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ABSTRACT OF THE DISSERTATION

Interference Avoidance for Wireless Systems

by Dimitrie C. Popescu

Dissertation Director: Professor Christopher Rose

The study of interference avoidance for wireless communications is motivated by recent devel-

opments in telecommunications industry which demands new solutions for personal communica-

tions. Radios are becoming more sophisticated, and one can presently think of adjusting transmis-

sion/reception methods to suit the environment in which the communication system is operating.

As a main application of interference avoidance techniques we see communication in unlicensed

bands, where independent systems that interfere with each other will have to coexist without cen-

tral control or coordination.

Our purpose is to provide insight into a class of distributed iterative algorithms that produce

optimal codeword ensembles which maximize sum capacity in a multiuser system and minimize

interference. Also known as interference avoidance algorithms they have been introduced in the

context of chip-based CDMA systems but have been subsequently framed in a general signal space

formulation so as to make them applicable to a wide variety of communication scenarios.

After an introduction to basic interference avoidance (IA) concepts and a review of previous work

on IA, we describe how IA can be applied to codeword optimization in the uplink of a CDMA system

in which the channel between each user and the basestation is assumed to be known. Each user

sends frames containing multiple symbols (at least as many as there are signal space dimensions)

and each symbol is assigned a signature waveform. Under the assumption that the frame duration

is long enough, a common set of signal space basis functions consisting of real sinusoids is shared
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by all users at the base and an equivalent multiaccess vector channel is obtained. Application of

interference avoidance methods is shown to produce optimal signature waveform ensembles which

maximize sum capacity. Furthermore, loose assumptions on the channels seen by each user cause

natural segregation of users and potentially large reductions in receiver complexity.

Fading channels, which are characteristic to wireless communications, are considered next, and

answers to two main questions are sought: 1) When can a channel be considered quasistatic from

the perspective of interference avoidance algorithms? 2) For rapidly varying channels which do

not allow interference avoidance to be applied for each channel realization, does application of

interference avoidance to the average channel result in capacity gains?

Application of interference avoidance to general multiaccess vector channels is also presented.

It is shown that application of greedy interference avoidance increases sum capacity for multiaccess

vector channels. Application of the eigen-algorithm is generalized for multiaccess vector channels

and it is shown that sequential application of the eigen-algorithm for interference avoidance by

all users in a multiuser system is equivalent to iterative water filling and always yields codeword

ensembles that maximize the sum capacity of the multiaccess vector channel.

Using this general result, application of interference avoidance to multiuser systems with mul-

tiple inputs and multiple outputs (MIMO), and asynchronous CDMA systems is also presented.

Multiuser MIMO systems are associated with the uplink of a wireless system in which users and the

basestation have multiple antennas, while for asynchronous systems symbol intervals corresponding

to different users are not necessarily synchronized at the receiver. In both cases a multiaccess vector

channel model is derived for which application of interference avoidance becomes straightforward.

Empirical studies on various issues of the eigen-algorithm for interference avoidance are also

performed. Since power is a main factor in determining interference, theoretical considerations

leading to an algorithm that combines interference avoidance with a power control mechanism are

presented. Transients of the eigen-algorithm are analyzed to show that no user can get poorer per-

formance (in terms of signal-to-interference plus noise ratio) than in the begining of the algorithm.

Codeword representation with finite precision and complexity issues are also explored.
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Chapter 1

Introduction

The emergence of software radios is changing the way modern communication systems are de-

signed by providing transceivers which can vary their output waveforms as well as their demodu-

lation methods [1, 42,68,69]. The versatile transmitters and receivers allow a new class of wireless

communication systems [63], where pairs of receivers and transmitters adaptively change modula-

tion/demodulation methods in response to interference conditions to achieve better performance.

For such a communication system, modulation and processing methods are adjusted to changing

patterns of interference through interference avoidance methods [62, 63, 75]. The idea behind in-

terference avoidance is that via feedback from the receiver, the transmitting radio is instructed to

vary its waveform (or signature) in response to interference conditions. In an ensemble of users,

this scenario can lead to optimized use of the shared medium. Even more, this optimum can be

reached in a distributed fashion, through individual greedy optimization by each user.

We see the main application of interference avoidance to communication in the unlicensed bands

which was enabled1 by the release of 300 MHz of spectrum in the 5 GHz range for the Unlicensed

National Information Infrastructure (U-NII). The FCC decision [12] is motivated by the belief that

the creation of the U-NII band will stimulate the development of unlicensed communication systems

which will provide more efficient and less expensive solutions for local access applications. However,

in unlicensed bands one might expect to find an abundance of mutually interfering independent

systems and no central control for efficient coordination. Thus, application of interference avoidance

might be a useful control mechanism in such environments.

However, before applying the interference avoidance precept to arbitrary systems, interference

avoidance must be understood in relation to the peculiarities of wireless channels. Therefore this

1In January 1997 by the Federal Commision for Communications [12].
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thesis provides insight into interference avoidance algorithms by investigating their applications to

non-ideal channels (e.g. dispersive, fading) and to general multiaccess vector channels. Application

to multiple-input multiple-output (MIMO) systems and systems with asynchronous users as well

as practical issues related to interference avoidance algorithms are also investigated.

1.1 Interference Avoidance Algorithms

Interference avoidance was introduced [75, 76] in the context of chip-based CDMA systems, but

was subsequently developed [63] in a general signal space formulation which makes it applicable to

a wide variety of communication scenarios.

Consider the uplink of a synchronous CDMA communication system with M users having

signature waveforms {Si(t)}M
i=1 of finite duration T and equal received power at a common receiver

(basestation). We will assume unit received power for each user. The received signal is

R(t) =
M∑
i=1

biSi(t) + n(t) (1.1)

where bi is the information symbol sent by user i with signature Si(t), and n(t) is an additive white

Gaussian noise (AWGN) process. We assume that all signals are representable in an arbitrary

N -dimensional signal space. Hence, each user’s signature waveform Si(t) is equivalent to an N -

dimensional vector si and the white noise process n(t) is equivalent to a white noise vector n. The

equivalent received signal vector r at the basestation is then

r =
M∑
i=1

bisi + n (1.2)

By defining the N ×M matrix having as columns the user codewords si

S =




| | |

s1 s2 . . . sM

| | |


 (1.3)

the received signal can be rewritten in vector-matrix form as

r = Sb + n (1.4)

with b = [b1 . . . bM ]� containing the symbols sent by users.
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Assuming simple matched filters at the receiver for all users, the signal-to-interference plus

noise-ratio (SINR) for user k is

γk =
(s�k sk)2∑M

j=1,j �=k(s
�
k sj)2 +E[(s�k n)2]

(1.5)

Let us also define the correlation matrix of the interference seen by user k

Rk =
M∑

i=1,i�=k

sis�i = SS� − sks�k (1.6)

and denote by σ2 the spectral height of the white noise n. Then, equation (1.5) can be rewritten

as

γk =
1

s�k (Rk + σ2I)sk
(1.7)

The idea behind interference avoidance algorithms is to use the SINR as a metric, and maximize

it through adaptation of user codewords. This is also equivalent to minimizing the inverse SINR,

defined as

βk =
1
γk

= s�k (Rk + σ2I)sk (1.8)

Note that for unit power codewords, equation (1.8) represents the Rayleigh quotient for matrix

Rk + σ2I and recall from linear algebra [72, p. 348] that this is minimized by the eigenvector

corresponding to the minimum eigenvalue of the given matrix. Thus, the SINR for user k can

be maximized by replacing the codeword sk with the minimum eigenvector of the autocorrelation

matrix Rk of the interference seen by user k. Sequential application by all users of this greedy

procedure defines the minimum eigenvector algorithm for interference avoidance, or the eigen-

algorithm [63] formally stated below:

The Eigen-Algorithm

1. Start with a randomly chosen codeword ensemble specified by the user codewords {si}M
i=1,

given as columns of the codeword matrix S in equation (1.3)

2. for each user k = 1, . . . ,M

(a) Compute the N -dimensional autocorrelation matrix Rk of the interference coming from

other users
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(b) Determine the minimum eigenvalue λ(k)
N of Rk and its associated unit eigenvector v(k)

N .

(c) If user k’s codeword sk is not already a suitable eigenvector of Rk, replace it by v(k)
N .

3. Repeat step 2 for each user until a fixed point is reached, where all user codewords are

minimum eigenvectors of coresponding autocorrelation matrices.

It so happens that at each step the eigen-algorithm reduces the total squared correlation (TSC)

[63] defined as

TSC = Trace
[
(SS�)2

]
=

M∑
i=1

M∑
j=1

(s�i sj)2 (1.9)

which is a measure of the total interference in the system and is lower bounded by [88]

TSC ≥ M2

N
(1.10)

We note that codeword ensembles for which the bound in equation (1.10) is met with equality are

also known as Welch Bound Equality (WBE) sets, and they satisfy the equality

SS� =
M

N
IN , if M > N (1.11)

Using the TSC one can define a general class of algorithms for interference avoidance by changing

a given user’s codeword with a new one which does not increase the TSC. More specifically, we

note from equation (1.6) that

SS� = Rk + sks�k (1.12)

and when user k replaces its codeword with a new codeword x the difference in TSC can be written

as

∆ = Trace
[
(Rk + sks�k )2

]
− Trace

[
(Rk + xx�)2

]
(1.13)

This can be further rewritten after cancelling similar terms and replacing the traces by the corre-

sponding quadratic forms as

∆ = 2(s�k Rksk − x�Rkx) (1.14)

The requirement that ∆ ≥ 0 yields the condition

s�k Rksk ≥ x�Rkx (1.15)
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which defines a general class of algorithms in which a given user does not increase the TSC when

replacing its codeword sk by x. The only assumption made is that other users’ codewords do not

change during the replacement. Algorithms for codeword adaptation based on (1.15) replace each

user’s codeword with a new one satisfying this requirement. Replacement is done sequentially, until

all users have updated their codewords, at which point the cycle may be repeated until the TSC

stops changing within some tolerance. The eigen-algorithm and the MMSE algorithm [63, 75, 78]

are just particular cases of this class of algorithms for which convergence to absolute minimum

TSC in equation (1.10) has been proven [3,62]. Thus, codeword ensembles obtained by application

of the eigen-algorithm or the MMSE algorithm form WBE sets. Other algorithms that yield WBE

sequences have also been established and analyzed in the literature [14,40,84,85].

One of the advantages of using WBE sequences as codewords for users in a CDMA system is

that matched filters are optimal linear receivers and minimize the mean squared error (MSE) for

each user. To see this, let us consider the detection scheme for user k with the received signal

vector in equation (1.2) given by

b̂k = c�k r (1.16)

where ck is the N -dimensional, unit norm, receiver filter corresponding to user k. The MSE is

given by [37]

MSEk = E[(c�k r− bk)2] = c�k Rkck + (c�k sk − 1)2 (1.17)

and we first note that when a matched filter ck = sk is used then the second term in equation (1.17)

is zero. Furthermore, in the case of WBE sequences each codeword sk is a minimum eigenvector of

its corresponding interference-plus-noise covariance matrix Rk. Therefore, the first term in equation

(1.17), which corresponds to the Rayleigh quotient of matrix Rk, will achieve its minimum value

thus implying that the MSE is minimized. Hence, the matched filter and MMSE receiver filter are

identical in this case, which is consistent with the similar results established in [84, 85]. We also

note that the outputs of these matched filters provide sufficient statistics for joint processing of the

users, as is performed by a multiuser receiver and required to achieve maximum sum capacity.

Let us also note that, when the number of users M is less than or equal to the dimension of the

signal space N , both the eigen-algorithm and the MMSE algorithm produce a set of orthonormal
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codewords {sk}M
k=1, which in this case satisfies

S�S = IM , if M ≤ N (1.18)

For the MMSE algorithm this may take several iterations, while the eigen-algorithm only needs a

single pass through all codewords since each user chooses as new codeword an eigenvector which is

orthogonal to the previously chosen codewords. Since all users are orthogonal, this case is trivial in

the sense that for any given user interference from other users is zero, and the SINR is equal to the

signal-to-noise ratio (SNR). More interesting is the case of overloaded systems having at least as

many users as signal space dimensions. Therefore, we will assume that M ≥ N in our presentation

throughout the thesis.

1.2 Capacity and WBE Sequences

In a white noise background, when the received powers of all users are the same, pk = p, ∀k =

1, . . . ,M the sum capacity is given by [80]

Cs =
1
2

log
[
det
(
IN +

p

σ
SS�

)]
=

1
2

log
[
det
(
IM +

p

σ
S�S

)]
(1.19)

and is maximized [64] when user codewords are chosen such that they are either orthogonal when

there are fewer users than signal space dimensions (that is M ≤ N), or they form WBE sequences

when the system is overloaded (that is M > N).

Furthermore, in [85] the user capacity of a CDMA system is defined as the maximum number

of admissible users. For a signal space of dimension N and a desired common target SIR γ, M

users are said to be admissible if there exist powers pi > 0 and codewords ensembles {sk}M
k=1 such

that each user has an SIR at least as large as γ. It is shown in [85] that user capacity is the same

when either matched filters or MMSE receivers are used, and is maximized if codewords are either

orthonormal when there are fewer users than signal space dimensions, or they form WBE sequence

sets when the system is overloaded.

This implies that codeword ensembles yielded by interference avoidance algorithms (the MMSE

algorithm or the eigen-algorithm), which satisfy either equation (1.18) or equation (1.11), maximize

both sum capacity and user capacity.
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1.3 The Eigen-Algorithm in Colored Noise

In the presence of colored background noise with covariance matrix E[nn�] = W the SINR expres-

sion in equation (1.5) becomes

γk =
1

s�k (SS� − sks�k + W)sk
(1.20)

and we define in this case the correlation matrix of the interference plus noise seen by user k

Rk = SS� − sks�k + W (1.21)

Application of the eigen-algorithm remains unchanged and the current codeword sk of user k is

still replaced by the minimum eigenvector of matrix Rk in order to maximize user k SINR. In this

case the eigen-algorithm yields codeword ensembles that minimize the trace of the square of the

received signal covariance matrix R = E[rr�], that is

Trace
[
R2
]

= Trace
[
(SS� + W)2

]
(1.22)

is minimized by the algorithm. By analogy to the white noise case, one could think of the result-

ing codeword ensembles as WBE sequences “tuned” to the particular noise stucture specified by

covariance matrix W.

The eigen-algorithm can be put into a similar information theoretic context in this case as well,

by observing the equivalence between minimization of Trace
[
R2
]

and maximization of the sum

capacity [61–63]. In a colored noise background sum capacity is given by [61,62]

Cs =
1
2

log(detR) − 1
2

log(detW) =
1
2

log
[
det(SS� + W)

]
− 1

2
log(detW) (1.23)

and we note that both Trace
[
R2
]

and sum capacity depend on the eigenvalues of the received signal

covariance matrix R. While Trace
[
R2
]

is a convex function in these eigenvalues, sum capacity is

a concave function, and it can be shown [61,62] that both are optimized when identical bounds on

these eigenvalues are met with equality. More precisely, let us define the eigenvalues of the received

signal covariance matrix R as µi, i = 1, . . . , N and those of the noise covariance matrix W as

σi, i = 1, . . . , N . In terms of these eigenvalues we have

Cs =
1
2

N∑
i=1

log µi −
1
2

N∑
i=1

log σi (1.24)
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Trace
[
R2
]

= Trace
[
(SS� + W)2

]
=

N∑
i=1

µ2
i (1.25)

For fixed energy codewords the sum of eigenvalues µi is constant and equal to

N∑
i=1

µi = Trace
[
SS� + W

]
= const (1.26)

By using constrained optimization methods as in [61, 62] or results from majorization theory [38]

as in [84,87] one can show that optimal points that maximize sum capacity in equation (1.24) and

minimize Trace
[
R2
]

in equation (1.25), subject to the constraint in equation (1.26) are identical.

Therefore, minimization of Trace
[
R2
]

is completely equivalent to maximization of sum capacity

Cs.

Hence, in a colored noise background the eigen-algorithm performs aggregate water filling over

that portion of the signal space with least interference-plus-noise energy and maximize sum ca-

pacity. That is, the sum of rates of all users at which reliable communication can take place is

maximized. We note that signal space “water filling” and the implied maximization of sum capacity

are emergent properties of interference avoidance algorithms. That is, individual users do not at-

tempt maximization of sum capacity via an individual or ensemble water filling scheme, but rather,

they greedily maximize the SINR of their own codeword. In fact, individual water filling schemes

over the whole signal space are impossible in this framework since each user’s transmit covariance

matrix X� = s�s�� is of rank one an cannot possibly span an N -dimensional signal space. We also

note that, by water filling those dimensions of the signal space with minimum background noise

energy and avoiding “noisy” dimensions with energy above a certain threshold, the eigen-algorithm

leads to a uniform maximum SINR for all users [63].

