4x
- [ q_;(x){iy“ 0,~[9,A(x)]- m}q)(x)d4x
The Action is invariant if we make the “minimal substitution”:
Gy Dy = Oied,owith A, trans?orming as A,— A, + Oud(x)/e



Sl Lagrangian

L(x)= @(x)[y“ (ind, - €A, (x))- m]lp(x) :: %Fuv(x) F* (x)
F,(x)=0d,A,(x)-0d,A,(x)
SE A

Classical Equations of motion:

&?fo) IR e el (ih o= eAM (x))q)(x) = my(x)
& =0 = 9 F"(x)=epx)y yx)=j"(x)
(SAM (x) ¥

Gauge Invariance = Fw antisgmmetric»(:onservecl current oy*=0

Maxwell Equa‘cions (Gaussian units):
—9, F%(x) = V[-aOANAO] =V -E=j"(x)=p(x)

-z,.ajF"f(x)=§x(§xA)=§x1§=j(x)
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The QED lLagrangjan, Now What?

« Path lntegral Formalism: Action with sources:
Z[J1= [ DyDyDAS P47V
Sy 9. AT 1= [d*x| LO0x) + L9(x)+ L)

L (x)=(x)|iky - 9-m]p(x)+ iFMV (X)F™ (x)

L (x) =-ep(x)y - A(x)y(x)
L(x) =), OP(x)+..
) Ex]:)an& Z[J] in powers of the interaction and source terms
*  Perturbation expansion in powers of a.
* TFeynman Diagrams

* Cha”enge to restore Gauge Invariance.



Hamiltonian Formalism

o Momentum feld Conjugate to Particle feld

LSS

O LA

HE P s
—0A(x)

o Pick arest-frame
* Equal Time Quantization (Dirac Fields anti-commute):
Y, G0.m, 5.0} =i8,,00EF-5) = {w,G0.WGF.0} =18, ,0G-5)
» Hamiltonian Densitg:
IH (x) = w0 - A(x)- E(x)- L (x)
H = [d’3H (x)



Dirac’s Forms of Hamiltonian Dgnamics

* |[nstant Form

* Quantize at equal time:

Similar to non-relativistic Quantum Mechanics.
¥ -FEromsRorm

*® Quantize “on the Light—-Cone”:

At equal light front times  x* = (ct+2)
Hamiltonian = P~ = (E—P;)

= BolnERorm

S SR bizeat equal proper time T:
EE b



Abelian vs. Non-Abelian

o The transformation w(x)—e1®y(x) belongs to the group
o1 of unitarg transtormations of a complex function. The

group is commutative (Abelian).

o SUQ) isthe special unitarg group defined bﬂ all Possible
unitary transm(:ormations)simP|9~connected to the identitg, of

the space O]C Z~comPonent complex vectors:

U ESU(2) el
: 7 c d
X = i s Sl Det[U J=ad - bc =1,
<y Fi 1 0 ] :
= — (aa*+bb*) =1, (ac*+bd*)=0...

0 1
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Yang-—Mi”s T]’weorgz A Strong Interaction Failure

The Proton and neutron make up a Havor sU (2) doublet.
The Pions make up a Havor sU () triplet.

F‘o”owing the success of QED, Yang and Mills Prol:)osecl a non-

abelian gauge theorg 01[ Pions couplecl to nucleons:

s yx,t) = 4~coml:>onent dirac spinor X Z~component isosPinor:

> tL=+1/2= Proton spinor, t-—1/2 neutron

* T A¥x) = 24 taA%(x) = pion field = Lorentz vector ® su(2) isOspin matrix

 J

[Ta, Tb] = igabc Tc a,b,C =5 ],2,3,

The Tz are su(2) isospin matrices (Pauli Matrices):

=0
T

0 1

0 =
1 O '

T, =
% 0

’ T2=
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Yang—-l\/\i”s l_agrangian

Ly (X) =y ()] iy"D,, (x) = m [ (x) + iTr[GW (X)G" ()]

G,(x)=0,A,(x)-0,A, (x)-ig[A, A

S Au<x>_

D, (x)=0,-1g 5

® The matrx trace 1s over t

ne isos[:)in variables

® The “Covanant Derivative” D 1s an isospin matrix

 J Gauge Transtormation:

T

P(x) = ™ Y (x) = U (x)p(x)

‘A, ()= U ()T A U(x)- o 9,0(x)]

8

D, ()y(x) = U(O(x)D, (x)yp(x)

FE’ .

G,,(x) = UOx)|7-G,, x)|U (6(x)

Tr|G,, (x)G" (x)| = Tr|G,,(x)G"(x)| (invariant)
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From Yang~l\/\i”s to Electroweak & G

The Lagrangian — Perturbation expansion (I:egnman

Diagrams) in powers of the zN cou Dling constant gxv.

* This involves looP integrals, which diverge.

o Thecureis renormalization, but this onlg works for a massless

gauge boson (the Pion, in this case). But Pion mass * O.

In the 1950’s, it seemed that Gauge Theories were a failure at

describing nuclear forces.

