Social-system simulations
Adapted from Designing and Evaluating Games and Simulations: A Process Approach by Margaret Gredler, Gulf Publishing, 1992, Ch 8.

Tactical-decision simulations are a group of the exercises in which focus is that of participants interacting with explicit problems crises. The primary intent is that of developing participants’ cognitive strategies, i.e., their capabilities of data selection, organization, interpretation and management.

In contrast, social-process simulations are those exercises that focus on interactions among people and the ways that one’s belief assumptions, goals and actions may be hindered or assisted interactions with others. Included in this group are social-system language skills/communication and empathy/insight simulations.

The foundation of social-system simulations is the complex supporting fabric of relations found in organized groups. Human beings, unlike other species that live in groups, have developed multifaceted systems of social life. Depending on the particular community and its culture, one’s actions may lead to any of a variety of consequences, based on the shared (often unstated) understandings that guide daily affairs. Ethnographers spend months and even years in cultures different from their own to discover the often complex web of beliefs and practices that support the particular social organization they seek to understand. Social-system simulations provide participants the opportunity to discover some of the beliefs and practices that support social life in their own or another culture.

OVERVIEW

Social-system simulations are appropriate in a variety of subject areas and at all educational levels. They are used when experiencing a particular cultural process or processes is the goal.

Early developments

The grandparent of social-system simulations is the international relations simulation developed by Harold Guetzkow, Northwestern University and Cleo Cherryholmes, Michigan State University. Developed in the late 1950s, the exercise, Inter-nation Simulation, was originally developed for research into behavioural patterns among nations. That is, it was a hypothetical model of nations functioning in an international system.

Participants functioned as representatives of five to seven hypothetical nations [e.g., Algo, Enge], members of the International Organization and the producers of the World Newspaper. Each nation’s representatives included a head of state, a foreign policy advisor, an official domestic advisor, a foreign affairs diplomat and the domestic opposition leader.

Prior to the exercise, the representatives of each country received key information about their nation. Included were type of government, types of resources, status of wealth, population and a statistical report on consumer satisfaction, national security,
the probability of revolution and other factors.

In each 70-minute cycle (which equaled one year), each decision-maker attempted to achieve the goals he or she had established for the nation. Military alliances, trade agreements, economic treaties and other activities were permitted. At the beginning of each cycle, participants also received a copy of the World Newspaper which summarized the important events of the previous cycle as well as some secret messages that had been intercepted.

One feature of Inter-nation Simulation that resembles some data-management simulations is the computer analyses of participant decisions at the end of each cycle. Mathematical equations developed in the original analyses of international processes were used to calculate new indices for the start of the next cycle on a variety of variables, such as citizen satisfaction and the nation’s status (Guetzkow and Valdez, 1981; Guetzkow et al., 1963).

Communications between nations were either by visit or written. However, written communications and requests for conferences or visits were routed through the nation’s external decision-makers. If the internal decision-makers did not organize themselves adequately, they became bogged down in events. Also, rapidly occurring external events made communication difficult between external and internal decision-makers. In summary, decision-makers were constantly faced with diverse events within their broad areas of responsibility, illustrating the difficulty of mediating on several fronts simultaneously.

Other early developments that followed Inter-nation Simulation also attempted to model complete social systems. However, the perspective that a major design goal is to model a social system resulted in complex exercises that sometimes made use of artificial actions by participants. An example is SIMSOC in which a society is divided into four regions (blue, green, yellow and red) with striking differences in their allocated resources (Gamson, 1978). The task for participants is to establish a society in a situation characterized by extreme regional inequality, no group structure, no consensus on individual goals, lack of government and lack of a legitimate basis for privilege (Dukes, 1980, p 251).

The principal means of taking action in SIMSOC, however, is by filling out forms. In addition to individual goal declaration forms, 14 other forms are used (A to O). Participants work, move, enjoy luxuries support political parties, join various groups, subscribe to the and riot or repress by completing forms (Dukes, 1980, p 256). Although the forms provide evidence that an event has taken place, use of mechanism sacrifices spontaneity. Also, the exercise includes an I page manual of rules and solutions to unanticipated problems.

Major characteristics

In tactical-decision simulations, participants face a complex problem or crisis and their interactions with that situation propel the simulation. In contrast, participants in social-system simulations face a decision-making event that requires interactions among the participants and it is these interactions that propel the simulation.