1.4 Thesis Road Map

Chapter 2 describes how interference avoidance can be applied to codeword optimization in the

uplink of a CDMA system. We assume that the channel between each user and the basestation

is known and that the symbol transmission interval (frame) is long enough that a common set of

signal space basis functions (sinusoids) is shared by all users at the base. Each user sends multiple

symbols (at least as many as there are signal space dimensions) and each symbol is assigned a

signature waveform. Application of interference avoidance methods is shown to produce signature
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ensembles which achieve sum capacity. Such optimal signature waveforms provide to each user a

uniform SINR for all its symbols and the optimal linear detector for each symbol is a matched filter.

Such uniform identical receiver structures are often good candidates for integration. Furthermore,

when multiple users are present, loose assumptions on the channels seen by each user cause natural

segregation and potentially large reductions in receiver complexity.

In Chapter 3 application of interference avoidance is considered for multiple access fading chan-

nels and answers to the following questions are sought: 1) When can a channel be considered

quasistatic from the perspective of interference avoidance algorithms? 2) For rapidly varying chan-

nels which do not allow interference avoidance to be applied for each channel realization, does

application of interference avoidance to the average channel result in significant capacity gains?

Application of interference avoidance methods to multiaccess vector channels is presented in

Chapter 4. Using a general signal space approach it is shown that application of greedy inter-

ference avoidance monotonically increases sum capacity. Furthermore, it is shown that sequential

application of the eigen-algorithm for interference avoidance by all users in a multiuser system

is equivalent to an iterative water filling procedure and always yields codeword ensembles that

maximize sum capacity of the multiaccess vector channel. Application of interference avoidance to

general dispersive channel models is also presented there as a particular case.

Application of interference avoidance to multiuser systems with multiple inputs and multiple

outputs (MIMO) is presented in Chapter 5. Such systems are associated with the uplink of a

wireless system in which users and the basestation have multiple antennas. Our approach is based

on application of interference avoidance to general multiaccess vector channels for the particular

multiaccess vector channel corresponding to a multiuser MIMO system. The use of an arbitrary

signal space makes the approach general and applicable to any MIMO system models regardless

of the choice of signal space basis functions. Information is transmitted over the MIMO channel

using a multicode CDMA approach in which the sequence of information symbols that make up

the frame to be sent by a given user over the MIMO channel is “spread” over the available di-

mensions using a precoding matrix. Optimal precoding matrices that maximize sum capacity are

then obtained by application of interference avoidance methods. Numerical simulations have also
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been performed and the signal-to-noise ratio distribution for receiver antennas and complemen-

tary cumulative distribution functions for sum capacity with optimal precoding matrices are also

presented.

Application of interference avoidance to asynchronous multiuser systems is presented in Chap-

ter 6. These are systems for which symbol intervals corresponding to different users are not neces-

sarily synchronized at the receiver and they are modeled as frame-synchronous with symbols sent

in parallel using distinct signature waveforms of extended duration. This approach relaxes the

synchronization requirements at the common receiver. A vector multiple access channel model is

derived for which application of interference avoidance becomes straightforward.

Chapter 7 presents some empirical studies on various issues of the eigen-algorithm for inter-

ference avoidance. We start by presenting theoretical considerations leading to an algorithm that

combines interference avoidance with a power control mechanism. Then, the transient part of

the eigen-algorithm is analyzed and empirical evidence is presented which shows that if the user

with the worst SINR had an acceptable connection with the basestation at the begining of the

eigen-algorithm, then no one’s connection will be any worse than this as the algorithm proceeds.

Next, the problem of codeword representation is analyzed. As opposed to current CDMA

systems where uniform-amplitude codeword chips are used, interference avoidance employs real-

valued “chips”– real-valued coefficients for a set of orthonormal basis functions of the signal space

used by the transmitter and receiver. Thus, compact representation of codewords is extremely

important since for practical implementation one must also consider the feedback channel between

the receiver which calculates the codeword adjustments and the transmitter which uses them.

An investigation of how codeword quantization affects the performance of interference avoidance

algorithms is presented. Results indicate that using 4 – 5 bits per chip for codeword representation

is sufficient to maintain performance close to optimal values.

Complexity issues are also explored in Chapter 7. The operational complextity of the eigen-

algorithm is evaluated and the reduction in receiver complexity under the implicit channelization

produced by interference avoidance for dispersive channels is explored. Specifically, the properties

of interference avoidance will naturally limit each user to fewer than the total number of signal

dimensions, so each receiver need not necessarily span the whole signal space.
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For each chapter, a detailed introduction, literature review about the specific problem, and

a statement of the problem are presented in the begining in an attempt to make chapters more

independently readable.

Most of the results in this thesis have been presented previously. The work on interference

avoidance and dispersive channels in Chapter 2 was presented in part at the 37th Annual Aller-

ton Conference on Communication, Control, and Computing [46] and the 35th Annual Asilomar

Conference on Signals, Systems, and Computers [50]. Chapter 3 was presented at the 39th Annual

Allerton Conference on Communication, Control, and Computing [49]. Chapter 5 was presented in

part at the 35th Conference on Information Sciences and Systems [48]. Application of interference

avoidance to general multiaccess vector channels in Chapter 4 was presented in part at the 2002

International Symposium on Information Theory - ISIT’02 [45]. The work on asynchronous systems

in Chapter 6 was presented at the 36th Conference on Information Sciences and Systems [51]. Code-

word quantization in Chapter 7 was presented at the 2000 International Conference on Acoustics,

Speech, and Signal Processing - ICASSP 2000 [47].
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Chapter 2

Interference Avoidance and Dispersive Channels

In this chapter we extend application of interference avoidance methods to dispersive multiple

access channels. Specifically, we consider optimization of uplink codewords for a CDMA system in

which the dispersive channels between users and basestation are known. We begin in section 2.1

with a brief literature review to place this work in context with prior art. The problem of signature

waveform optimization for uplink CDMA systems is stated in section 2.2. Section 2.3 contains

background material on channel eigenfunctions and their use in converting a waveform channel

into an equivalent vector channel. Although the results in this section are not new, they are

important enough to be placed in a distinct section. The single-user case is presented in section 2.4

where it is shown that by using a multicarrier CDMA (MC-CDMA) modulation scheme the usual

dispersive channel problem is equivalent to a multiuser detection problem. This equivalence allows

direct application of interference avoidance techniques to our codeword optimization problem.

In section 2.5 we proceed to the multiple access channel problem corresponding to the uplink

of a CDMA system. In this case multiple users are received at the basestation over non-identical

channels. It is first shown that application of greedy interference avoidance does not decrease sum

capacity. Then interference avoidance algorithms are presented and shown to converge to sum

capacity optimal ensembles. We then focus on the case where the received signal covariance matrix

is diagonal and explore some properties of these solutions. We find, under a loose set of assumptions

on channel gain matrices, that users cannot overlap in more than one frequency and that if two

or more users have energy over all frequencies, their channels must be identical. These results are

similar to those found in [17,44].
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2.1 Related Work

It is well known that wireless channels can be dispersive and dispersion leads to intersymbol interfer-

ence (ISI) where energy from symbol signals spills over into the observation intervals of subsequent

symbols at the receiver. As noted in [32] there have been primarily two ways to combat ISI –

equalization and coding – with large associated literatures.

In [32] and [35] an approach was proposed based on partitioning the communication channel into

a set of parallel and independent subchannels each associated with its own carrier. Such channel

partitioning is known in general as multicarrier modulation [6] and has been present in the literature

for over 30 years. A signaling scheme that relates to multicarrier modulation as the communication

interval is extended is also proposed in [30], where optimum signal sets for dispersive channels are

derived in a framework based on channel eigenvectors.

A framework for using multicarrier modulation in frequency dispersive multiple access channels

based on discrete multi-tone (DMT) is presented in [16], where a multiuser bit-loading algorithm

is also proposed. The algorithm is a multiuser water filling scheme [11] over the DMT tones

and maximizes the sum capacity of the multiaccess channel. The fact that a DMT scheme with

appropriately loaded carriers is optimal with respect to maximizing sum capacity subject to a given

power constraint has been proved to be optimal [44].

Recently, in the context of multiuser detection, methods for transmitter and receiver adap-

tation [60] have also been used for non-ideal channels [57, 58]. In this case transmitter/receiver

adaptation compensates for the distortion introduced by the channel and avoids multiaccess in-

terference. Transmitter and receiver adaptation methods have also been used in the context of

multicode CDMA and MC-CDMA systems [36,89].

Our approach to multiuser communication over dispersive channels is based on a form mul-

ticarrier modulation and transmitter/receiver adaptation through codeword optimization. The

eigenfunctions of the channel autocorrelation [29] are used as modulation building blocks to form a

convenient orthonormal basis for representing input and output signals of a dispersive channel and

for converting it into a discrete vector channel. Assuming that symbol intervals T are long com-

pared to the duration of channel impulse responses, then channel eigenfunctions are approximately
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sinusoids [29] and the same orthonormal basis can be used for all users at the receiver.1

Information symbols for a given user are sent in parallel as frames, using distinct signature

waveforms of extended duration T for each symbol in the frame. This approach is different from

prior work where symbol signatures were allowed to have length longer than the symbol interval [90].

Also, unlike [32, 35] there is no explicit precoding. Rather, the approach, which assigns multiple

codes to a given user, is a form of CDMA in which each symbol in the given user’s frame corresponds

to a different virtual user. In the context of multicarrier modulation this implies that a MC-

CDMA [92] modulation scheme is employed by each user. However, different from [92], we do not

assume orthogonal codewords for different symbols/users.

In this context, our goal is to derive optimal ensembles of signature waveforms (codewords) that

maximize the sum capacity of the multiaccess dispersive channel in the uplink of a CDMA system.

We will apply interference avoidance methods to our signature waveform/codeword optimization

problem since it has been shown that interference avoidance always produces sum capacity maxi-

mizing codeword ensembles [3,61,62]. Furthermore, the optimal linear receivers for such codewords

are simple matched filters [84,85].

2.2 Problem Statement

We consider the uplink of a synchronous CDMA system with L users communicating with a com-

mon basestation. Each user sends frames containing multiple symbols using a multicode CDMA

approach in which each symbol in the frame is assigned a specific signature waveform as described

schematically in Figure 2.1. Thus, the signals sent by users are written as

x�(t) =
M�∑

m=1

b(�)m s(�)m (t) � = 1, . . . , L (2.1)

where b(�)m , m = 1, . . . ,M�, denote the symbols sent by user � and s(�)m (t) is the signature waveform

assigned to convey symbol m of user � assumed of finite duration T . By loose analogy, one could

think of each waveform s
(�)
m (t) as a musical “chord” and each user sending a set of scaled chords.

1The sinusoidal basis functions of each user are advanced and retarded to that they coincide properly at the
receiver.
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Figure 2.1: Multicode CDMA approach for sending frames of information. Each symbol bi in
the frame is assigned a signature waveform and the resulting signal x(t) is a superposition of
signature waveforms scaled by their corresponding information symbols. Signature waveforms si(t)
are expressed in terms of a set of basis functions for the signal space. Our problem will be to find
optimal {sij}.
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The channel between a given user � and the basestation is assumed to be linear and time-

invariant and is characterized by the causal impulse response h�(t) of duration T�. We assume that

the frame duration is much larger than the duration of all channel impulse responses T � T�,

∀� = 1, . . . , L. Thus, one can safely ignore ISI between successive frames of duration T by placing

a relatively small “zero pad” between them to allow settling of channel responses. Where necessary

we also assume cyclic extension of basis functions so that there are no gaps in the transmission

interval.

The received signal at the basestation is a sum of signals transmitted by all users convolved

with their corresponding impulse responses plus additive Gaussian noise n(t)

r(t) =
L∑

�=1

x�(t) ∗ h�(t) + n(t) (2.2)

Our goal is to derive optimal signature waveform ensembles {s(�)m (t)}, � = 1, . . . , L, m =

1, . . . ,M� that maximize the sum capacity of the multiaccess channel. This is different from pre-

vious work which has concentrated mainly on optimal power allocation schemes. We will show

that interference avoidance algorithms yield such optimal ensembles, and as a necessary byproduct,

provides optimal power allocation across signal dimensions for users according to a water filling

scheme.

In order to do this we will convert the continuous time (waveform) multiaccess channel in

equation (2.2) into an equivalent vector multiaccess channel. We note that a vector channel is a

natural representation of a waveform channel in a finite dimensional signal space [20, Ch. 8] implied

by finite T and finite bandwidth constraints.

2.3 Channel Eigenfunctions and Equivalent Vector Channels

The material in this section is essentially review, but we feel it is important enough to be presented

in a distinct section as we use a slightly different formulation than the complex representation of

channels favored in the OFDM literature. We note that although it is theoretically possible to

apply interference avoidance using complex channel models such application results in unrealizable

signal sets (see Appendix 2.C for details). We therefore use a decomposition for which all channel

gains are real non-negative numbers and all channel eigenvectors are real as well.
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For a linear and time-invariant channel characterized by impulse response h(t) a useful set

of basis functions which allows convenient representation of channel inputs and outputs are the

eigenfunctions of the channel impulse response autocorrelation function introduced in [29]. This set

of functions {Ψn(t)} forms an orthonormal basis for the signal space and can be used to represent

channel inputs as vectors in a Euclidian space of the same dimension as the signal space. In addition,

channel responses to these functions are also orthogonal, thus allowing convenient representation

of channel outputs as scaled versions of the input vectors. For the sake of completeness we briefly

show how these functions are derived. Note that complete details can be found in [29].

The requirement that channel responses to functions {Ψn(t)} be orthogonal as well implies that

on the interval (0,T ) where T is assumed much larger than the duration of h(t) we have

∫ T

0

[∫ T

0
Ψi(τ)h(t− τ)dτ

] [∫ T

0
Ψj(µ)h(t− µ)dµ

]
dt = λiδij (2.3)

By defining the channel autocorrelation function as

Rh(τ − µ) =
∫ T

0
h(t− τ)h(t− µ)dt (2.4)

we obtain ∫ T

0

∫ T

0
Ψj(µ)Ψi(τ)Rh(τ − µ)dτdµ = λiδij (2.5)

which implies that the set {Ψn(t)} must satisfy the integral equation

∫ T

0
Ψi(µ)Rh(τ − µ)dµ = λiΨi(τ) (2.6)

Since Rh(·) is a correlation function, a complete set of orthonormal Ψn(t) along with a corre-

sponding set of real non-negative λn exists and can be used to represent any input in the mean

square sense [79, p.181]. We note that this formulation is different from the usual OFDM treatment

which allows complex channel eigenvalues. Regardless, these {Ψn(t)} eigenfunctions can therefore

be used to represent any input in the mean square sense as

x(t) = l.i.mN→∞

N∑
n=1

xnΨn(t) (2.7)

Similarly, any channel output can be written as a linear superposition of the set {Ψ̃n(t)} defined as

Ψ̃n(t) = λ−1/2
n

∫ T

0
Ψn(τ)h(t − τ)dτ (2.8)
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for non-zero λi. We note that each of the Ψn(t) and Ψ̃n(t) is assumed to have unit energy

∫ T

0
Ψ2

n(t)dt =
∫ T

0
Ψ̃2

n(t)dt = 1 (2.9)

Thus, the channel output corresponding to input x(t) is written as

y(t) = x(t) ∗ h(t) =
∫ T

0

(∑
n

xnΨn(τ)

)
h(t− τ)dτ =

∑
n

xnλ
1/2
n Ψ̃n(t) (2.10)

For finite time and bandwidth constraints the signal space is “essentially” finite dimensional

[34] and, as it is also pointed out in [79, p. 193], the eigenvalues λn rapidly approach zero for

n > 2BT where B is the allowable bandwidth. Thus, we assume that there are only N non-

negligible eigenvalues λn. This implies that the useful input signal space – that portion of the

signal space whose component energies are not strongly absorbed by the channel – is of dimension

N . Therefore, the input signal can be written in vector form as

x(t) = Ψ(t)�x (2.11)

where x is the N -dimensional vector of coefficients xn corresponding to the N eigenfunctions Ψn(t)

with non-negligible eigenvalues arranged in the vector of functions Ψ(t). Likewise, the channel

output can be written as

y(t) = Ψ̃(t)�Λ1/2x (2.12)

where Λ is the N ×N diagonal matrix of the real non-negative significant eigenvalues.

It is worth noting here that in what follows we will always assume that channel gain matrices Λ

are invertible. Almost paradoxically, this implies no loss of generality since we show in section 2.4

that the optimum solution using a non-invertible gain matrix Λ∗ (with diagonal elements λ∗i and at

least one of them non-zero) is identical to that using an invertible matrix Λ with diagonal elements

λi such that

λi =


 λ∗i for λ∗i �= 0

ε for λ∗i = 0
(2.13)

where ε > 0 is a sufficiently small number.

By performing the outlined eigen-decomposition, the waveform channel with input x(t) and

output y(t) described by the impulse response h(t) can be represented by the diagram in Figure 2.2.

Note that Figure 2.2 can be put in the simple form of Figure 2.3 which shows the output of the
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dispersive channel as a scaled version of the input corrupted by the corresponding noise vector n.

