The Costs of Technology-Based Training

Objective

• Determine the costs of technology-based training.

Constraints Analysis

• In ISD, one of the most important steps a developer takes is this step.
• It considers limitations in:
 - budget
 - availability of resources
 - and availability of the time of training participants or instructors/ facilitators.
Cost Considerations

• Ratios
 – Development cost vs. training costs
 – Not very relevant
• Should consider true costs vs. return on the investment

Cost Constraints

• Cost should be looked at in two ways:
 – Cost as an investment
 – Expected return on investment
• Real cost is equal to the true cost after we consider the returns on the results of training

Cost Considerations
Development Costs

• Training project managers
• Training designers
• Subject matter experts
• Programmers
• Staff
• Production staff
• Time spent on project X salary/wage
Cost Considerations
Development Costs

- Resources:
 - Office space, copiers, fax
 - Computers
 - Authoring and other software
 - Reproduction machines
 - Consumables

Cost Considerations
Implementation Costs

- Facilities & Equipment
- Staff
- Consumables
- Loss of productivity during training
- Travel

Cost Considerations
Maintenance Costs

- Course Evaluators/Analysts
- Training managers
- Training designers
- Subject matter experts
- Programmers
- Staff
- Production staff
Other Considerations

• Obsolescence
 - How long will the training be used?
 - Will it need updating?

• Audience
 - How many folks? Are they in one location?

• Practice
 - What kind of practice? Can job aid, video, simulation do the job?

Other Considerations

• Competence
 - Do we want to keep a trainer competent to deliver this training?
 - For how long?

• Training resources
 - Are current training resources used effectively?
 - New investment in new technology needed?

Other Considerations

• Duration
 - How many training days? Training span?

• Training Groups
 - How many groups?
 - How many people per group?
Return on Investment

- Reduced waste
- Improved productivity
- Lower cost from accidents and illness

TBT Savings

- Reduced travel expense
- Reduced time away from job
- Training when needed — reduce waste due to poor/no training
- Retraining practice available as needed
- Reduce cost for maintaining course

Selecting a Technology Solution

- Compare cost-benefit over expected life of the course.
- Consider whether technology can deliver effective training.
- Is the development feasible?
Ideas for Getting the Bucks

Getting the Bucks

- Find a strategic use
- Consider your audience
- Find a champion
- Pick a range
- Involve IT
- Do a preliminary design and build a prototype
- Write an investment proposal
- Overcome objections

Diagnostic Simulations
Diagnostic Simulations

- Assume you are a teacher.
- You have a student that is showing difficulty learning.
- You wonder if he/she has a learning difficulty.
- You turn to other specialists to determine the problem.

Diagnostic Simulations

- Appropriate for problems or situations requiring sequential decision-making.
- The simulation may require:
 - the discovery, evaluation and interpretation of relevant data
 - or the selection, interpretation and management of relevant data.

Characteristics of D-S Simulations

- The interrelated decision-making relates a situation in which the outcome is influenced by prior decisions.
- Problems are not unidimensional.
- The exercise includes info that is plausible, but is not relevant to the optimal solution of the problem.
Closed-Structure Simulations

- Developing a framework
 - Select the problem
 - Identify the participant’s role
 - Write a general script (map) with an
 - opening scene
 - possible routes through the exercise
 - the major sections and any points at which
 an irreversible choice may be selected

Closed-Structure Simulations

- Working the simulation:
 - The participant selects a category of data gathering or data management after the opening scene.
 - Then selects several options from the set of choices in that category.
 - From feedback, a second (and subsequent) set of choices is made.

Open-Structure Simulations

- Assume you are part of a joint planning staff tasked with organizing and moving a battalion landing force overseas to rescue hostages being held in a third world country.
Open-Structure Simulations

- Appropriate when the goal includes discovery or requires a team approach
- An open-ended exercise when teams can take any of several different paths
- Developers must design a situation that maintains interaction with the problem so that it is more than a discussion session.

Open-Structure Framework

- The problem
- The team roles
- The setting for the simulation
- A general sequence of expected events
- In developing the simulation, designers work back and forth between the framework and the specifics, altering each as necessary

Open-Structure Framework

- Assure ongoing activities
- Introductory info serves as a stimulus
- Project staff may act in peripheral roles to provide and receive data
- Plan staff-initiated events
- Events that may impede or slow down the inquiry may be included
Open-Structure Framework

• Reactions to anticipated decisions must be developed:
 – Results of test conducted on data
 – Info obtained from consultants
 – Lists of info requested by participants

Open-Structure Framework

• Events must be outlined on a timetable
 – Include data that will be made available and associated tests and reports that are to be prepared

Assignment

• Read Readings (on Web Site)
 – Performance Objectives
 – Diagnostic Simulations

• AND . . .
Assignment (Continued)

• Send me an email message
 - outlining your simulation topic:
 - The problem
 - The roles of participants and controllers
 - The setting for the simulation
 - The first thoughts on the general sequence of expected events

Let’ go home . . .