The primary purpose of social-system simulations is for participants to experience some of the dynamic social and/or political processes that are part of the fabric of organized social groups. Participants are attempting to fulfill any of a range of social
and/or political goals that depend on interaction with others. Examples range from organizing others against increased use of nuclear power to attempting to become assimilated into a strange culture. Strategies that may emerge during a simulation include cooperation, negotiation, persuasion, confrontation and others.

The components of a social-system simulation that are developed by the designer are a) a precipitating event; b) complicating factors; c) participant roles; and d) context. All of these components interact with each other to set in motion the interactions among participants that are the core of the simulation.

For example, the precipitating event may be a proposed nuclear energy plant in a poor coastal area considered to be an environmental refuge for several species of birds. Residents of the area hold different views on the impact of the plant on jobs and the environment according to their position in the community and other characteristics (roles). A complicating factor is that many of the area’s residents are unemployed poor farmers for whom the plant may offer jobs. The setting is a town meeting in which the villagers air the issues prior to a vote.

Social-system simulations are to the other social-process simulations in at least two ways. First, the participants typically experience emotional reactions, from confusion and frustration, sense of pride, disappointment or perhaps even anger. Therefore, an essential facet of the experience is the post-simulation session in which emotions are addressed, contributing factors are explored and relationships to analogous situations may be proposed by the participants and explored. Second, (unlike tactical-decision simulations), events and outcomes depend for the most part on the interpersonal dynamics that evolve as the simulation progresses.

Sub-types
Two different sub-types of social-system simulations are multi-agenda and single-agenda exercises. In multi-agenda participants assume individual roles with different perspectives and/or priorities. They experience the effects of attempting to meet their particular goals or to address an issue in a context in which other voices and views also seek verification and fulfilment. The dynamics of the simulation unfold as the roles are executed by the participants. Inter-nation Simulation is one example of this type.

In contrast, the single-agenda simulation establishes a situation in which participants experience the effects of a particular process or mechanism. In this type of exercise, specific individual roles are not assigned. Instead, each participant is simply one of several in a designated group and the group experiences the effects of a particular social process or mechanism.

An example is Talking Rocks. Participants are prehistoric shepherds known as the Eagle people. They live in groups and migrate with the seasons. Each group of Eagle people is placed at a ‘camp site’ in the room or in two separate rooms, if possible. The groups move simultaneously from one campsite to another.

During the migrations, each group must leave a survival message for the others on a large easel placed at each site. However, the survival messages (written in English for the group) must be left in picture form. Contemporary signs and symbols, such as “+” or “−” and numbers may not be used.

When each group arrives at a new campsite, their task is to decipher the message left for them and to leave their own message. Only the groups that successfully decipher the messages from the others survive. Of interest is that survival often is based on
receiving a good message that is fairly easy to decipher, whereas death may result from receiving an unclear message (Jones, 1982).

Talking Rocks challenges the stereotypical idea that primitive people were unsophisticated. In other words, ingenuity and talent are required to leave messages for others in the absence of a written language system.

Inappropriate uses of technology

Among the products developed by commercial companies are ‘simulations’ that attempt to deliver a social experience by computer. Such exercises typically require decision-making by students in a social or political context and the computer ‘reports’ the reactions of others who are affected in some way by these decisions.

One such exercise developed for the Apple computer requires that the class first be divided into teams. Each team takes the position of leader of a hypothetical country, Libros. After reading a brief scenario, each team rank orders its priorities across four choices (e.g. get reelected, protect Libran citizens in the neighboring threatened country and so on).

Each team then enters its priorities into the computer and is presented with three options from which to select a course of action. However, prior to making a choice, the computer screen displays four faces of selected ‘advisors’. Each face is numbered and carries a label that represents a particular policy, such as ‘domino effect’.

At this point, the students are to consult a booklet that accompanies the exercise for the paragraph under ‘domino effect’. Theoretically, each of the four ‘advisors’ is to be consulted in this way. The team then selects a course of action from the three policy choices presented earlier. This scenario continues through other decision points in the same manner. At the conclusion of the exercise, the program reports the number of points earned by each team according to the extent to which they fulfilled their priorities.

Teachers who were evaluating this exercise after running it several times were unable to conclude with a peaceful resolution. Continued hostilities and escalation of war preparations occurred on each run.