At this point a final remark about channel eigenfunctions is necessary. In the multiuser case

where different users are received at the basestation through different channels with different im-

pulse responses the set of channel eigenfunctions may be different for distinct users. However,

since it is assumed that the frame duration T is large relative the durations of all the channel

impulse responses, the channel eigenfunctions will all be approximately sinusoidal “tonebursts”2.

Substitution of sinusoids for channel eigenfunctions has been studied in detail in [29] and appears

practical for a wide range of channels. Also, similar to [29] we choose to use separate dimensions

for sine and cosine of the same frequency rather than complex exponentials. The use of complex

channel models in conjunction with interference avoidance methods is presented in Appendix 2.C.

However, we again mention that such use can result in unrealizable signals sk(t).

2.4 The Single User Case: Multicarrier CDMA and Interference Avoidance

2.4.1 Multicarrier CDMA

In the case of a single user, the transmitted signal consists of a superposition of signature waveforms

scaled by the appropriate information symbols in the frame (see Figure 2.1)

x(t) =
M∑

k=1

bksk(t) (2.14)

where sk(t) is the signature waveform assigned to convey symbol bk. Unlike [32, 35] there is no

explicit precoding. As already mentioned, the method is a form of CDMA in which each symbol

corresponds to an independent “virtual user”. The collection of these M virtual users comprises

the actual user’s signal. Each of the waveforms sk(t) can be represented in terms of the channel

eigenfunctions described in the previous section

sk(t) =
N∑

j=1

skjΨj(t) = Ψ(t)�sk (2.15)

which implies that the input signal can be written as

x(t) =
M∑

k=1

bk

N∑
j=1

skjΨj(t) = Ψ(t)�Sb (2.16)

2Special thanks are due to Prof. M. Honig for this perspective.
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where b = [b1 . . . bM ]� is the vector containing the frame to be sent and S is the N ×M matrix

(∈ R
N×M ) with columns sk being the coordinate vectors (codewords) of each waveform {sk(t)}M

k=1

with respect to the basis defined by the channel eigenfunctions. As previously argued, we assume

that channel eigenfunctions are approximately sinusoidal and find that this decomposition implies

a frequency representation of the signature waveforms as superposition of sinusoids specified by the

corresponding codewords leading to a MC-CDMA [92] scheme.

The received signal is corrupted by additive zero mean white Gaussian noise as in

r(t) = y(t) + n(t) (2.17)

which when projected onto the channel eigenfunctions yields

r = Λ1/2Sb + n (2.18)

with n = [n1 . . . nN ]� a vector containing the projections of the noise process n(t) onto the basis

functions – nj =
∫ T
0 n(t)Ψ̃j(t)dt. Since n(t) is a white Gaussian process, the projections onto or-

thogonal functions are mutually independent, zero-mean Gaussian random variables with variances

E[n2
j ] = N0. Now, the problem of optimizing the signature waveforms sk(t) is completely equivalent

to optimizing the codeword matrix S in equation (2.18).

Since we assume Λ invertible, we can rewrite equation (2.18) to obtain

r̃ = Λ−1/2r = Sb + ñ (2.19)

in which ñ = Λ−1/2n is a new vector of noise components, still uncorrelated, but no longer white

– the variance of each component is now N0/λi.

The equivalent problem defined in equation (2.19) is a typical multiuser detection problem [83,

ch. 4] where an ensemble of user transmissions bksk must be jointly decoded subject to a constraint

on transmitted energy for each codeword. One could turn to multiuser detection theory at this

point and seek to design the best receivers (decision feedback, MMSE etc.) for a given ensemble of

codewords. However, our goal here is to find codeword ensembles which maximize sum capacity.

2.4.2 Interference Avoidance

To generate such optimal signal sets, interference avoidance algorithms will be used. We use the

greedy eigen-algorithm for interference avoidance in the current context and describe properties of
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the fixed point codeword ensemble. For the single-user case the eigen-algorithm is formally stated

next:

The Single-User Eigen-Algorithm for Dispersive Channels

1. Start with an initial set of signatures waveforms {sk(t)}M
m=1, with corresponding codewords

{sk}M
m=1 with respect to the orthonormal basis defined by the channel eigenfunctions.

2. For each symbol m

(a) Compute the N -dimensional autocorrelation matrix of the interference generated by the

other M − 1 independent symbols and noise Rm = SS� − sms�m +N0Λ−1

(b) Find the minimum eigenvalue µ∗m of Rm and its associated eigenvector x∗
m

(c) Replace sm by x∗
m

3. Repeat step 2 until a fixed point is reached where all codewords are minimum eigenvectors

of Rm.

4. If the fixed point is suboptimal, employ escape methods [62] to continue iterations

As already been mentioned, this procedure monotonically decreases the trace of the square of

the received signal covariance matrix which is equal in this case with

Trace
[
R̃2
]

= Trace
[
(SS� +N0Λ−1)2

]
(2.20)

Furthermore, the following theorem shows that the codeword ensemble which minimizes Trace
[
R̃2
]

corresponds to a “water filling” solution which implies that it also maximizes channel capacity.

Theorem 2.1 : The codeword set that minimizes Trace
[
R̃2
]

subject to the total power constraint

Trace
[
SS�] = M water fills those dimensions of the inverted channel signal space with minimum

noise energy3.

Proof: In order to find the minimum Trace
[
R̃2
]
, let us write the matrix SS� +N0Λ−1 in terms

of canonical eigenvectors ei = [0, . . . , 0, 1, 0, . . . , 0]� (zero except for 1 in the ith position) of R
N .

3Recall that by definition of the equivalent inverted channel problem the actual noise energy in a given signal
space dimension is scaled by the channel eigenvalue corresponding to that dimension.
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Then we have

SS�+N0Λ−1 =
N∑

i=1

N∑
j=1

M∑
k=1

siksjkeie�j +
N∑

i=1

N∑
j=1

N0

λj
eie�j =

N∑
i=1

N∑
j=1

(
M∑

k=1

siksjk +
N0

λj

)
eie�j (2.21)

We can then write

(SS� +N0Λ−1)2 =


 N∑

i=1

N∑
j=1

(
M∑

k=1

siksjk +
N0

λj

)
eie�j


[ N∑

m=1

N∑
n=1

(
M∑
�=1

sm�sn� +
N0

λ�

)
eme�n

]

=
N∑

i=1

N∑
j=1

N∑
n=1

M∑
k=1

(
siksjk +

N0

λj

) M∑
�=1

(
sj�sn� +

N0

λj

)
eie�n

(2.22)

Since Trace
[
eie�n

]
= e�n ei = δin, we then have

Trace
[
(SS� +N0Λ−1)2

]
=

N∑
i=1

N∑
j=1

(
M∑

k=1

siksjk +
N0

λj

)2

(2.23)

By defining the total signal energy projection along the ith eigenfunction as Pi =
∑M

k=1 s
2
ik we can

rewrite (2.23) as

Trace
[
(SS� +N0Λ−1)2

]
=

N∑
i=1,i�=j

N∑
j=1

(
M∑

k=1

siksjk +
N0

λj

)2

+
N∑

j=1

(
Pj +

N0

λj

)2

(2.24)

Since all terms in the summations in i and j are non-negative we can lower bound the Trace
[
R̃2
]

by

Trace
[
(SS� +N0Λ−1)2

]
≥

N∑
j=1

(
Pj +

N0

λj

)2

(2.25)

where the right hand side term is a convex function in Pj . Minimization of this term with the

requirements that Pj ≥ 0, ∀j and
∑N

j=1 Pj = Trace
[
SS�] = M (total power sent – M symbols

each with unit energy) leads to the “water filling” distribution of powers [15,20]

Pi =
(
c∗ − N0

λi

)+

, where (x)+ =


 x if x ≥ 0

0 if x < 0
(2.26)

where c∗ is the water level mark and can be calculated from the total power constraint.

We then recall [72] that if the eigenvalues of a matrix A are µi then the eigenvalues of A2 are

µ2
i , and since the trace is the sum of eigenvalues we have

Trace
[
(SS� +N0Λ−1)2

]
=

N∑
i=1

β2
i (2.27)
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where the {βi} are the eigenvalues of SS� + N0Λ−1. If these βi are chosen to be the Pi + N0/λi

where the Pi satisfy (2.26), then the bound of (2.25) is met with equality.

We note that existence of codeword ensembles with the above stated properties has been proved

in [84,85] and convergence of the single-user eigen-algorithm for dispersive channels to such code-

word ensembles is guaranteed by its convergence to the minimum value of Trace
[
R̃2
]

proved in [62].

So in summary, once the problem of signature waveform optimization for a single user is recast as

a multiuser detection problem using the equivalent vector channel defined by channel eigenfunctions,

codeword adaptation can be brought to bear and an optimal codeword found for each symbol to be

transmitted by the user. The optimal codeword ensemble maximizes sum capacity, and assuming

simple matched filters for each symbol’s codeword, the symbols each attain the maximum achievable

uniform SINR. We also note that matched filters are optimal linear receivers and minimize the

MSE [84, 85] for each symbol in the frame, which is not true for general channel models with a

non-diagonal structure.

Finally, we revisit the issue of channel invertibility. Water filling solutions dictate that if the

noise energy in a dimension is large enough relative to other dimensions, then no signal energy can

reside in that dimension. Thus, in the context of equation (2.19), the optimal codeword ensembles

will be identical for non-invertible channels and their counterparts made invertible by replacing zero

gain elements by sufficiently small but nonzero gains. A careful definition of “sufficiently small”

can be stated as a theorem whose proof is a simple consequence of water filling.

Theorem 2.2 : Following equation (2.18), define a non-invertible channel gain matrix Λ∗ with

k > 0 nonzero gains as

Λ∗ =




λ∗1 0 · · · · · · · · · · · · 0

0
. . . 0 · · · · · · · · · 0

... 0 λ∗k 0 · · · · · ·
...

... · · · 0 0
. . . · · ·

...
... · · · · · · . . . . . . . . .

...
... · · · · · · · · · . . . . . . 0

0 · · · · · · · · · · · · 0 0




(2.28)
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and assume with no loss of generality that λi ≥ λi+1. Likewise define a noise covariance matrix

E[nn�] = W =




σ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 σN




(2.29)

with σi > 0, i = 1, · · · , N . Finally assume unit energy symbols bi so that the total transmitted signal

energy over all dimensions is E = Trace
[
SS�]. If we construct the invertible matrix

Λ =




λ∗1 0 · · · · · · · · · · · · 0

0
. . . 0 · · · · · · · · · 0

... 0 λ∗k 0 · · · · · ·
...

... · · · 0 ε
. . . · · ·

...
... · · · · · · . . . . . . . . .

...
... · · · · · · · · · . . . . . . 0

0 · · · · · · · · · · · · 0 ε




(2.30)

where ε is chosen such that
σj

ε
<

1
k

[
E +

k∑
i=1

σi

λi

]

j = k+ 1, · · · , N , then the set of codeword ensembles which maximize sum capacity for the channel

of equation (2.18) will be identical for Λ∗ and Λ.

Proof: The theorem is a simple consequence of water filling and of the fact that interference

avoidance provides a codeword ensemble which water fills the signal space.

Therefore, in what follows we assume all channels are invertible with no loss of generality.

2.5 The Multiuser Case

In this section we consider multiple users received at the basestation over distinct channels with

different impulse responses h�(t). This corresponds to the uplink scenario in a CDMA system where

we seek to derive optimal codeword ensembles that maximize sum capacity. We present and analyze

two algorithms for interference avoidance: the multiuser version of the eigen-algorithm introduced
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in the previous section in which all codewords of a given user are modified sequentially, and a

looser version based on random codeword updates in which codewords are updated randomly over

all users (as opposed to updating a single user’s codewords until convergence and then moving on).

Both algorithms are based on greedy interference avoidance in which at each step a given codeword

is replaced by the minimum eigenvector of the corresponding interference-plus-noise process.

As previously assumed in section 2.3, the channel eigenfunctions for all users are sinusoids. This

implies that each user in the system employs a MC-CDMA modulation scheme to transmit frames.

By further assuming that the corresponding channel eigenfunctions of all users are synchronized at

the receiver we may then write the received vector at the basestation as

r =
L∑

�=1

Λ1/2
� S�b� + n (2.31)

where S� is the N ×M� matrix with columns s(�)
m being the codewords for user � and b� the vector

containing the symbols in the frame to be sent by user �. From the perspective of user k equation

(2.31) can be rewritten as

r = Λ1/2
k Skbk +

L∑
�=1,� �=k

Λ1/2
� S�b� + n (2.32)

Note that the first term in equation (2.32) is the desired signal corresponding to user k while

the rest represents interference coming from other users and noise. Also note that all the Λ� are

invertible, although some of their elements may be of O(ε). However, as pointed out in section 2.4

via Theorem 2.2, this does not restrict application of the interference avoidance algorithms since

the dimensions corresponding to very small eigenvalues will be completely avoided.

We consider the more general case of colored noise with uncorrelated components which implies

that the autocovariance matrix of the received signal is

R = E[rr�] =
L∑

�=1

Λ1/2
� S�S�

� Λ1/2
� + W (2.33)

with W = E[nn�] a diagonal matrix with elements equal to σi, i = 1 . . . N , representing the noise

variances along each signal space dimension.

From the perspective of an individual user, our problem is again that of selecting input wave-

forms for its symbols in the presence of colored “noise” consisting of both additive Gaussian noise

and interference from other users.
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2.5.1 The Eigen-Algorithm in the Multiuser Case

Similar to equation (2.19) we define an equivalent problem for user k, pre-multiplying by the

corresponding inverse channel eigenvalue matrix Λ−1/2
k in equation (2.32) to obtain

rk = Skbk + Λ−1/2
k


∑

� �=k

Λ1/2
� S�b� + n


 (2.34)

We then apply the eigen-algorithm for user k to the equivalent problem by modifying its code-

words; the codeword corresponding to symbol m of user k being replaced by the minimum eigenvec-

tor of the autocorrelation matrix of the corresponding interference-plus-noise process under channel

k inversion.

R(k)
m = SkS�

k − s(k)
m s(k)�

m + Λ−1/2
k


∑

� �=k

Λ1/2
� S�S�

� Λ1/2
� + W


Λ−1/2

k (2.35)

A formal statement of the eigen-algorithm in the multiuser case is given below:

The Multiuser Eigen-Algorithm for Dispersive Channels

1. Start with a randomly chosen codeword ensemble specified by the user codeword matrices

S1, . . . ,SL

2. For each user k = 1 . . . L

(a) Define the equivalent problem for user k as in equation (2.34)

(b) adjust user k’s codewords sequentially: the codeword corresponding to symbol m of

user k is replaced by the minimum eigenvector of the autocorrelation matrix of the

corresponding interference-plus-noise process in equation (2.35)

(c) Repeat step (b) iteratively for each user until a fixed point is reached for which further

modification of codewords will bring no additional improvement.

(d) If a suboptimal point is reached use escape methods [62] and repeat steps (b)-(c).

3. Repeat step 2 iteratively for each user until a fixed point is reached for which further modi-

fication of codewords will bring no additional improvement.

We establish that fixed points of the eigen-algorithm in the multiuser case not only exist, but that

the fixed points produced imply capacity maximizing codeword ensembles.
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2.5.2 Greedy Interference Avoidance and Sum Capacity

We first show that application of greedy interference avoidance does not decrease sum capacity.

Formally we have with received signal vector r and the transmitted symbol frames b1, . . . ,bL in

equation (2.31)

Csum = max I(r;b1, . . . ,bL) (2.36)

Expanding the mutual information in terms of entropy we get

I(r;b1, . . . ,bL) = h(r) − h(r|b1, . . . ,bL) (2.37)

Given the transmitted symbol frames, the second term in the right hand side is just the noise

entropy which for Gaussian noise is

h(n) =
1
2

log
[
(2πe)N detW

]
(2.38)

and the first term is maximized when r is also Gaussian vector in which case the sum capacity

expression becomes

Csum =
1
2

log

[
det

(
L∑

�=1

Λ1/2
� S�S�

� Λ1/2
� + W

)]
− 1

2
log (detW) (2.39)

In order to prove that sum capacity Csum is not decreased by application of greedy interference

avoidance we will use majorization theory [38] which provides a partial ordering relation on real

vectors. The majorization relation between two N -dimensional vectors a = [a1, . . . , aN ]� and

b = [b1, . . . , bN ]� with components in decreasing order, written as a ≺ b (a is majorized by b), is

formally defined by the sequence of inequalities

n∑
i=1

ai ≤
n∑

i=1

bi, n = 1, . . . , N − 1

N∑
i=1

ai =
N∑

i=1

bi

(2.40)

A comprehensive reference on majorization theory and inequalities is [38] which will be referred

throughout this work. Majorization theory has been applied in relatively recent work on wireless

communication systems to sum capacity problems [84, 85] as well as to signal design and power

control for CDMA systems [22–24].