1960s and 1970s revival:

* Higgs, Engler‘c et al. showed how to givci Gauge Bosons mass

* Weinberg Glashow, Salam, Electro-weak Unification: W70, H bosons

¥ OED IS EIGY color symmetry, and a hidden massless boson
(gluon)

_15 o



Massive Bosons

* Gaugc sgmmetrg T’CCIUiI‘CS massless bOSOﬂS.
*  Otherthanthe Photon) we do not observe massless bosons

* Either:

* DBosons (Wt Z) acc:]uire mass via the Higgs—-ﬁnglert mechanism in
the Electro-Weak unification

* DBosonsin QCD (gluons) remain massless, but are hidden bg

confinement

15k



The Group SU®)

o The group defined bg Uni’targ %3 matrices: UUT =1

S e eia)d,

* Jisavector of 3x3 matrices. w is a vector of real numbers

* Infinitessimal element: 1=UU ~([+iwei)(I-iw*i") =I[+iw*(—i')
The 1 are hermitian.

o Det[U] =1 -=> The 1 are traceless

082D a0 0
0D 40 <000

Shahs 1 e e T :
,f'\ B O D D - \ £ — O D D . ,-\,5 —
= P T ..

S

U ) s W 1 o]
\7 — D D —3 . \ e —? D
[ e S <V

* GC”-MBHH bBSiS: 2 bR ‘0 — 0 ik
f\]_:( ) \_-Z( ) \-wz([)
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Flavor vs. Color SU(®)

) The Pattem omc haciron masses gave rise to the quark—-mo&el

of hadrons and Daryons, with a Havor sU *) symmetry.

*  Quarks have Havor Hial
o  Otherthan a small mass splitting, the clgnamics of hadrons
are completelg invariant under interchange of Havor.
*  Quark spinor =i Spinor ®Flavor vector
* The quark Lagrangian has a flavor sU 3) sgmmetrg (excep‘t the
mass terms) o S
U dic|
* The Quark-model has Fu”g symmetric states: N d
ARl Ghe 555

» e preserve the anti-symmetry of the quark wavefunction,

SU®) color sgmmctrg was introduced.

_]6 o



From the Quark-Model to the QCD Lagrangian

The cluark model consists of states that are sgmmetric

under combined interchange of Havor and spin.

Anti~59mmetr9 requires making the quarleﬁelcls h-vectors In
a color space. This introduces a global SUBG) symmetry

Promote this sgmmetrg to alocal gauge sgmmctrg, and Voilé,

we have a theorg of interac:ting quarks.

_]7 -



QCD Lagrangjan
Loo@= S B,y D, 0=,y (0 +T[6,, (06" ()]

S IS e
G,(x)=0,A,(x)-0,A, (x)-ig|A, A ]
A, (x)=2,A (x)
D,(x)=0d,-ig[A, (x)]

o What can we do with it?

* Asgm]:)totic Freedom allows for Perturbation exPansion for

high momentum trans?er Processes.

Wit o> haclrons

\ Deep Inelastic Scattering
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The su(®) Lie-Algebra

The A-matrices are the generators of SU®G).

e e Algebra: Anti~59mmetric “multiplication”) which is linear over

addition and scaler multiplica’cion

Theg can also be defined bﬂ their commutation relations:
s [C
[)\’a ’)\’b] > )\’a)\’b o )\'b)\’a =1 a,b)\’c
The structure constants are antisgmmetric under

interchange of any two indices, with:
ffz =

1
i 5 6 G 5 6
f1,4 = f1,6 = f2,4 = fz,s = f3,4 o f3,7 = E

J3
f48,5 = f68,7 = 7

_]9 ol



QCD: Beyond the Lagrangjan

o Howto calculate low energy Phenomena‘?

* Hadron Masses

5NN Potential...
o Reformulate the Action:

S P L e ) (O

> Quarks on discrete lattice sites

* Gluon field G on the links between acﬁacent sites

* Gluon Potential 4 disappears from the theorg
+ Chiral Perturbation Theorg

*  Pions, kaons are manifestation of spontaneous breaking of the chiral

symmetry (1xys)y

%)



Chiral Perturbation Theorg

A Chiral Perturbation Theorg Primer arXiv:heP~Ph /0505265

3.4 The Lowest-Order Effective Lagrangian

Our goal is the construction of the most general theory describing the dy-
namics of the Goldstone bosons associated with the spontaneous symmetry
breakdown in QCD. In the chiral limit, we want the effective Lagrangian
to be invariant under SU(3), x SU(3), x U(1),,. It should contain exactly
eight pseudoscalar degrees of freedom transforming as an octet under the
subgroup H = SU(3),,. Moreover, taking account of spontaneous symmetry
breaking, the ground state should only be invariant under SU(3),, x U(1),,.

Following the discussion of Section 3.3.2 we collect the dynamical vari-
ables in the SU(3) matrix U(x),

Uz) = exp (i¢<x>>,

Fo
¢ 70 £ %77 \/§W+ \/§K+
¢($) BE Z >\a¢a(x) = \/§7T_ _770 <+ %77 \/§K0 (328)
=1 \/QK— \/§KO _%n

The most general, chirally invariant, effective Lagrangian density with the
minimal number of derivatives reads

F2
Lo IOTI' 0, UGBS (3.29)

21

+ an infinite series of terms

with higher derivatives.



The Quark Model

) The mesons ancl bargons Form clegenerate multiplets O1C a

Havor sU®) symmetry:

75