Several surface structure problems are present in this exercise. First, stopping the exercise to consult booklets is not practical. Second, a team may make a policy decision without consulting the advisors. Third, assigning points to foreign policy decisions introduces inappropriate game elements as does the team competition. Fourth, the options from which one may make a selection are simplistic and frustrating.

The deep structure problems with the exercise are that it trivializes a complex and subtle issue and presents a distorted version of a complex interactive experience. Further, some of the ‘advice’ paragraphs are not applicable to the particular situation and may be misunderstood and distorted by the students. For example, the American intervention policy in Korea is reported as one type of solution. The context surrounding that decision is unlikely to be analogous to a fictitious situation with few identified parameters.

Finally, interaction with a computer program when the goal of the exercise is that of experiencing a complex social process sends undesirable curriculum messages.
Among them are that choices in international problems are limited to a few unilateral alternatives and that it is impossible to resolve an international situation and remain true to one’s established priorities.

MAJOR DESIGN ISSUES

Key issues in the design of a social-system simulation are establishing the context or framework for participant interactions and the mechanisms to be used for ensuring the social exchanges.

Establishing the context

Two approaches to designing the simulation framework have been used by developers. One is that of first modeling the social system and then attempting to fit a simulation to the model. The second approach emphasizes instead the primary experiences and processes that participants are to undergo during the simulation.

Modeling the social system

Implementing this approach requires setting objectives for the simulation and then developing a conceptual model of the system that is to be simulated. Further, the model that is developed is often illustrated schematically. A conceptual model of a poor Third World village, for example, might include a list of villagers illustrating goals, activities and resources; a schematic illustrating the ways that farmers allocate their time and capital; and a schematic of factors that contribute to losses in the farmers’ productive time.

The development of a conceptual model of a social system as an initial step in design is based on the assumption that the goal is to simulate the system. However, several problems arise from this perspective. First, the correspondence between the model and the real-world setting is often based on the designer’s unexamined common sense preconceptions of the setting (Sharrock and Watson, 1987, p 39). Thus, events in the simulation will be distorted events of some real-world system.

Second, recreating all the elements in a social system is an overwhelming task. Third, it is likely to result in a complicated exercise for both participants and directors. Fourth, the result is that the surface characteristics of a system may be replicated, but the essence of the experience of being a member of the system may be lost.

Fifth, modeling the social system sets up some participants to be winners and others to be losers. That is, the losers are such not by lower ability or less effort, but because we have deliberately given them unequal resources to win because their real-world counterparts have unequal resources ... we have created conditions of failure in some groups and generated feelings of failure in attaining group goals (Greenblat, 1980, p 45).

One participant in *The Green Revolution Game*, referred to as an excellent reproduction of village life in India, nevertheless describe E feelings during the exercise:

> Pangs of jealousy arose in me when it became clear that one family had lots of land, relatively few children, and enough money to irrigate their land, try new seed varieties, and borrow substantial sums from the town money lender. I struggled [and] not having credit enough to suit the
moneylender, I had to visit the rich ft to borrow cash, a humiliating experience (Getis, 1984, p 119).

Finally, modeling the social system locks in the designer to specific problems that seriously threaten reality of function for participants. One is that efforts to imitate the range of events occurs in the ‘society’ lead to artificial events or illustrations. For example, in the Community Land Use Game (CLUG), players buy sell land parcels that are portrayed on a game board. Despite decisions such as locating utility pipes, constructing commercial enterprises and paying taxes, the use of ‘cash’ for transactions and the board orientation lead some participants to comment on the similarity to Monopoly (Davis, 1980).

The second threat to reality of function is that simulating a society involves developing a variety of roles that appear in the social system but which may not be equally important in contributing to participant experiences in the exercise. An example is a simulation intended I address the situation of individuals fighting a debilitating disease while attempting to function in society. Modeling the social system a basis for the exercise requires including patients, family members, employers, doctors and other health-care workers, as well as representatives from the insurance and welfare systems. The result is the inclusion of some roles that are not functional for the role-takers That is, the roles may Fuel the experience of others, but may be less than satisfactory for the participants who take them.