The following lemma is useful.
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Lemma 2.1 : Consider the matrix V = Q + xx� (with ‖x‖ = 1) for which we apply greedy

interference avoidance, i.e. x is replaced by the minimum eigenvector of matrix Q. Then, the

eigenvalues of V after the replacement are majorized by the eigenvalues of V before the replace-

ment.

Proof: See Appendix 2.A.

Theorem 2.3 : The sum capacity of the multiple access vector channel defined by equation (2.31)

is not decreased by application of greedy interference avoidance for any given user.

Proof: The sum capacity in equation (2.39) can be rewritten from the perspective of user k as

Csum =
1
2

log


det


SkS�

k + Λ−1/2
k


∑

� �=k

Λ1/2
� S�S�

� Λ1/2
� + W


Λ−1/2

k






+
1
2

log(detΛk) −
1
2

log(detW)

(2.41)

We define the eigenvalues of

R(k) = SkS�
k + Λ−1/2

k


∑

� �=k

Λ1/2
� S�S�

� Λ1/2
� + W


Λ−1/2

k (2.42)

as µ1, . . . , µN , and rewrite equation (2.41) as

Csum =
1
2

N∑
j=1

log µj +
1
2

log(detΛi) −
1
2

log(detW) (2.43)

Now suppose user k applies greedy interference avoidance to the codeword corresponding to

symbol m – that is user k replaces the m-th column of Sk with the minimum eigenvector of the

corresponding autocorrelation matrix of the noise-plus-interference under channel inversion. We

then have

R(k)
m = SkS�

k − s(k)
m s(k)�

m + Λ−1/2
k


∑

� �=k

Λ1/2
� S�S�

� Λ1/2
� + W


Λ−1/2

k (2.44)

Let us call this minimum eigenvector x(k)
m . We can rewrite the matrix R(k) in terms of R(k)

m as

R(k) = R(k)
m + s(k)

m s(k)�
m (2.45)
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and therefore, according to Lemma 2.1, the eigenvalues after the replacement are majorized by the

eigenvalues before the replacement

µ′ ≺ µ (2.46)

It is known from majorization theory [38] that for any Schur concave function g(·) equation (2.46)

implies g(µ′) ≥ g(µ). Since the function g(µ) =
∑N

j=1 log µj is Schur concave, and because the

other two terms in equation (2.43) are constant before and after the replacement of codeword s(k)
m ,

the sum capacity of the channel is not decreased by application of greedy interference avoidance

algorithm.

2.5.3 Fixed-Point Properties of the Eigen-Algorithm for Multiaccess Dispersive

Channels

Since application of greedy interference avoidance at each step of the eigen-algorithm does not

decrease sum capacity, and because sum capacity is upper bounded, we can conclude that the

algorithm converges to some fixed point. We now consider the properties of these fixed points and

will later show that they also imply a sum capacity maximizing codeword ensemble.

At a fixed point of the multiple user eigen-algorithm we can write

R(k)
m s(k)

m = ρks(k)
m , ∀ m = 1, . . . ,Mk, k = 1, . . . , L (2.47)

which is also equivalent to

(R(k)
m + s(k)

m s(k)�
m )s(k)

m = (ρk + 1)s(k)
m , ∀ m = 1, . . . ,Mk, k = 1, . . . , L (2.48)

or
SkS�

k + Λ−1/2
k


∑

� �=k

Λ1/2
� S�S�

� Λ1/2
� + W


Λ−1/2

k


 s(k)

m = (ρk + 1)s(k)
m ,

m = 1, . . . ,Mk

k = 1, . . . , L
(2.49)

which can be made compact for a given user k as
SkS�

k + Λ−1/2
k


∑

� �=k

Λ1/2
� S�S�

� Λ1/2
� + W


Λ−1/2

k


Sk = (ρk + 1)Sk, ∀ k = 1, . . . , L (2.50)

We can also write equation (2.50) as

Λ−1/2
k RΛ−1/2

k Sk = µkSk, ∀ k = 1, . . . , L (2.51)
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where R is the autocovariance of the received signal defined in equation (2.33). This property

characterizes a fixed point of the multiple channel eigen-algorithm. Note that in equation (2.51) we

have denoted µk = ρk + 1, since it will turn out that this is exactly the water level under channel

inversion for user k which appears in the following theorem (Theorem 2.4) and again later on. Also,

it is easy to see from equation (2.42) that for any pair of users i and j matrices R(i) and R(j) are

related to matrix R by

R = Λ1/2
i R(i)Λ1/2

i = Λ1/2
j R(j)Λ1/2

j ∀ i, j = 1, . . . , L (2.52)

Next, we recall that application of the eigen-algorithm for a system with more codewords than

signal space dimensions (Mk ≥ N) in a colored noise background [62, 63] performs an aggregate

water filling over that portion of the signal space with least interference-plus-noise energy, leading to

an optimum SINR for all codewords. This formulation is identical to our inverted channel problem

and therefore we restate the result here:

Theorem 2.4 : For Mk ≥ N , application of the eigen-algorithm by any user k water fills those

dimensions of the user k inverted channel problem with minimum interference plus noise energy,

and avoids dimensions with interference plus noise energy above a “water level” µk given by equation

(2.51).

Proof: The reader is referred to [62,63] for the proof of this theorem.

We also note that as a consequence of Theorem 2.3, repeated application of interference avoid-

ance implies convergence to some value of Csum as given in equation (2.39). We do not yet claim

that this is the maximum possible value, just that convergence to some value is certain. In fact, we

will see in the following section that a looser application of interference avoidance whereby code-

words are updated randomly over all users (as opposed to updating a single user’s codewords until

convergence and then moving on) is also guaranteed by Theorem 2.3 to converge to some value.

With this in mind, Theorem 2.4 has the following corollary for the resultant fixed point.

Corollary 2.1 : Application of the eigen-algorithm over multiaccess dispersive channels has a

fixed point corresponding to water filling for all users in their respective inverted channel problems.

Furthermore [62] guarantees that all symbols of a given user k will achieve the same signal-to-

interference plus noise ratio SINR= 1/ρk = 1/(µk − 1).
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Figure 2.4 is a depiction of such a fixed-point in signal space for two distinct users.

Theorem 2.5 : Sequential application of the eigen-algorithm for interference avoidance can have

a fixed point for which the received signal autocovariance matrix R in equation (2.33) is diagonal4.

Proof: First, we note that the received signal covariance R obeys equation (2.52). Next, in order to

obtain a diagonal R through interference avoidance, we start with all users silent and add them to

the system one by one. In the presence of uncorrelated noise with diagonal autocorrelation matrix

W, the orthogonal basis used for generating codewords [63] for user 1 is exactly the canonical basis

of R
N consisting of vectors ei = [0, . . . , 0, 1, 0, . . . , 0]� (zero except for 1 in the ith position). Since

channel eigenvalue matrices are also diagonal, the resulting R(1) will also be diagonal, which in

turn implies that when the next user is added to the system, it will also see a diagonal noise-plus-

interference autocorrelation matrix in its corresponding inverted channel problem, and so on, for

remaining users added one by one into the system. After all users are added, we may begin again

with an arbitrarily chosen user. Regardless, the noise/interference structure seen by that user is

still diagonal and the chosen user will occupy a subspace spanned by canonical vectors. Thus,

sequential application of the eigen-algorithm for interference avoidance will yield at equilibrium

diagonal matrices R(k), k = 1, . . . , L. Using equation (2.52) to relate R(k) and R we get the

desired result – R is also diagonal.

In conclusion, there exists a fixed point of the multiuser eigen-algorithm for which the covari-

ance matrix R of the received signal is diagonal with eigenvalues corresponding to a water filling

distribution for all users in their respective inverted channel problems.

4In all experiments using diagonal noise covariances W, no matter which version of interference avoidance was
used (codeword update ordering), a scaled identity received covariance structure was obtained. However, we could not
prove in general that this was the only structure which could result from application of the algorithm. We therefore
constructed a not too implausible scenario under which a diagonal received signal covariance will be obtained.
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signal space dimensions occupied by user i through "water filling" of corresponding inverted channel signal space

Figure 2.4: Example of “water filling” for two distinct users. Due to the different interference-plus-
noise levels on different signal space dimensions, users i and j span different (possibly overlapping)
subspaces.
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2.5.4 Optimality of the Eigen-Algorithm Fixed Point: Water Filling the In-

verted Channel

We now seek to show that the fixed point of the eigen-algorithm where each user has water filled

its own inverted signal space corresponds to a signal constellation which maximizes sum capacity.

To do so, we derive an expression for sum capacity in the context of our formulation and show that

it is maximized by any signal set which satisfies the fixed point of the eigen-algorithm.

In order to maximize the sum capacity in equation (2.39) for the multiple access channel defined

by equation (2.31), the eigenvalues of the received signal covariance matrix R must be solutions of

the following optimization problem

max
s
(�)
m , m=1,...,M�, �=1,...,L

Csum (2.53)

subject to some power constraint on the codewords. Since unit energy codewords have been assumed

for all users, the power constraint is written as

Trace
[
S�S�

�

]
= M�, ∀� = 1, . . . , L (2.54)

We note that the second term in equation (2.39) is fixed and therefore sum capacity is maximized

when the first term is maximized. Let us denote the vector of eigenvalues of R in equation (2.33)

by µ in decreasing order µ1 ≥ µ2 ≥ . . . ≥ µN .

First, we show by using results from majorization theory [38] that sum capacity is upper bounded

by the case corresponding to R being a diagonal matrix. We rewrite equation (2.39) in terms of

eigenvalues of matrices involved as

Csum =
1
2

N∑
i=1

log µi −
1
2

N∑
i=1

log σi (2.55)

and note again that the function g(µ) =
∑N

i=1 log µi is Schur concave which implies that for any

two vectors µ and µ′ such that µ ≺ µ′ we have g(µ) ≥ g(µ′). The following majorization result

(theorem 9.C.1. in [38]) which we state as a lemma is useful.

Lemma 2.2 : Let H and H̄ be n× n symmetric matrices of the form

H =


 H11 H12

H21 H22


 , H̄ =


 H11 0

0 H22



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with matrices H11 and H22 of dimensions l × l, respectively m ×m (l + m = n) and other block

matrices of appropriate dimensions (0 denotes a matrix with all elements equal to zero). Then

λ̄ ≺ λ

that is, the eigenvalues λ of H majorize the eigenvalues λ̄ of H̄.

Since |H̄| = |H11||H22|, using Lemma 2.2 recursively one obtains the Hadamard inequality

formulated in terms of majorization theory: the eigenvalues of a symmetric matrix majorize the

diagonal elements5. From the sum capacity point of view this result has an important implication

which we state as a lemma.

Lemma 2.3 : For any non-diagonal matrix A with sum capacity CA there exists a diagonal

Q with Trace [A] = Trace [Q] such that the sum capacity CQ ≥ CA. Thus, we may maximize sum

capacity by searching only over diagonal Q.

Now consider that W and all the Λ� are diagonal. So ignoring the question of existence for

now, let us assume that at the optimum point all the products S�S�
� , ∀� = 1, . . . , L, will also be

diagonal matrices with eigenvalues �(�)
n , n = 1, . . . , N . Thus we can write them as

S�S�
� =




�
(�)
1

. . .

�
(�)
n

. . .

�
(�)
N




(2.56)

We can then write

detR =
N∏

n=1

(
L∑

�=1

λ(�)
n �(�)

n + σn

)
(2.57)

which implies that we can re-state the constrained optimization problem in equations (2.53)–(2.54)

as

5The well-known Hadamard inequality states that the determinant of a positive semidefinite matrix is upper
bounded by the product of its diagonal elements. This can be seen as a consequence of the majorization relation
between eigenvalues and diagonal elements.
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maximize
1
2

N∑
n=1

log

(
1 +

1
σn

L∑
�=1

λ(�)
n �(�)

n

)
(2.58)

subject to the constraints

Trace
[
S�S�

�

]
=

N∑
n=1

�(�)
n = M�, ∀� = 1, . . . , L (2.59)

and

�(�)
n ≥ 0, ∀� = 1, . . . , L, n = 1, . . . , N (2.60)

Theorem 2.6 : The eigenvalue distribution for the codeword ensemble that maximizes sum

capacity corresponds to a water filling solution in the inverted channel signal space for each user.

Proof: See Appendix 2.B.

We then note that the expression for capacity is concave in the �(i)
n . Thus, any solution which

satisfies the extremal conditions of Theorem 2.6 must also be optimal. Since the water filling

distribution of eigenvalues along with the diagonal structure implied by the codeword ensemble

that maximizes sum capacity is identical with that attained by application of the multiuser eigen-

algorithm (Theorems 2.4 and 2.5) we conclude that interference avoidance generates an optimal

codeword ensemble which maximizes sum capacity of the multiaccess dispersive channel.

Finally, it is worth noting that the solution of the constrained optimization problem in equations

(2.53)–(2.54) corresponds in fact to the optimal power distribution for all users along the signal

space dimensions for the codeword ensemble that maximizes sum capacity of the given multiaccess

dispersive channel. This is so because diagonal elements in S�S�
� represent the amount of power

(energy) put by user � into the corresponding signal space dimension. This comes in agreement

with recent results [94] which show that a simultaneous water filling solution in which all R(k) =

Λ−1/2
k RΛ−1/2

k are water filling solutions to the problem

max
SkS�

k

[
detR(k)

]
= max

SkS�
k


det


SkS�

k + Λ−1/2
k


∑

� �=k

Λ1/2
� S�S�

� Λ1/2
� + W


Λ−1/2

k




 (2.61)

attains the largest possible sum capacity. Also, from the perspective of the algorithm defined in [94]

the multiuser eigen-algorithm is an instance of iterative water filling.
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2.6 An Alternative Algorithm for Interference Avoidance

We have seen in the previous section that the multiuser version of the eigen-algorithm converges to a

fixed-point where the sum capacity of the multiaccess channel is maximized. The algorithm is based

on updating all codewords of a given user in a sequence until convergence and then moving on to

another user. We have found in practice, however, that regardless of the order in which codewords

are replaced, sum capacity of the multiple access channel is always maximized. Although we have

been unable to prove this result in general, we have identified an alternative interference avoidance

algorithm for which we also prove convergence to the maximum sum capacity.

The Maximum Capacity Increase Algorithm for Interference Avoidance

1. Start with a randomly chosen codeword ensemble specified by the user codeword matrices

S1, . . . ,SL

2. Define the equivalent problems for all users k as in equation (2.34)

3. Identify the codeword s(k)
m whose replacement will maximally increase sum capacity. If no

codeword will increase sum capacity, and suboptimal maxima escape methods [62] are inef-

fective for improvement, then stop. Otherwise,

(a) adjust s(k)
m : replacement by the minimum eigenvector of the autocorrelation matrix of

the corresponding interference-plus-noise process in equation (2.35)

(b) Return to step 2

We will prove in a moment that this procedure guarantees convergence of the codeword ensembles

to sets which water fill their inverted channels. We note however, that we do not claim in any

algorithm (the multiuser eigen-algorithm or the maximum capacity increase algorithm) that the

codewords converge, but rather that they converge in class [62].

First we note that because at each step of the maximum capacity increase algorithm is a greedy

interference avoidance procedure, it cannot decrease sum capacity (Theorem 2.3). Furthermore,

the maximum capacity increase algorithm stops only if sum capacity cannot be increased. Thus,

the sequence of sum capacity values along any update trajectory must be strictly increasing. This

observation leads to the following theorem.
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Theorem 2.7 : In the limit, the maximum capacity increase algorithm for interference avoidance

produces codewords s(k)
m which are eigenvectors of R(k), k = 1, 2, . . . , L, m = 1, 2, . . . ,Mk.

Proof: Let kp be the user index and mp the codeword index for that user chosen for update at

algorithm step p. Let the N eigenvalues {γi} of R(kp)
mp be ordered from largest to smallest and let

the associated eigenvectors be {φi}. Then, Cp, the sum capacity after each step p of the algorithm

is

Cp =
1
2

log
∣∣∣R(kp)

mp + φNφ
�
N

∣∣∣− 1
2

log |W| + 1
2

log
∣∣Λkp

∣∣ (2.62)

The change in sum capacity can then be written as

Cp − Cp−1 = ∆p =
1
2

log
∣∣∣R(kp)

mp + φNφ
�
N

∣∣∣− 1
2

log
∣∣∣R(kp)

mp + s(kp)
mp (s(kp)

mp )�
∣∣∣ > 0 (2.63)

which we rewrite as

e−2∆p =

∣∣∣R(kp)
mp + s(kp)

mp (s(kp)
mp )�

∣∣∣∣∣∣R(kp)
mp + φNφ

�
N

∣∣∣ (2.64)

Then we note that for

Φ =
[
φ1 φ2 · · · φN

]
(2.65)

and

Γ =




γ1 0 · · · · · · 0

0 γ2 0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0

0 0 · · · 0 γN




(2.66)

we have

R(kp)
mp = ΦΓΦ� (2.67)

so that

R(kp)
mp + φNφ

�
N = Φ




Γ +




0 · · · · · · 0
...

. . . · · ·
...

...
... 0 0

0 · · · · · · 1







Φ� (2.68)
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This allows us to rewrite equation (2.64) as

e−2∆p =

∣∣∣∣∣∣∣∣∣∣∣∣∣




1 · · · · · · 0
...

. . . · · ·
...

...
... 1 0

0 · · · · · · γN
1+γN




+ Γ−1/2Φ�s(kp)
mp (s(kp)

mp )�ΦΓ−1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.69)

Finally, we can rewrite s(kp)
mp as

s(kp)
mp =

N∑
i=1

aiφi (2.70)

where
∑

i a
2
i = 1. We then have

e−2∆p =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




1 · · · · · · 0
...

. . . · · ·
...

...
... 1 0

0 · · · · · · γN
1+γN




+




a1√
γ1

a2√
γ2

...
aN−1√
γN−1

aN√
1+γN




[
a1√
γ1

a2√
γ2

· · · aN−1√
γN−1

aN√
1+γN

]
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.71)

Now, we note that there are N − 2 vectors of the form

ψi =




ψi1

ψi2

...

ψi(N−1)

0




(2.72)

i = 1, 2, . . . , N − 2 for which

ψ�
i




a1√
γ1

a2√
γ2

...
aN−1√
γN−1

aN√
1+γN




= 0 (2.73)
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We then note that if we define

Z =




1 · · · · · · 0
...

. . . · · ·
...

...
... 1 0

0 · · · · · · γN
1+γN




+




a1√
γ1

a2√
γ2

...
aN−1√
γN−1

aN√
1+γN




[
a1√
γ1

a2√
γ2

· · · aN−1√
γN−1

aN√
1+γN

]
(2.74)

then

Zψi = ψi (2.75)

i = 1, 2, . . . , N − 2 so the ψi are eigenvectors of Z and the remaining eigenvectors reside in a space

spanned by the orthogonal vectors

x1 =




a1√
γ1

a2√
γ2

...
aN−1√
γN−1

0




(2.76)

and

x2 =




0
...

0

1




(2.77)

This allows us to define a unitary matrix

U =
[
ψ1 ψ2 · · · ψN−2 x1/‖x1‖ x2

]
(2.78)

such that

|U�ZU| =




1 0 · · · · · · 0
...

. . . · · · · · ·
...

...
... 1 · · · 0

...
... 0 ‖x1‖2 + 1 ‖x1‖ aN√

1+γN

0 · · · · · · ‖x1‖ aN√
1+γN

γN+a2
N

1+γN




(2.79)
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Since |Z| = |U�ZU| we have

|Z| =
1

1 + γN

(
γN +

N∑
i=1

a2
i

γN

γi

)
(2.80)

We now consider the constraints on the ai when ∆p is small. We have

e−2∆p = 1 − ε =
1

1 + γN

(
N∑

i=1

a2
i

γN

γi
+ γN

)
(2.81)

where ε > 0. We can rewrite this as

(1 − ε)(1 + γN ) = 1 − ε′ =
N∑

i=1

a2
i

γN

γi
(2.82)

which we can further rewrite as

ε′ =
N∑

i=1

a2
i (1 − γN

γi
) (2.83)

since
∑N

i=1 a
2
i = 1. We then note that the coefficients γN/γi < 1 unless γi = γN since we assumed

eigenvalues ordered from largest to smallest so that all terms in the sum are non-negative. Therefore,

ε′ ≥ a2
i (1 − γN

γi
) (2.84)

i = 1, 2, . . . , N . So as ε′ → 0 we must have each term in the sum approach zero as well. Thus,

for large enough p, we cannot simultaneously have large ai and γN/γi differing greatly from 1 –

which implies that in the limit of p → ∞ (ε′ → 0), the codeword to be replaced, s(kp)
mp approaches

a minimum eigenvector of R(kp)
mp . Finally, since it was assumed that s(kp)

mp was chosen to maximally

increase the sum capacity, then for any other codeword s(k)
m the corresponding change in sum

capacity could only be smaller were that codeword replaced. Therefore, if at algorithm step p the

ai associated with s(kp)
mp are tightly bound by equation (2.84), then the corresponding coefficients for

every other codeword in the system are similarly bound at step p as well. Thus, all the codewords

in the ensemble simultaneously approach minimum eigenvalue eigenvectors of their corresponding

R(k)
m . And since R(k) = R(k)

m + sk
m(sk

m)�, the maximum capacity increase algorithm produces

codeword ensembles in the limit for which all codewords s(k)
m are eigenvectors of R(k) – which

proves the theorem.
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Theorem 2.8 : The maximum capacity increase algorithm for interference avoidance produces

codeword matrices Sm which water fill their associated inverted channel problem defined by equation

(2.34).

Proof: There may exist fixed points where all codewords are eigenvectors of their associated

inverted channel covariance matrices, but which do not correspond to water filling solutions [63].

However, by [62], these suboptimal fixed points can be escaped as part of the algorithm and sum

capacity further increased. Since the maximum sum capacity increase algorithm for interference

avoidance does not stop unless each user codeword ensemble is a water filling solution to that user’s

inverted channel problem, its application must result in water filling codeword ensembles Sm for

all users.

So in summary, there are at least two interference avoidance algorithms for use with dispersive

channels which guarantee convergence to maximum sum capacity ensembles. The multiuser eigen-

algorithm is similar to iterative water filling [94] while the maximum capacity increase algorithm

is not, though the end result of sum capacity maximization is the same.

2.7 Additional Properties and Generalization

In this section, properties of optimal codeword ensembles that maximize sum capacity are derived

using properties of interference avoidance algorithms under a loose set of constraints on the channel

gain matrices {Λi}. We note that these properties have been mentioned informally for multiuser

DMT systems [17] and can also be found in recent work [44].

We start with the following theorem:

Theorem 2.9 : If the codewords of two given users each span the whole signal space R
N then

these users must have identical channels.

Proof: At the fixed point of the eigen-algorithm we can write for users i and j

Λ−1/2
i RΛ−1/2

i SiS�
i = µiSiS�

i

Λ−1/2
j RΛ−1/2

j SjS�
j = µjSjS�

j

(2.85)

Since both users span the signal space, matrices SiS�
i and SjS�

j are invertible, and by post-

multiplying by their inverses followed by appropriate multiplication by the channel eigenvalue
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matrix we get

R = µiΛi = µjΛj (2.86)

which implies that the channel eigenvalue matrix of user i is a scaled version of the channel eigen-

value matrix of user j

Λi =
µj

µi
Λj (2.87)

Therefore, both users i and j must see the same channel if each user’s codeword ensemble spans N

dimensions.

Note that Theorem 2.9 is a first indication that the signal space is frequency partitioned at a

fixed point. That is, codeword matrices of users with different channel eigenvalue matrices cannot

contain all frequency components.

Next, we make the following assumption:

Assumption I: The ratio of channel eigenvalues for any pair of users i �= j is different for different

dimensions r �= s corresponding to sinusoids with different frequencies fr �= fs.

λ
(i)
r

λ
(j)
r

�= λ
(i)
s

λ
(j)
s

∀i �= j ∈ {1, . . . , L}, r �= s, fr �= fs (2.88)

This is a reasonable assumption for some level of precision ε in the representation of channel

eigenvalue matrices since a small perturbation O(ε) will spoil any potential equality. We note

however, that for two dimensions which are sinusoids of the same frequency (sine and cosine), the

ratio of channel eigenvalues must be identical since we presume real-valued signals.

Using equation (2.52) the eigenvalue σ(i)
r for dimension r in the inverted channel signal space of

user i can be related to the “water level” µj corresponding to dimension r in the inverted channel

signal space of user j (see Figure 2.4) by

σ(i)
r = µj

λ
(j)
r

λ
(i)
r

(2.89)

Theorem 2.10 : No two users can reside in subspaces that overlap in more than one frequency.

Proof: For any dimension r in which users i and j overlap equation (2.52) implies

µiλ
(i)
r = µjλ

(j)
r (2.90)
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which can also be rewritten as
λ

(i)
r

λ
(j)
r

=
µj

µi
(2.91)

Under Assumption I (equation (2.88)) that the ratio of channel eigenvalues for users i and j is

different for different dimensions corresponding to different frequencies, then equation (2.91) is

true for one and only one frequency fr. Hence, any pair of users with codeword matrices Si �= Sj

can overlap at most in one frequency at equilibrium.

Note that the theorem can also be proven by using the inverted channel signal space water filling

equations for users i and j. That is, assuming both users put power in the same two frequencies

results in a relation which contradicts Assumption I.

Use of the eigen-algorithm for interference avoidance implies the following property for the fixed

point of the interference avoidance algorithm for multiaccess dispersive channels.

Theorem 2.11 : If two users i and j reside in overlapping subspaces, then the overlap occurs in

a minimum gain ratio dimension.

Proof: Under the assumption of Theorem 2.4 that each user takes full advantage of the signal

space dimensionality, i.e. the number of symbols for each user Mk is at least N , it follows from [62]

that after convergence of interference avoidance, for any user i the eigenvalue µi is the smallest of

all the eigenvalues of R(i). Therefore

µi ≤ σ(i)
r ∀ r = 1, . . . , N (2.92)

Hence, for any pair of users i and j we can write that

µj ≤
λ

(i)
s

λ
(j)
s

µi ∀ s = 1, . . . , N (2.93)

If users i and j overlap in dimension r then

µj =
λ

(i)
r

λ
(j)
r

µi ≤
λ

(i)
s

λ
(j)
s

µi (2.94)

Let us denote by

gs(i, j) =
λ

(i)
s

λ
(j)
s

(2.95)
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the gain ratio of user i over user j in dimension s. Then equation (2.94) indicates that overlap

occurs in a dimension r which corresponds to a minimum gain ratio for user i over user j. Since

equation (2.94) can be rewritten as

µi =
λ

(j)
r

λ
(i)
r

µj ≤
λ

(j)
s

λ
(i)
s

µj (2.96)

the same is true for user j, i.e. dimension r corresponds to minimum gain ratio for user j over user

i as well. Note that the minimum gain ratio for a given user is taken only over those dimensions

spanned by that user.

Some remarks in connection with Theorem 2.10 can be made at this point. The fact that in the

optimal codeword ensemble two users cannot overlap in more than one frequency generalizes (for

a fixed number of users) as the number of signal space dimensions N → ∞ to distinct frequency

bands for different users.6 Such Frequency Division Multiple Access (FDMA) is well-known to

maximize the total capacity of multiple access channels with ISI [11].

2.8 Chapter Summary

Interference avoidance methods have been applied to codeword optimization in the uplink of a

CDMA system. For a single user, by using a sufficiently long symbol interval so that intersymbol

interference is essentially eliminated, along with a sinusoidal basis for the signal space, the problem

is cast as a multiuser detection problem for which application of interference avoidance methods

to codeword optimization becomes straightforward. We note that the real-valued signal space

representation using separate dimensions for sine and cosine of the same frequency introduced in

section 2.3 is the natural framework for interference avoidance methods, and that complex-valued

representations fail to give meaningful results (see Appendix 2.C).

The use of uniform energy codewords which maximize sum capacity allows matched filters to be

used as the optimal linear receivers [84,85]. In our context this implies a simple receiver structure

consisting of a matched filter bank for each user � and identical independent modulation of the M�

symbol streams associated with user �. Such receivers composed of many identical structures might

6As the number of dimensions, (implicitly frequencies in our case) that span the signal space increases to infinity,
overlap on a set of dimensions of zero measure implies that different users do not overlap at all.
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be good candidates for integration. We also note that the outputs of the matched filters might be

further processed using various multiuser detection techniques [83]).

For multiple users we show, using the same signal space approach, that interference avoidance

also yields optimal ensemble of codewords which maximize sum capacity. Although the results

were presented in terms of sequential application for each set of user signatures, or in terms of a

global selection of the codeword which will improve sum capacity most at each step, we have found

empirically that optimal ensembles are achieved under a variety of codeword update selection

methods, including random update. Though this is not too surprising given Theorem 2.3, it does

bear mentioning since it suggests that interference avoidance in dispersive systems is robust. Also

worthy of mention is the observation that empirically, the codewords also seem to converge even

though the interference avoidance algorithms presented only guarantee convergence in class – where

codeword ensemble properties converge, but not necessarily the individual codewords within the

ensemble [62]. Next we note that various properties of optimal codeword ensembles are implied

from fixed-point properties of interference avoidance algorithms and are derived in the paper7. Of

particular note, we find that under reasonably loose assumptions on the channel gain matrices, two

given users can overlap in at most one frequency. And when taken together with the optimality of

matched filter receivers, single frequency overlap can drastically reduce the receiver complexity, an

issue which will be further explored in chapter 7.

Finally, results in this chapter suggest that interference avoidance might also be used in related

problems where multiple users are constrained to different portions of the signal space, with possible

overlap between spaces. Of particular interest are MIMO channels which result when multiple

inputs and outputs are used for communications. Example of such channels are multiple antenna

systems in which transmitter and receiver diversity are used to combat multipath [59] and fading

effects [18, 19, 39]. Application of interference avoidance to such channels is presented in detail in

Chapter 5.

7Some of these properties have also been independently derived by other researchers. The fact that users cannot
span the whole signal space and they overlap in at most one frequency was mentioned in [17]. Recent work on
multicarrier systems [44] mentions also the property of carrier sharing implied by the relative channel gain ratios.
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2.A Proof of Lemma 2.1

Let us denote by µ the vector of eigenvalues of V before the replacement, indexed in decreasing

order µ1 ≥ µ2 ≥ . . . ≥ µN , and by µ′ the eigenvalues after replacement, also in decreasing order.

Let us also denote by ν the eigenvalues of Q, indexed in decreasing order as well.

Note that by the spectral factorization theorem [72, p. 296] we have

Q =
N∑

n=1

νnvnv�
n (2.97)

where the vn, n = 1, . . . , N , are the eigenvectors of Q.

After application of the eigen-algorithm for interference avoidance and replacement of x by vN ,

the minimum eigenvector of Q, the resulting matrix can be expressed as

V′ = Q + vNv�
N =

N−1∑
n=1

νnvnv�
n + (νN + 1)vNv�

N (2.98)

Therefore, the eigenvalues of V′ after replacement µ′ will be ν1, . . . , νN−1, νN + 1. However, they

are no longer in decreasing order, since νN +1 may no longer correspond to the smallest eigenvalue,

but can appear in the sequence at some index k∗. Hence, the partial sums of eigenvalues of V′ can

be written as follows

µ′1 = max(ν1, νN + 1)

µ′1 + µ′2 = max(ν1 + ν2, ν1 + νN + 1)
...

...

µ′1 + µ′2 + . . .+ µ′n = max(ν1 + ν2 + . . .+ νn−1 + νn, ν1 + ν2 + . . . + νn−1 + νN + 1)
...

...

(2.99)

By using the Rayleigh quotient [72] we can bound partial sums of eigenvalues of matrix V before

replacement as follows. The largest eigenvalue

µ1 = max
‖y‖=1

y�(Q + xx�)y (2.100)

can be lower bounded by

µ1 ≥ max
‖y‖=1

(y�Qy) + min
‖y‖=1

(y�xx�y) = ν1 (2.101)
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The first term in equation (2.101) is ν1 (the maximum eigenvalue of Q) while the second8 is 0. On

the other hand, we can also lower bound equation (2.100) by

µ1 ≥ min
‖y‖=1

(y�Qy) + max
‖y‖=1

(y�xx�y) = νN + 1 (2.102)

with the first term corresponding to νN (the minimum eigenvalue of Q) and the second term being

equal to 1. By combining equations (2.101) and (2.102) we get

µ1 ≥ max(ν1, νN + 1) (2.103)

which implies that

µ1 ≥ µ′1 (2.104)

Following [72] we can write the sum of the two largest eigenvalues of Q before replacement as

µ1 + µ2 = max
‖y1‖=1,‖y2‖=1,y2⊥y1

y�
1 (Q + xx�)y1 + y�

2 (Q + xx�)y2 (2.105)

Reasoning as before, we can lower bound equation (2.105) by

µ1 + µ2 ≥ max
‖y1‖=1,‖y2‖=1,y2⊥y1

(y�
1 Qy1 + y�

2 Qy2)

+ min
‖y1‖=1,‖y2‖=1,y2⊥y1

(y�
1 xx�y1 + y�

2 xx�y2) = ν1 + ν2

(2.106)

with the first term representing the sum of the two largest eigenvalues of Q and the last term being

zero as the sum of two smallest eigenvalues of rank 1 matrix xx�. Also

µ1 + µ2 ≥ max
‖y1‖=1

(y�
1 Qy1) + min

|y2‖=1,y2⊥y1

(y�
2 Qy2)

+ max
‖y1‖=1,‖y2‖=1,y2⊥y1

(y�
1 xx�y1 + y�

2 xx�y2) = ν1 + νN + 1

(2.107)

since the first term represents the largest eigenvalue of Q, the second represents the smallest

eigenvalue of Q, and the last term is one, as the sum of first two largest eigenvalues of rank 1

matrix xx�. By combining equations (2.106) and (2.107) we get

µ1 + µ2 ≥ max(ν1 + ν2, ν1 + νN + 1) (2.108)

8xx� is a matrix of rank 1 with one eigenvalue equal to one and the rest equal to zero.