Identifying key processes
A well-known characteristic of simulations is that one cannot specify in advance the particular thoughts, emotions and attitudes that individuals will experience as a result of participating in the exercise. However, designers can identify the key processes that participants are to experience during the simulation. That is, social-system simulations may involve participants in one or two general situations. Specifically, the participants may a) encounter events precipitated by different perspectives on an issue, task or policy or b) undergo a particular social process or mechanism that challenges their particular assumptions or expectations about society.

St Philip is an example of a social-process simulation in which events are precipitated by different perspectives on an issue. Participants take roles as hotel developers and members of the parliament of the Caribbean island, St Philip. The MPs hold different perspectives on the effects of a proposed hotel development for the island that is intended to promote tourism.

The goal of encountering different perspectives indicates that a multi-agenda simulation should be designed. In a multi-agenda simulation, the different roles taken by participants, each with a responsibility related to the precipitating event, and the associated factors are the nucleus of the simulation.

In contrast, if the experience is that of undergoing events that challenge one’s assumptions and beliefs about some aspect of social functioning, then a single-agenda simulation is indicated. Participants do not take individual roles in such exercises. Instead, they are placed in a situation (precipitating event) in which their typical actions are initially ineffective and their beliefs are challenged. An example touched on earlier is Talking Rocks (described by Jones (1982)), in which participants are members of a prehistoric nomadic tribe that lacks a written symbol system. Small groups in their ‘travels’ must leave key survival information for the others without using written symbols. This simulation challenges the typical belief that prehistoric people lacked creativity and ingenuity.
Sometimes the expectation is that participation in any social-process simulation will lead to a rethinking of one’s assumptions and beliefs. However, multi-agenda simulations only provide opportunities for participants with different perspectives to interact. The direction that events will take depends in large measure on the actions of others. Thus, the behavioral contingencies that guarantee ineffective action by participants (which establishes the climate for rethinking) are not necessarily present.

Identification of the key processes that are to be set in motion by the simulation identifies the type: single or multi-agenda. Any of a variety of different situations may be constructed in either format.

Note that the key processes are not described in terms of a particular situation, society, group or subject area. Too early an emphasis on subject area or content complicates the design process and may result in a simulation that does not provide the desired experiences. An example is stating that participants are to experience the complexity of urban issues and the effects of coalition building. First, the designer cannot prescribe that one ‘experience complexity’. The designer can only establish a situation in which conflicts and misunderstandings arise over subtle points.

Second, ‘urban issues’ locks the designer a priori into a particular context which may inadvertently focus the developer’s attention on the identification of content-related items instead of the key aspects of the experience for the participants. Third, experiencing the effects of coalition building also is unclear.

Multi-agenda simulations

In multi-agenda simulations, participants seek to fulfill certain goals to establish particular priorities in a context in which a variety of vie and priorities may be operating. The simulation can take any of variety of directions, depending on the parameters established by the designer.

The general direction taken in a simulation is determined in large measure by the nature of the precipitating event or issue, the complicating and facilitating factors introduced by the designer, the roles of the participants and the context.

The precipitating event is a situation with both positive and negative features. The determination of which are more important depends on the perspective provided in the role description of each participant. In *St Philip* (Walford, 1983) the precipitating event is a proposed hot development for tourists on St Philip, a poor Caribbean island. However, the livelihood of the poor banana farmers is likely to threatened. Further, tourists have no access to the island; therefore, airstrip must be built (complicating factors).

Participants take roles as hotel developers and members of the island’s parliament from different political parties with different vie on the proposal. The context is a day in parliament in which info meetings are followed by a formal session and a vote.

During the simulation, various issues both pro and con are raised participants attempt to convince their colleagues of the worth of the particular stand. In contrast, a different climate is established introducing other elements into the basic components. For example cooperation and compromise may be introduced by altering the role cards to indicate a basis for negotiation. Specifically, a constituency opposes the development unless certain guarantees are provided, such as taxes paid by the hotel developer.
These taxes are to be used for advanced education of the islanders in professions such as health care, teaching and law. The need for an airstrip (complicating factor) may changed to an undeveloped marina with one constituency interested in providing a port in which commercial cargo ships can efficiently transport the island's banana crop to market. These changes establish the climate for the different perspectives to hammer out a compromise.

Interaction of components

Well-designed simulations do not depend on complex sets of rules or gaming elements such as earning points or exchanging chips. Instead, involved interactions by the participants result from the interface of the major components. In other words, roles are chosen that will have a vested interest in the outcome of the precipitating event. For example, businessmen, artists, senior citizens and teachers have a vested interest in the ways that a surplus in a city's budget is to be spent.