49

which implies in a similar way that

µ1 + µ2 ≥ µ′1 + µ′2 (2.109)

Equations (2.104) and (2.109) can be extended to

n∑
i=1

µi ≥
n∑

i=1

µ′i, n = 1, . . . , N − 1 (2.110)

For the case n = N we have that

N∑
i=1

µi = Trace
[
Q + xx�

]
= Trace [Q] + 1 (2.111)

and
N∑

i=1

µ′i = Trace
[
Q + vv�

]
= Trace [Q] + 1 (2.112)

which implies that
N∑

i=1

µi =
N∑

i=1

µ′i (2.113)

Equations (2.110) and (2.113) imply the desired result

µ � µ′ (2.114)

i.e. the eigenvalues of V after replacement µ′1, . . . , µ
′
N are majorized [38] by the eigenvalues V

before the replacement µ1, . . . , µN .

2.B Proof of Theorem 2.6

In order to solve the constrained optimization problem defined by equations (2.58)-(2.60) we use

the Lagrange multipliers method and construct

J =
1
2

N∑
n=1

log

(
1 +

1
σn

L∑
�=1

λ(�)
n �(�)

n

)
+ ξ1

(
N∑

n=1

�(1)
n −M1

)
+ . . .+ ξL

(
N∑

n=1

�(L)
n −ML

)
(2.115)

and then compute the derivative for user i, dimension n, i.e.

∂J

∂�
(i)
n

=
1
2
· 1

1 +
1
σn

L∑
�=1

λ(�)
n �(�)

n

· λ
(i)
n

σn
+ ξi (2.116)
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According to the Kuhn-Tucker theorem [7, p. 429] the necessary and sufficient conditions for

maximizing J are
∂J

∂�
(i)
n

≥ 0 (2.117)

with equality if �(i)
n �= 0. For those dimensions n for which �(i)

n �= 0 equation (2.116) can be rewritten

as
λ

(i)
n

σn +
L∑

�=1

λ(�)
n �(�)

n

+ 2ξi = 0 (2.118)

By taking all the derivatives for n = 1, . . . , N for user i we get the equalities

λ
(i)
n1

σn1 +
L∑

�=1

λ(�)
n1
�(�)

n1

= . . . =
λ

(i)
Ni

σNi +
L∑

�=1

λ
(�)
Ni
�

(�)
Ni

(2.119)

for all those dimensions n = n1, . . . , Ni corresponding to non-zero �(i)
n . This can also be rewritten

as
1

�(i)
n1

+
σn1

λ
(i)
n1

+
1

λ
(i)
n1

L∑
�=1,� �=i

λ(�)
n1
�(�)

n1

= . . . =
1

�
(i)
Ni

+
σNi

λ
(i)
Ni

+
1

λ
(i)
Ni

L∑
�=1,� �=i

λ
(�)
Ni
�

(�)
Ni

(2.120)

The equalities in equation (2.120) define water filling under channel inversion for user i and they

yield the distribution of power along signal space dimensions for user i. Note that equation (2.120)

is exactly the classical water filling equation (see for example [15]) for the case when user i has a flat

channel, and both noise and interference coming from other users in each signal space dimension

is scaled by the corresponding channel eigenvalue of user i.

2.C Complex Channel Models and Interference Avoidance

The real channel model introduced in section 2.3 can be easily extended to accommodate complex-

valued channels. However, there are serious pitfalls to naive application of the usual complex

vector formulation seen typically in the OFDM literature. Furthermore, even more sophisticated

application results in difficulties with signal realization.

To proceed, we first note that any signal at the channel input

x(t) =
N∑

n=1

x2n−1 cos(2πfnt) + x2n sin(2πfnt) (2.121)
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can be rewritten as

x(t) = Re

{
N∑

n=1

(x2n−1 + jx2n)e−j2πfnt

}
(2.122)

where by Re{·} we have denoted the real part of the complex argument. Using the following vector

notation for the real, respectively complex, bases of the signal space

Ψ(t) =




cos(2πf1t)

sin(2πf1t)
...

cos(2πfnt)

sin(2πfnt)
...

cos(2πfN t)

sin(2πfN t)




∈ R
2N Ψ̃(t) =




e−j2πf1t

...

e−j2πfnt

...

e−j2πfN t



∈ C

N (2.123)

and

x =




x1

x2

...

x2n−1

x2n

...

x2N−1

x2N




∈ R
2N x̃ =




x1 + jx2

...

x2n−1 + jx2n

...

x2N−1 + jx2N




=




x̃1

...

x̃n

...

x̃N



∈ C

N (2.124)

we can rewrite equations (2.121) and (2.122) in vector form as

x(t) = Ψ(t)�x = Re{Ψ̃(t)�x̃} (2.125)

Following the usual representation of signals [27, p. 725] one can regard the N -dimensional complex

signal vector x̃ as the complex equivalent of the 2N -dimensional real signal vector x with x2n−1

and x2n being the n-th in-phase and quadrature components.

A linear and time invariant dispersive channel characterized by impulse response h(t) or equiv-

alently by transfer function H(f) = F{h(t)} will introduce amplitude distortion λn = |H(fn)| and
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phase shift ϕn = arg{H(fn)} for all frequencies n = 1, . . . , N . Thus, the output y(t) corresponding

to input x(t) is written as

y(t) =
N∑

n=1

λnx2n−1 cos(2πfnt+ ϕn) + λnx2n sin(2πfnt+ ϕn)

= Re

{
N∑

n=1

λn(x2n−1 + jx2n)e−j2πfntejϕn

} (2.126)

By defining the complex channel gains λ̃n = λne
jϕn = H(fn), n = 1, . . . , N and the complex

channel gain matrix Λ̃ = diag{λ̃1, . . . , λ̃N} the channel output can be rewritten in complex vector

form as

ỹ = Λ̃x̃ (2.127)

At the receiver, the output signal y(t) is corrupted also by additive Gaussian noise n(t) so that the

complex received vector is

r̃ = Λ̃x̃ + ñ (2.128)

with ñ containing the “in-phase” and “quadrature” noise components corresponding to n(t).

Now, assume that the input signal x(t) is generated by sending information using the multicode

CDMA approach

x(t) =
M∑

k=1

bksk(t) =
M∑

k=1

bk

[
N∑

n=1

sk,2n−1 cos(2πfnt) + sk,2n sin(2πfnt)

]
(2.129)

In vector form the transmitted signal is written as

x(t) = Ψ(t)�Sb (2.130)

with 2N ×M real codeword matrix S having as columns the 2N -dimensional real signal vectors

corresponding to the signature waveforms used for transmission. Using the outlined approach the

real codeword matrix S has the complex equivalent S̃ which is an N ×M complex matrix having as

columns the N -dimensional complex signal vectors corresponding to the signature waveforms used

for transmission. Thus, the input signal can be rewritten as

x(t) = Re{Ψ̃(t)�S̃b} (2.131)
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Accordingly, the received signal is equivalent to the complex signal vector given by the matrix

equation

r̃ = Λ̃S̃b + ñ (2.132)

However, we note that even though equation (2.132) is identical in form to the single user

dispersive channel equation (2.18) the eigen-algorithm cannot be applied. In illustration, consider

the simplest case, N = 1. In the real channel model of section 2.3 this corresponds to a 2-

dimensional signal space spanned by the sine and cosine functions and for M = 2 symbols one

can always find two orthogonal signal vectors. However, the complex channel model has only one

dimension and it is impossible to find two orthogonal signal vectors so that M = 2 symbols will

not interfere with each other during the transmission. Fixing this problem would require awkward

redefinition of inner products and orthogonality which seems not worth pursuing.

Alternatively, one can represent equation (2.121) using the complex Fourier series approach as

x(t) =
N∑

n=1

[
1
2
(x2n−1 + jx2n)e−j2πfnt +

1
2
(x2n−1 − jx2n)ej2πfnt

]
(2.133)

which results in a 2N -dimensional complex signal space representation spanned by Ψ̃(t) with an

equivalent 2N -dimensional complex codeword vector x̃

Ψ̃(t) =




e−j2πf1t

ej2πf1t

...

e−j2πfnt

ej2πfnt

...

e−j2πfN t

ej2πfN t




∈ C
2N x̃ =




1
2 (x1 + jx2)

1
2 (x1 − jx2)

...

1
2 (x2n−1 + jx2n)

1
2 (x2n−1 − jx2n)

...

1
2(x2N−1 + jx2N )

1
2(x2N−1 − jx2N )




=




x̃1

x̃∗1
...

x̃n

x̃∗n
...

x̃N

x̃∗N




∈ C
2N (2.134)

where z∗ denotes the complex conjugate of z. We note the complex conjugate symmetry in complex

signal vector x̃ which is implied by the real signal x(t).

In this approach, the response of a linear and time invariant channel characterized by the same
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transfer function H(f) due to input signal x(t) is

y(t) =
N∑

n=1

λnx2n−1 cos(2πfnt+ ϕn) + λnx2n sin(2πfnt+ ϕn)

=
N∑

n=1

[
1
2
(x2n−1 + jx2n)λne

−j2πfntejϕn +
1
2
(x2n−1 − jx2n)λne

j2πfntejϕn

] (2.135)

With the same complex channel gain definition λ̃n = λne
jϕn = H(fn) the channel output can be

written in the vector notation

ỹ = Λ̃x̃ (2.136)

with complex gains in conjugate pairs

Λ̃ = diag{λ̃1, λ̃
∗
1, . . . , λ̃N , λ̃

∗
N}

With the input signal generated according to the multicode CDMA equation (2.129) the complex

received signal vector will be given a matrix equation identical in form to equation (2.132) but in

which the complex codeword matrix S̃ is of dimension 2N × M , with each column having the

complex conjugate symmetry property implied by real signature waveforms. We note that even

though application of interference avoidance is possible in this case and would result in optimal

codeword ensembles, the codewords can correspond to non-realizable signature waveforms since

there is no guarantee in general that minimum eigenvectors of Hermitian matrices display the

complex conjugate symmetry necessary for real signals.

Thus, the sine/cosine formulation used in this chapter is the natural one for application of

interference avoidance to dispersive systems.
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Chapter 3

Interference Avoidance and Fading Channels

Application of interference avoidance to dispersive channels has been presented in detail in Chap-

ter 2 where it has been shown that interference avoidance algorithms yield codeword ensembles

which maximize sum capacity. However, the time-varying nature of fading and multipath envi-

ronments characteristic of wireless channels introduces additional challenges. As time variations

appear to be unpredictable, wireless channels have randomly time variant impulse responses and

are characterized statistically – which further implies that the sum capacity as defined in Chapter 2

will also be a random variable.

In a survey paper on fading channels [5] it was emphasized that capacity is the most important

information-theoretic measure for characterization of communication over fading channels, although

other information-theoretic measures like error exponents and cutoff rates are also used in the

literature. However, as pointed out in [19], determining capacity for fading channels is still an open

research topic. Specifically, the uncertainty of the channel realization introduces another unknown

so that relatively recent results (e.g., [21]) only provide an upper bound for capacity since complete

channel information is assumed. Furthermore, the extent to which such information is accurate

can be a critical consideration.

In [19] capacity was considered as a random variable and Complementary Cumulative Distri-

bution Functions (CCDFs) were found. Such CCDFs allow outage probability evaluation for given

signaling schemes and fading channel models. In [41] a different approach was taken by connecting

time variation of the channel with an error in channel measurement. This connection is reasonable

since a time-invariant channel can be measured with arbitrary precision without rate penalty, while

stochastic time variation implies that extra information (the channel state) must also be conveyed

– resulting in a rate penalty. In this framework, the effect of imperfect knowledge of the channel on

mutual information is analyzed, and lower and upper bounds on channel capacity are established.
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It is also shown that as the measurement error vanishes these bounds become tight.

In this chapter we analyze sum capacity of multiaccess fading channels in the context of inter-

ference avoidance algorithms. In the case of quasistatic fading channels with large coherence times,

channel parameters can be estimated and are assumed to be known for the duration of the trans-

mission. Then, interference avoidance algorithms can be applied and optimal codeword ensembles

that maximize sum capacity can be computed and used for transmitting information. From time

to time, codewords are eventually updated according to variations of the channel.

When the coherence time of the channel is small, implying a dynamic channel, it may not be

possible to estimate channel characteristics and perform interference avoidance for each and every

channel realization. Specifically, by the time the channel has been estimated sufficiently well and

new optimal codewords calculated, the channel may have changed to a new realization. A more

realistic approach in this case is to use the average characteristics of the channel and compute

codeword ensembles that are optimal for the average channel. These codeword ensembles would be

used for the duration of the transmission, regardless of the intervening channel realizations.

To evaluate the efficacy of choosing codewords for the average channel as compared to choosing

random codewords or optimal codewords for each channel instance, we treat sum capacity as a

random variable and find CCDFs via Monte Carlo simulation similar to those in [19]. Based on

the sum capacity CCDFs, the performance of random codeword ensembles, codeword ensembles

optimal for the average channel, and codeword ensembles optimal for each channel realization are

compared. This enables us to determine the performance improvement to be had over random

codewords if we choose codewords for the average channel or optimally for each channel instance.

3.1 Fading Channel Models and Interference Avoidance

In this section we show how application of interference avoidance can be extended from dispersive

channels, which are deterministic and time-invariant, to fading channels, which are time-varying

with random realizations. We concentrate our attention on indoor wireless channels for which

extensive studies have been performed (see [26] and references therein). An analysis of a multicarrier

CDMA scheme, similar to the one used in Chapter 2, for indoor wireless channels can also be found
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in [92]1.

Similar to [92] we assume a frequency selective fading channel model with flat fading of the

carriers. In a Rayleigh fading environment the amplitude scaling κ(�)
n of the n-th carrier due to the

channel between user � and basestation is a Rayleigh random variable with the probability density

function

f
κ
(�)
n

(κ(�)
n ) =

κ
(�)
n

σ
(�)2
n

e
− κ

(�)2

n

2σ
(�)2
n (3.1)

where the parameter σ
(�)2
n is related to the second moment of the Rayleigh random variable

E[κ(�)2
n ] = 2σ(�)2

n . The second moment of this random variable characterizes the average channel

and represents the eigenvalue corresponding to carrier n of user � average channel, i.e. E[κ(�)2
n ] =

2σ(�)2
n = λ

(�)
n .

3.1.1 Slowly Fading Channels

A slowly fading channel has a large coherence time Tc, or equivalently a small Doppler spread

[55]. This is a measure of the channel’s temporal variation and for residential buildings or office

environments with reduced mobility one can assume that a channel is stable for a few seconds [26].

For high data rates this implies that the channel is stable for a large number of symbols thus

allowing identification of channel parameters. In our case these are the amplitude scalings of

different carriers (or channel eigenvalues) and can be determined by probing the channel with

appropriate pilot symbols [43].

To apply interference avoidance algorithms, an estimate of the received signal autocorrelation

matrix must be obtained in addition to channel identification. By subtracting the contribution of a

given symbol/user the autocorrelation matrix of the corresponding interference-plus-noise process

needed by the minimum eigenvector algorithm is then computed. This problem has been studied

extensively in [73] where it has been shown that the minimum number of symbol intervals needed for

accurate estimation of the autocorrelation matrix of the received signal depends on dimensionality

(number of carriers in our case) and on the number of codewords/users in the system. The use of

1As previously mentioned, though applied via a multicarrier modulation scheme, interference avoidance methods
are general. An example of applying interference avoidance to discrete time fading channel models is provided in
Appendix 3.A.
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training sequences to speed up estimation is also presented in [73].

In order for interference avoidance to be efficient, the overhead associated with identification,

estimation, and application of the interference avoidance algorithm, should be small compared

to the actual number of information symbols sent. A symbol duration T = 2µs (which corre-

sponds to 0.5 Msymbols/s and also satisfies the condition imposed by the multicarrier modulation

scheme2) implies that approximately 1,000,000 symbols can be transmitted in 2 s, which is of the

order of the channel coherence time. With a 10% overhead factor this implies that up to 100,000

symbols may be used for estimation, which seems to cover a lot of potential combinations of di-

mensions/users/codewords [73].

In conclusion, for slowly fading indoor channels, it may be possible to apply interference avoid-

ance in a straightforward way. After channel eigenvalues are determined, interference avoidance

algorithms are applied to compute optimal codeword ensembles that maximize sum capacity. These

codeword ensembles are then used for transmission, with periodic updates coupled to channel vari-

ation.

3.1.2 Interference Avoidance for the Average Channel

Now suppose the channel is dynamic and cannot be estimated rapidly enough to satisfy the qua-

sistatic conditions necessary to apply interference avoidance for each channel instance. That is,

suppose that by the time the channel is estimated and the codewords calculated, the channel has

already changed to a new realization.

In this case only average characteristics of the channel can be measured and we seek to deter-

mine the performance of applying interference avoidance techniques to the average channel. For

the multicarrier modulation scheme proposed, with a frequency selective fading channel model,

we use the average values of the gains in equation (3.1) to perform interference avoidance and

determine optimal codeword ensembles for the average channel. Let us denote the ensemble of

user codeword matrices by S = {S1, . . . ,SL} and the ensemble of channel eigenvalue matrices by

Λ = {Λ1, . . . ,ΛL}. Then, for a given ensemble of codeword and channel eigenvalue matrices the

2T must be larger than the duration of all channel impulse responses. In the case of multipath fading channels
this is equivalent to the duration of the multipath intensity profile which for indoor environments (medium size office
or residential buildings) is of the order of 400 ns [26].
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sum capacity is obtained from equation (2.39) as

Csum(Λ,S) =
1
2

log

[
det

(
L∑

�=1

Λ1/2
� S�S�

� Λ1/2
� + W

)]
− 1

2
log (detW) (3.2)

For a fixed ensemble of codeword matrices S, due to the randomness of channel realizations Λ, the

resulting sum capacity is a random variable. Using Jensen’s inequality [15, p. 25] and the fact that

the function log(detA) is concave for positive semidefinite matrices A [31, p. 466] we can write

that

EΛ[Csum(Λ,S)] ≤ Csum(Λ̄,S) (3.3)

where Λ̄ denotes the average value of the channel eigenvalue matrices ensemble. Moreover, for any

ensemble of user codeword matrices S we can also write that

Csum(Λ̄,S) ≤ Csum(Λ̄,S∗) (3.4)

where

S∗ = arg max
S

Csum(Λ̄,S) (3.5)

is the ensemble of codeword matrices that maximizes the sum capacity corresponding to the ensem-

ble of average channel eigenvalue matrices Λ̄, and is obtained by applying interference avoidance

algorithms with average values of channel parameters. ensemble of codewords.

We note that the codeword ensemble which is optimal for the average channel is

S† = arg max
S

EΛ[Csum(Λ,S)] (3.6)

and that, although S∗ is not actually the codeword ensemble optimal for the average channel,

empirically we have seen improvements when using S∗. The improvements can be observed by

looking at sum capacity CCDFs, which show what capacity can be achieved with a given probability

for a given ensemble of codewords. An outage occurs whenever capacity is below a given value,

and the probability of outage Pout can be identified from the corresponding CCDF.

The sum capacity CCDFs presented in figures 3.1 and 3.2, which are typical for the experiments

we have performed, correspond to a system using N = 10 carriers, with L = 2 users, and white

noise at the basestation receiver with a signal-to-noise ratio of 10 dB. A set of 1,000 randomly

chosen codeword ensembles have been generated and 10,000 realizations of Rayleigh fading channels
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Figure 3.1: Sum Capacity CCDFs for multiaccess fading channels comparing random codeword en-
sembles with codeword ensembles optimal for the average channel and codeword ensembles optimal
for each channel realization. Average channels are assumed to be ideal.
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Figure 3.2: Sum Capacity CCDFs for multiaccess fading channels comparing random codeword en-
sembles with codeword ensembles optimal for the average channel and codeword ensembles optimal
for each channel realization. Average channels are non-ideal.
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corresponding to the two users have been considered. Codeword ensembles optimal for the average

channel and codeword ensembles optimal for each channel realization were also computed. In

figure 3.1 the average channel was considered ideal, with all channel eigenvalues equal to 1, which

implies that second moments of Rayleigh random variables κ(�)2
n in equation (3.1) are also equal

to 1. In the case of a non-ideal average channel, channel eigenvalues can be obtained from the

frequency spectrum corresponding to the average channel. For the CCDFs presented in figure

3.2 a very general case of non-ideal average channel was considered, with channels eigenvalues

uniformly distributed between 0.5 and 1.5 corresponding to an average channel that attenuates

some frequencies and boosts others.

From both figures (3.1 and 3.2) we note that for the same probability of outage the sum capacity

when using codeword ensembles yielded by application of interference avoidance for the average

channel is always larger than the corresponding value for random codeword ensembles. Of course,

the best performance is obtained with codeword ensembles optimal for each channel realization,

but under rapid channel variation this may not always be possible. Thus, our simulation results

confirm that using codeword ensembles tuned to the average channel is better than using random

codewords but worse than using per-channel codewords. However, we also note that the capacity

gain obtained from optimal codeword ensembles for each channel realization as compared to that

obtained using average channel optimal codewords might not justify the computational burden of

doing interference avoidance for each channel realization. Thus, selecting codeword sets optimal

for the average channel may be a reasonable compromise.

3.2 Chapter Summary

Application of interference avoidance in the context of fading channels was analyzed in this chapter.

A frequency selective channel model was assumed which is suited for the multicarrier modulation

scheme proposed. In the case of slowly fading the channels which are assumed to be known and

stable for the whole duration of the transmission, application of interference avoidance is straight-

forward. Otherwise, if channels variation is so rapid that optimal codeword ensembles cannot be

computed before channels change, then interference avoidance can be used to compute codeword en-

sembles with average channel paramenters and still realize a performance improvement. Examples
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of sum capacity CCDFs obtained via Monte Carlo simulation are also presented.

3.A Discrete-Time Fading Channel Models

We have previously used a multicarrier formulation for interference avoidance. To show general-

ity, here we provide an explicit formulation for interference avoidance using discrete time channel

models.

Let us consider the discrete-time multiple access channel model characterizing the uplink of a

system with L users communicating with a common receiver (basestation)

r(n) =
L∑

�=1

√
h�(n)x�(n) + w(n) (3.7)

where x�(n) and h�(n) are the transmitted signal and the fading process of the �th user respectively,

and w(n) is additive Gaussian noise that corrupts the received signal. This is a basic frequency

non-selective multi-access fading channel model also used in [19, 74]. By stacking together values

of the received signal r(n) in equation (3.7) for n = 0, . . . , N − 1 corresponding to an observation

interval, we obtain the vector-matrix equation

r =
L∑

�=1

H1/2
� x� + w (3.8)

with r = [r(0) . . . r(N − 1)]�, H = diag{h�(0), . . . , h�(N − 1)}, x� = [x�(0) . . . x�(N − 1)]�, and

w = [w(0) . . . w(N − 1)]�. Equation (3.8) can be further written as

r =
L∑

�=1

H1/2
� S�b� + w (3.9)

by assuming that transmitted waveforms are obtained from

x� = S�b� � = 1, . . . , L (3.10)

where b� = [b(�)1 . . . b
(�)
M�

]� is the symbol sequence to be transmitted by user � through a codeword

matrix S�. Note that equation (3.10) can be regarded as a spreading scheme in which each symbol

in b� is “spread” over N “time chips”.

Equation (3.9) is identical in form with the multiaccess dispersive channels equation (2.31).

There are however two main differences:
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• The spreading scheme in equation (3.10) implies a time representation of waveforms as super-

position of “time chips” specified by the corresponding codewords as opposed to the dispersive

channels case where waveforms were represented in frequency as a superposition of sinusoids.

• Channels are described by random matrices containing values of the fading processes (channel

states) as opposed to the dispersive channels case where they were described by channel

eigenvalues.

Nevertheless, by working with average values for {H�} matrices one can directly apply the eigen-

algorithm for interference avoidance and derive an ensemble of optimal codeword matrices {S�} for

the average channel.

It is also worth noting here that the signal space partitioning induced by the optimal codeword

ensemble presented in chapter 2 leads to a time division multiple access (TDMA) scheme, in which

users transmit information in distinct time slots with possible overlaps in at most one slot, using

time slots with best channel states. Similar conclusions with regard to codeword ensembles apply

for this case as well.
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Chapter 4

Interference Avoidance and Multiaccess Vector Channels

Vector channels arise in communication systems as a consequence of representing a continuous

time (waveform) channel in a finite dimensional signal space [20, Ch. 8]. The study of vector

channels is important since it provides a theoretical framework for the analysis of a wide variety of

communication channels such as multiple access channels, channels with memory, or channels with

multiple antennas in the transmitter and/or receiver, and has received increasing attention from

the research community lately.

Results on capacity of multiaccess vector channels have been derived in [87], and an asymp-

totically optimal water filling algorithm for multiaccess vector channels can be found in [86]. A

characterization of the capacity region for multiaccess vector channels and an iterative water filling

algorithm to evaluate optimal transmit spectra that maximize the sum capacity of the channel can

be found in [94].

CDMA schemes have a natural vector channel representation implied by the signature sequences

(or codewords) corresponding to distinct users in the system. In this context, optimal signature

sequences (or codeword ensembles) that maximize sum capacity of a multiaccess channel are an-

alyzed in [84], and an algorithm for obtaining such optimal sequences is also presented. We have

seen in the previous chapters that such optimal codeword ensembles which maximize sum capacity

can also be obtained through application of interference avoidance methods.

In this chapter we discuss application of interference avoidance to multiaccess vector chan-

nels. Using a general multiaccess vector channel model along with a multicode CDMA scheme for

transmission of information, we generalize application of interference avoidance methods. We first

show that application of greedy interference avoidance for any codeword/user is guaranteed not

to decrease sum capacity, and then generalize the eigen-algorithm showing that it is equivalent to

iterative water filling [94]. Thus, application of the eigen-algorithm will always yield an optimal
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ensemble of codewords that maximizes the sum capacity of the multiaccess vector channel. This

result clears the way for application of interference avoidance methods to other communication

problems in which the underlying model is a multiaccess vector channel.

4.1 The Vector Multiple Access Channel

In a very broad sense, a single user vector channel is defined by [94]

y = Hx + n (4.1)

where x and y are the input and output vectors of dimension Nx, respectively Ny, n is the additive

noise vector, and H is the Ny × Nx channel matrix. The vector channel defined in equation (4.1)

represents a linear transformation from an input signal space of dimension Nx to an output signal

space of dimension Ny and the channel matrix H can be viewed as relating the bases of the input

and output signal spaces [72, p. 116]. Note that the channel is considered memoryless, but a similar

model applies to channels with memory1.

Extending the definition in equation (4.1) to multiple users, a multiaccess vector channel is

obtained in which a set of L users communicate with a common receiver (basestation). The multi-

access vector channel is defined by the equation

r =
L∑

�=1

H�x� + n (4.2)

where x� of dimension N� is the input vector corresponding to user �, � = 1, . . . , L, r of dimension

N is the received vector at the common receiver corrupted by additive noise vector n of the same

dimension, and H� is the N × N� channel matrix corresponding to user �. It is assumed that

N ≥ N�,∀� = 1, . . . , L. This is a general approach to a multiuser communication system in which

different users reside in different signal spaces, with different dimensions and potential overlap

between them, and all being subspaces of the receiver signal space. We note that each user’s signal

space as well as the receiver signal space are of finite dimension and are implied by a finite time

interval T and finite bandwidths W� for each user �, respectively and W (which includes all W�’s

corresponding to all users) for the receiver [34]. As has already been mentioned, for memoryless

1We have already seen an example in Chapter 2. Additional examples can be found in section 4.3 and [94].
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Figure 4.1: 3-dimensional receiver signal space with 2 users residing in 2-dimensional subspaces.
Vectors represent particular signals in user 1 (continuous line), respectively user 2 (dashed line)
signal spaces.

channels, the channel matrix H� merely relates the bases of user �’s signal space and receiver signal

space, but a similar model applies to channels with memory in which case the channel matrix H� also

incorporates channel attenuation and multipath. Figure 4.1 provides a graphical illustration of such

a signal space configuration for 2 users residing in 2-dimensional subspaces with a 3-dimensional

receiver signal space.

In this signal space setting we assume that in the finite time interval of duration T each user �

sends a “frame” of data using a multicode CDMA approach similar to the one used in Chapter 2

(see Figure 2.1). Each symbol is transmitted using a distinct signature waveform which spans the

frame that is, the sequence b� = [b(�)1 . . . b
(�)
M�

]� is transmitted as a linear superposition of distinct,

unit-energy waveforms s(�)m (t) as in

x�(t) =
M�∑

m=1

b(�)m s(�)m (t) (4.3)

In the N�-dimensional signal space corresponding to user �, each waveform can be represented as

an N�-dimensional vector, thus the input vector x� corresponding to user � is equivalent to a linear

superposition of unit norm codeword column vectors s(�)
m scaled by the corresponding b(�)m . That is,
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each user uses an N� ×M� codeword matrix S�

S� =




| | |

s(�)
1 s(�)

2 · · · s(�)
M�

| | |


 (4.4)

so that

x� = S�b� (4.5)

Therefore, the received signal at the common receiver can be rewritten as

r =
L∑

�=1

H�S�b� + n (4.6)

Note that under the assumption that M� ≥ N� the N� × N� covariance matrix of x� defined as

X� = E[x�x�
� ] = S�S�

� has full rank and spans user � signal space.

It is well known that when the noise signal is Gaussian, the mutual information is maximized

when the information signals x�(t) are jointly Gaussian [15, p. 405]. All that remains is to determine

the exact spectral composition of each x�(t). The capacity region for the multiaccess vector channel

defined in equation (4.2) has been established in [94]. In the same paper [94], maximization of sum

capacity for the multiaccess vector channel (4.2)

Cs =
1
2

log

[
det

(
L∑

�=1

H�X�H�
� + W

)]
− 1

2
log(detW) (4.7)

is formulated as a convex optimization problem

max
X�

Cs subject to Trace [X�] = P�, X� ≥ 0, � = 1, . . . , L (4.8)

and it is shown that optimal transmit covariance matrices X�, � = 1, . . . , L satisfy a simultaneous

water filling condition and can be found through an iterative water filling procedure.

4.2 Sum Capacity Maximization and Interference Avoidance

Since in our approach transmit covariance matrices are expressed in terms of user codeword matrices

as X� = S�S�
� , � = 1, . . . , L sum capacity can be written as

Cs =
1
2

log

[
det

(
L∑

�=1

H�S�S�
� H�

� + W

)]
− 1

2
log(detW) (4.9)
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Furthermore, in the context of interference avoidance we are interested in sum capacity maximiza-

tion through codeword adaptation. Therefore, in our case the problem of maximizing sum capacity

has a slighlty different formulation than that in [94] which is mentioned in equation (4.8). More

precisely, in our case we are interested in finding the codeword ensemble which maximizes sum

capacity, that is

max
S�

Cs subject to Trace
[
S�S�

�

]
= M�, � = 1, . . . , L (4.10)

An additional constraint in our case is given by the fact that all matrices S� have unit norm columns.

We note that, the original framework for interference avoidance presented in Chapter 1 and

introduced in [63], assumes an arbitrary N -dimensional signal space for the receiver and all users

in the multiuser system, as opposed to the multiuser system in equation (4.2) where different users

are allowed to reside in different signal spaces. With a CDMA access scheme each user � is assigned

a finite duration unit-energy signature waveform S�(t), or equivalently a unit norm N -dimensional

codeword s�, to convey a symbol, b�. In this setting, the received signal vector at the common

receiver is described by equations (1.2) or (1.4). As it has already been noted in Chapter 1, in a

colored noise background the eigen-algorithm2 for interference avoidance converges to an optimal

fixed point where the resulting codeword ensemble water fills the signal space and maximizes sum

capacity defined in equation (1.23). In this case, by observing that the input covariance matrix of

user � is a rank one matrix [93] X� = s�s�� , the problem of finding the optimal codeword ensemble

that maximizes sum capacity in equation (1.23) can also be formulated as a spectral optimization

problem. More precisely, the X� are the solution of the following optimization problem:

maximize
1
2

log

[
det

(
L∑

�=1

X� + W

)]
− 1

2
log(detW) (4.11)

subject to




Trace [X�] = 1

X� ≥ 0

rank(X�) = 1

� = 1, . . . , L (4.12)

However, because the rank constraint is not a convex constraint, the optimization problem defined

in equation (4.11) subject to the constraints in equation (4.12) does not enjoy the usual global

2Augumented eventually with the “class warfare” procedure [62]
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convergence properties of convex optimization problems. Thus, suboptimal fixed points of the eigen-

algorithm for interference avoidance are theoretically possible, even though they have never been

observed in practice when starting with a randomly chosen codeword ensemble [63]. Suboptimal

fixed points of the eigen-algorithm for interference avoidance have been analyzed in detail in [62]

where it has been shown that the eigen-algorithm augmented with a so-called “class warfare”

procedure escapes suboptimal points and always reaches the optimal fixed point for which sum

capacity is maximized.

Returning to our general sum capacity maximization problem in equation (4.10) we note that

this is a convex optimization problem only when each user has at least as many codewords M� as

signal space dimensions N�, so that its corresponding transmit covariance matrix X� is allowed to

span the whole signal space. We also note that sum capacity maximization subject to additional

constraints on the rank of X� matrices is still an open research problem.