Careful consideration of the relationships between the precipitating event, selected roles and the context provides several benefits. First, as already mentioned, is the avoidance of complex sets of rules. Second, the factors that stimulate specific participant actions are spread among the individual cards. Thus, each participant has an assigned responsibility or goal to achieve and a reason to interact with others. Finally, a minimum amount of background information is needed for the participants.

Roles

Several recommendations are important in the selection and development of participant roles. First, all roles should have a stake in the outcome of the exercise. Therefore, the number of participants should be no larger than the number that can interact with each other throughout the simulation. Depending on the situation, this number may vary from 5 to about 12. Occasionally, a developer will recommend that a larger number of participants may be accommodated than the number of roles originally specified by adding assistants or secretaries to key decision-makers. The disadvantage of this mechanism is that the additional roles do not interact with the precipitating event and other key roles in the same way as the primary decision-makers.

Second, it is important that the roles should be ones to which the participants can commit their thoughts and feelings. One should not expect, for example, a middle-class white student to take the role of a poor, inner-city minority student whose family is homeless. If the purpose of the simulation is for the participant to experience the frustrations, anger and other emotions of an inner-city homeless person, then a different kind of simulation is needed.

Third, the relationship of the particular role to the precipitating event is the primary means of establishing credibility of the role. Each role card should specify a position, priority or question to be addressed and sufficient supporting information for the participant to act. Thus, the role card should be brief - one paragraph is recommended.

Role cards for the members of parliament in *St Philip* describe the source of the individual's livelihood (e.g., small hotel owner, a banana-farm foreman), one's constituency (e.g., poor banana-farm workers, citizens of Queenstown) and other relevant information on one's position. Brian Samuel, for example, is the MP for Mid-Island and is also minister of education. He is concerned about preserving the island's tradition and is suspicious of development that may change things too fast (Walford, 1983, p 173). In contrast, the question for Evelyn Talbot, an ex-colonial sugar planter,
is whom she needs to convince to support the new development.

Fourth, artifacts and gaming elements should not be used to ‘prime’ participants’ actions. For example, in one exercise a role card specifies that a student’s task is to escape the teacher’s attention by daydreaming, which is defined as drawing six-pointed stars. The role card also specifies that the student will receive one point for each star, five points each time another student smiles at him or her and five points when the teacher smiles at the student. Such a mechanism, however, focuses the participant’s attention on earning points. Instead, if a particular behavior is important in the simulation, it should be stimulated by the precipitating event, the actions of others or the direction that the simulation is taking at a particular moment.

Single-agenda simulations

The purpose of a single-agenda simulation is for participants to experience the effects of a particular mechanism or process that challenges their expectations. The essence of the single-agenda simulation is to place participants in a situation in which their customary actions are ineffective. Participants, in order to be successful, must rethink their actions. In *Talking Rocks*, for example, participants must devise new methods of communication.

The Crisis Game is another example. The purpose is for participants to experience the tension and time pressure that can accompany foreign-policy decision-making. Participants are divided into teams to develop recommendations on a current issue in a limited amount of time. They are then subjected to unexpected interruptions and to a decrease in the time allowed to complete their work. The precipitating event is the administration’s need for a policy document and the complicating factors are the periodic announcements of other information and the further limitation of the time to complete the task.

Ideally, the single-agenda simulation should be as free as possible of artificial rules and paraphernalia. The greater the reliance on contrived circumstances or artifacts, the more that reality of function for the participant is threatened.

An example of a simple yet effective single-agenda simulation is *The Numbers Game*. The class is divided into teams and each team receives a set of cards. Each card has one equation in a set of simultaneous equations, such as ‘A + D = 4’, ‘B + E - C = 2’ and so on. The task for each team is to determine the value of D (Jaques, 1981).

Typically, participants begin to ask questions, such as ‘Are we to do this as a team?’, ‘Are we competing with the other teams?’, ‘What are we supposed to do?’ (Jaques, 1981). Because the instructor does not answer the questions, the teams are forced to deal with the ambiguity of the situation and settle down to the task. Often, when the first team shouts out an answer, the other teams become agitated. (However, each team has a different set of equations.)

The exercise reveals the assumptions that are made in common social settings, in particular, the classroom. They are that ‘competition is valued above cooperation; there is a single right answer to every question; and authority will guide you if you are uncertain about where to go’ (Jaques, 1981, p 150). However, the exercise also reveals that cooperation leads to the most effective team functioning, and the established problem is the only one that is to be solved (Jaques, 1981).
This exercise is particularly appropriate in a classroom that is about to undertake a two- to four-week restructuring and to make use of cooperative learning (see DeVries and Edwards, 1973, and Slavin, 1980, for descriptions of cooperative learning structures). This particular exercise reveals basic assumptions as well as providing a mechanism for preparing for the revised classroom structure.

A well-known example of a single-agenda simulation is *BaFa BaFa*. Participants become members of either the Alpha or Beta culture, each of which has different social rules. The Alpha culture is affectionate and friendly, engaging frequently in hugging, patting shoulders and standing close to each other during conversations. The culture is also patriarchal and does not permit women to approach a male to begin a conversation. In addition, each conversation begins by discussing the accomplishments of male relatives.

Although the Alphans, after initial conversation with each other, engage in a card-matching game that results in the exchange of chips, it is far more important to have fun than to win chips. Alphans also sign each other’s Alpha membership cards when they part company if they believe the other has obeyed the rules of the culture.

In contrast, in the Beta culture, one acquires worth by becoming an effective trader. This goal requires hard bargaining and persistence. Successful bargaining for numbered cards of different colors requires the use of a special language code that combines vowels with consonants in particular ways. Using fingers or counting in other ways is not permitted during bargaining.

The situation is designed so that visitors from the other culture will only have a few minutes to attempt to adjust to a culture with diametrically opposed values. Thus, the trading-oriented Betas, for example, will insult the Alphans by initiating conversations with women and appearing greedy at card playing. In contrast, Alphans will appear inept to the Betans as well as failing to value the ‘right’ priorities.

Post-simulation analysis has typically revealed that the alien culture is described in less than complimentary terms. Betans are seen as ‘cold’ and ‘greedy’ whereas Alphans are often felt to be ‘lazy’ and ‘naive’. In other words, attempting to become a member of another culture is initially accompanied by embarrassment, frustration and a sense of strangeness (Shirts, 1977).

Participants who work at becoming Alphas or Betas can experience the intended effects when visiting the other culture. However, becoming familiar with one’s assigned culture can be a wearing experience as one practices the prescribed rituals and attempts to make appropriate use of cards and symbols. Also, participants spend the maximum amount of time working at being an Alphan or Betan with a disproportionately short time experiencing the difficulties of cultural transfer. Some participants tend to lose interest before their visit to the other culture.

Both single-agenda and multi-agenda simulations can provide a window on human social life in which the participants interact with each other in a variety of ways. An important component in the learning, however, is the types of post-simulation activities that build on the interactive experience.

EVALUATING SOCIAL-SYSTEM SIMULATIONS
Step 1: Determine the sub-type (single or multi-agenda).
- Are roles assigned to individuals or do participants function as a group?
- Do the participants undergo a particular social process or do they encounter events precipitated by the different roles?

Multi-agenda simulations

Step 2: Analyze the precipitating event and context.
- Does the event have both positive and negative features?
- Is the task related to the precipitating event clear and unambiguous for the participants?
- Is the precipitating event credible for the selected context?
- Are the complicating factors credible?
- Are the rules simple and easy to learn? Step 3: Review participant roles.
- Is each role active and essential?
- Does each role card specify a position, priority or question to be addressed and sufficient supporting information for action?
- Do the roles reflect a range of credible perspectives?
- Can the simulation take any of a variety of directions, given the roles?
- Are the roles free of artificial mechanisms?

Single-agenda simulations

Step 2: Analyze the social situation that initiates the simulation.
- What are the accepted assumptions that the situation challenges?
- Is the situation credible?
- Is the situation easy to establish and free of complex rules?

Step 3: Review the group role.
- Is the task for the group(s) clear and easily understood?
- What are the complications in the situation that interact with the task (e.g., the Eagle people cannot use contemporary symbols; time pressures increase in The Crisis Game)?
- Is the group task free of artificial elements and complex rules?
- What behavioral changes are likely to occur during the situation?

REFERENCES

Shirts, R G (1977) BaFa BaFa, La Jolla, CA: Simile II
Talking Rocks, La Jolla, CA: Simile II.