The fact that algorithms based on greedy interference avoidance have been shown to yield

codeword ensembles that maximize sum capacity for dispersive channels – a particular case of the

general multiaccess vector channel in equation (4.6) – suggests that greedy interference avoidance

may also be used in the general context of multiaccess vector channels to obtain such optimal

codeword ensembles. Since the second term in the sum capacity expression in equation (4.9) is

fixed one needs only to maximize the determinant of the received signal covariance matrix

R = E[rr�] =
L∑

�=1

H�S�S�
� H�

� + W (4.13)

In order to establish application of the eigen-algorithm for interference avoidance let us rewrite

the received signal in equation (4.6) from the perspective of user k

r = HkSkbk +
L∑

�=1,� �=k

H�S�b� + n = HkSkbk + zk (4.14)

where zk represents the interference-plus-noise seen by user k

zk =
L∑

�=1,� �=k

H�S�b� + n (4.15)

with covariance matrix

Zk = E[zkz�k ] =
L∑

�=1,� �=k

H�S�S�
� H�

� + W (4.16)
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Since Zk is symmetric it can be diagonalized

Zk = Ek∆kE�
k (4.17)

Furthermore, because Zk is a positive definite covariance matrix we can define the whitening trans-

formation

Tk = ∆−1/2
k E�

k (4.18)

such that, in transformed coordinates equation (4.14) is equivalent to

r̃ = Tkr = TkHkSkbk + Tkzk = H̃kSkbk + wk (4.19)

where H̃k = TkHk is the channel matrix seen by user k in the new coordinates and wk = Tkzk

is the equivalent “white noise” with covariance matrix E[wkw�
k ] = TkZkT�

k = I equal to the

identity matrix. We note that the received signal covariance matrix in the transformed coordinates

is related to the original signal covariance matrix by the equation

R̃ = E[r̃r̃�] = TkRT�
k (4.20)

and any procedure that attempts to maximize det R̃ through adaptation of user k codeword matrix

Sk will also maximize detR since they are related by

det R̃ = det(TkRT�
k ) = detR(detTk)2 (4.21)

We now apply the singular value decomposition (SVD) [72, p. 442] to the transformed channel

matrix corresponding to user k

H̃k = UkDkV�
k (4.22)

where matrix Uk of dimension N × N has as columns the eigenvectors of H̃kH̃�
k , matrix Vk of

dimension Nk ×Nk has as columns the eigenvectors of H̃�
k H̃k, and matrix Dk of dimension N ×Nk

contains the singular values of H̃k on the main diagonal and zero elsewhere. We note that because

Tk is invertible the rank of H̃k will be equal to that of Hk. Without loss of generality we assume

that Hk has full rank3 Nk. Thus, the singular value matrix Dk can be partitioned as

Dk =


 D̃k

0


 (4.23)

3This is not a restriction since if Hk is not full rank then some dimensions the user k signal space will have zero
projection on the output space. Therefore we can redefine a reduced codeword matrix Sk which uses only dimensions
with nonzero projections on the output space.
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with D̃k an Nk × Nk diagonal matrix containing the non-zero singular values along the diagonal

and zeros in rest. The left inverse of Dk is defined as

D†
k =

[
D̃−1

k 0
]

(4.24)

and it is obvious that

D†
kDk = INk

(4.25)

Returning to equation (4.19) in which the SVD for transformed channel matrix H̃k has been

applied we have

r̃ = UkDkV�
k Skbk + wk (4.26)

We pre-multiply by U�
k

rk = U�
k r = DkV�

k Skbk + U�
k wk (4.27)

and define S̃k = V�
k Sk and w̃k = U�

k wk. Note that because both Uk and Vk are orthogonal

matrices they preserve norms of vectors. Thus, columns of S̃k are also unit norm as were the

columns of Sk. Also, because the equivalent noise term wk is white, then w̃k will remain white

with the same covariance matrix equal to the identity matrix.

rk = DkS̃kbk + w̃k (4.28)

with covariance matrix given by

R(k) = E[rkr�k ] = U�
k R̃Uk (4.29)

for which detR(k) = det R̃ since Uk is an orthogonal transformation. Following a similar line of

reasoning as above we note that any procedure which will attempt to maximize detR(k) through

adaptation of S̃k will also maximize detR. We also note that the partitioning of the singular value

matrix in equation (4.23) implies the following partition on R(k)

R(k) =


 D̃kS̃kS̃�

k D̃k + INk
0

0 IN−Nk


 (4.30)

in which Iρ denotes the identity matrix of order ρ and 0 denotes a matrix with all elements equal

to zero.
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At this point we define an equivalent problem for user k by pre-multiplying with the left inverse

of Dk and obtain

r̃k = D†
krk = S̃kbk + z̃k (4.31)

which is identical in form with equation (1.4) and allows straightforward application of interference

avoidance methods to optimizing user k codeword matrix S̃k as. The “noise” term z̃k in equation

(4.31) represents the interference-plus-noise from the rest of the system that is present in user k

signal space and has covariance matrix

Z̃k = E[z̃k z̃�k ] = D†
kE[w̃kw̃�

k ]D†�
k = D̃−2

k (4.32)

The transformed codeword matrix S̃k in equation (4.31) is completely equivalent with the orig-

inal codeword matrix Sk since they are related through an orthogonal transformation V�
k . The

covariance matrix of r̃k is given by

R̃(k) = E[r̃kr̃�k ] = S̃kS̃�
k + D̃−2

k (4.33)

and using the partition in equation (4.30) we have

detR(k) = det(D̃kS̃kS̃�
k D̃k + INk

) = detD−2
k det R̃(k) (4.34)

which implies that maximizing det R̃(k) will also maximize detR(k) which in turn will imply max-

imization of detR the determinant of the original received signal covariance matrix.

4.2.1 Greedy Interference Avoidance

We recall that greedy interference avoidance consists of replacing codeword corresponding to sym-

bol m of user k by the minimum eigenvector of the autocorrelation matrix of the corresponding

interference-plus-noise process in the inverted channel space, that is

R(k)
m = S̃kS̃�

k − s̃(k)
m s̃(k)�

m + D̃−2
k (4.35)

Furthermore, since R(k) = R(k)
m + s̃(k)

m s̃(k)�
m , using Lemma 2.1 we note that the eigenvalues of R(k)

before application of the greedy interference avoidance procedure are majorized by those after

application. Thus, detR(k) and implicitly sum capacity cannot be decreased by application of

greedy interference avoidance.
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We also note that, empirically we have observed that repeated application of greedy interference

avoidance with various codeword replacement procedures with respect to codewords/users usually

reaches a fixed point. Although we have not been able to prove this result in general, simulations

have shown that, when users have at least as many codewords as signal space dimensions, this fixed

point corresponds to a simultaneous water filling solution for all users in their respective signal

spaces and is identical to that in [94], thus corresponding to maximum sum capacity.

4.2.2 The Eigen-Algorithm and Iterative Water Filling

Repeated sequential application of the greedy interference avoidance procedure for all codewords

of a given user k defines the eigen-algorithm, whose application for user k equivalent problem in

equation (4.31) will water fill its signal space regarding all other users as noise, and maximize

detR(k) and implicitly detR. Thus, iterative application of the eigen-algorithm by all users in

the system is an instance of an iterative water filling procedure [94] in which each user adapts

its corresponding codeword matrix, regarding all other users’ signals as noise while maximizing

detR. Such a procedure is guaranteed to converge to an optimal fixed point where sum capacity

is maximized.

We can now formally state the eigen-algorithm for interference avoidance for vector multiaccess

channels:

The Generalized Eigen-Algorithm for Multiaccess Vector Channels

1. Start with a randomly chosen codeword ensemble specified by the codeword matrices {Sk}L
k=1

2. For each user k = 1 . . . L

(a) Using equations (4.17) and (4.18) compute the transformation matrix Tk that whitens

the interference-plus-noise seen by user k

(b) Change coordinates and compute transformed user k channel matrix H̃k = TkHk

(c) Apply SVD for H̃k and project the problem onto user k signal space to obtain r̃k in

equation (4.31)
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(d) adjust user k codewords sequentially: the codeword corresponding to symbol m of user

k is replaced by the minimum eigenvector of the autocorrelation matrix of the corre-

sponding interference-plus-noise process R(k)
m

(e) Iterate previous step until convergence (making use of escape methods [62] if the proce-

dure stops in suboptimal points)

(f) After all Nk codewords have been changed the new codeword matrix corresponding to

user k is Sk = VkS̃k

3. Repeat step 2 iteratively for each user until a fixed point is reached for which further modi-

fication of codewords will bring no additional improvement.

We note that steps 2(d) − (e) of the algorithm correspond to water filling of user k’s signal

space considering all other users’ signals as noise. The water filling process is done for all users

sequentially and repeated (step 3) until convergence to maximum sum capacity value implied by

the iterative water filling procedure [94]. We also note that convergence of the algorithm is in

terms of sum capacity and not in terms of individual codeword matrices, and conclude that the

eigen-algorithm will always yield a codeword ensemble that maximizes sum capacity.

4.3 Application to Dispersive Channels

In Chapter 2 application of interference avoidance to dispersive channels was presented in a mul-

ticarrier modulation framework in which all users reside in the same signal space and signature

waveforms corresponding to distinct bits/users are represented as superposition of sinusoids spec-

ified by the corresponding codewords. The result derived in the previous section, namely that

interference avoidance can be used to derive codeword ensembles that maximize sum capacity for

any type of multiple access vector channels, suggests that interference avoidance methods can be

applied to other models of dispersive communication channels. The idea is simple and is based on

deriving a mathematical representation of the communication system in terms of a vector multiple

access channel. This will characterize the system through an equation identical in form with equa-

tion (4.6) for which application of interference avoidance is straightforward. The difference between

(4.6) and the resulting equation will be given by the fact that channel matrices will incorporate



75

also channel memory in addition to relating transmitter and receiver signal spaces. A general way

of deriving such a representation is presented in this section, along with an example that shows

application for multipath channels for direct sequence CDMA (DS-CDMA) systems.

Let us consider a multiuser system with L users communicating with a common receiver over

distinct, dispersive channels, characterized by impulse responses h�(t), � = 1, . . . , L. We assume

that each user’s signal space of dimension N� is spanned by the vector of functions Ψ(�)(t) =

[Ψ(�)
1 (t) . . .Ψ(�)

N�
(t)]� and that the receiver signal space of dimension N is spanned by the vector of

functions Ψ = [Ψ1(t) . . .ΨN (t)]�. Let also H� be the N × N� matrix with orthonormal columns

relating the bases of the two signal spaces, that is

Ψ(�)(t) = H�
� Ψ(t) (4.36)

Each user � transmits the signal x�(t) of duration T corresponding to a frame containing M�

symbols, and is composed of a superposition of waveforms scaled by the symbols

x�(t) =
M�∑

m=1

b(�)m s(�)
m (t) (4.37)

or in terms of the basis functions

x�(t) = Ψ(�)(t)�x� = Ψ(�)(t)�S�b� (4.38)

At the receiver, the signal sent by user � corresponds to y�(t), the convolution of x�(t) with the

corresponding channel � impulse response h�(t)

y�(t) =
∫ T

0
h�(τ)x�(t− τ)dτ (4.39)

Projected onto the basis functions of the receiver signal space the vector y� is obtained such that

component n of y� is

y(�)
n =

∫ T

0
y�(t)Ψn(t)dt

=
∫ T

0

∫ T

0
h�(τ)x�(t− τ)Ψn(t)dτdt

=
∫ T

0

∫ T

0
h�(τ)Ψ(�)(t− τ)�x�Ψn(t)dτdt

(4.40)
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Thus, vector y� can be written as

y� = F�H�x� (4.41)

where the N ×N matrix F� is obtained from the following equation

F� =
∫ T

0

∫ T

0
h�(τ)Ψ(t)Ψ(t− τ)�dtdτ (4.42)

In order to obtain the expression for F� equation (4.36) was used to express the basis of user �

signal space in terms of the basis of the receiver signal space. Note that all the calculations were

done under the implicit assumption that the frame duration T is longer than the duration of all

h�(t), � = 1, . . . , L, so that settling of all channel responses is allowed and intersymbol interference

(ISI) between succesive frames can be safely ignored. Equation (4.41) can also be rewritten as

y� = H�S�b� (4.43)

where H� = F�H� is the N ×N� channel matrix corresponding to user � and incorporates, as it has

already been mentioned, both the transformation between user �’s signal space and receiver signal

space (matrix H�), and the channel h�(t) memory (matrix Fl).

Therefore, the equation of the received signal at the common receiver, consisting of the sum of

all received signals from all users plus noise, is written as

r =
L∑

�=1

H�S�b� + n (4.44)

and is identical in form to equation (4.6). The eigen-algorithm for interference avoidance can be

applied now as in the previous section to derive optimal codeword ensembles that maximize the

sum capacity of the multiaccess channel.

In order to illustrate the above procedure on a specific example we consider a DS-CDMA system

with “time chips” spanning the signal space and processing gain N . In this case all users and the

receiver reside in the same signal space of dimension N spanned by the functions4

Ψn(t) =




N

T for
n− 1
N

T ≤ t ≤ n

N
T

0 elsewhere
n = 1, . . . , N (4.45)

4Normalization of “time chips” is done only to be consistent with the definition of basis functions assumed to have
unit energy.
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As a consequence, all matrices H� = IN and we only have to worry about computing the matrices

F� in order to derive channel matrices.

We assume a multipath channel, with paths spaced at the chip duration and impulse response

given by

h�(t) =
p�−1∑
i=0

h
(�)
i δ

(
t− i

T
N

)
� = 1, . . . , L (4.46)

with p� being the number of paths corresponding to user � and h(�)
i being the path gains. A similar

channel model has been considered in [57,58] in a discrete-time setting, and as we will see the same

channel matrices will be obtained through our approach.

The channel matrix corresponding to user � is obtained from equation (4.42) as

F� =
∫ T

0
Ψ(t)

∫ T

0

p�−1∑
i=0

h
(�)
i δ

(
t− i

T
N

)
Ψ(t− τ)�dτdt

=
∫ T

0
Ψ(t)

p�−1∑
i=0

h
(�)
i

∫ T

0
δ

(
t− i

T
N

)
Ψ(t− τ)�dτdt

=
p�−1∑
i=0

h
(�)
i

∫ T

0
Ψ(t)Ψ

(
t− i

T
N

)�
dt =

p�−1∑
i=0

h
(�)
i F(�)

i

(4.47)

with N ×N matrices F(�)
i given by

F(�)
i =

∫ T

0
Ψ(t)Ψ

(
t− i

T
N

)�
dt (4.48)

Due to the particular form of basis functions Ψ(t) (non-overlapping rectangular pulses) matrices

F(�)
i will be sparse, with ones only in certain positions and zeros in rest. Starting with the first

term, this is equal to the identity matrix

F(�)
0 =

∫ T

0
Ψ(t)Ψ(t)�dt = IN (4.49)

since time chips do not overlap and only the product of a given function with itself is not equal to

zero. As we delay the basis functions the ones along the main diagonal will be shifted downwards:

a delay of a chip duration T /N is equivalent with a downshift of the 1 along the corresponding

column. This is due to the fact that, by delaying time chips, we will have less and less overlap
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between them. Thus, the second term is

F(�)
1 =

∫ T

0
Ψ(t)Ψ

(
t− T

N

)�
dt =




0

1 0

0 1
. . .

...
...

. . . 0

0 0 · · · 1 0




(4.50)

and so on, until the last term in which 1’s will be shifted down p� positions. Hence, the channel

matrix for user � has the form

F� =




h
(�)
0 0 0 · · · 0 0 · · · 0 0

h
(�)
1 h

(�)
0 0 · · · 0 0 · · · 0 0

h
(�)
2 h

(�)
1 h

(�)
0 · · · 0 0 · · · 0 0

...
...

. . . . . .
...

...
...

...
...

h
(�)
p�−1 h

(�)
p�−2 · · · . . . h

(�)
0 0 · · · 0 0

0 h
(�)
p�−1 h

(�)
p�−2 · · · h

(�)
1 h

(�)
0 · · · 0 0

...
...

... · · · · · · . . . . . .
...

...

0 0 0 · · · · · · · · · . . . h
(�)
0 0

0 0 0 · · · · · · · · · · · · h
(�)
1 h

(�)
0




(4.51)

and is identical with with the channel matrix used in [57,58].

4.4 Chapter Summary

Application of interference avoidance to multiaccess vector channels was presented. The vector

channel is regarded as a linear transformation between the input signal space corresponding to

the transmitter and the output signal space corresponding to the receiver and is characterized by

a channel gain matrix. The approach is general and allows different, possibly overlapping, signal

spaces for distinct users in a multiuser system, all being subspaces of the signal space at the common

receiver(s).

Information is transmitted using a generalized form of CDMA where symbols for a given user

is conveyed by a distinct signature waveform in some arbitrary signal space. The set of waveforms

corresponding to a given user is equivalent to a codeword matrix in the signal space, and optimal
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codeword matrices that maximize the sum capacity of the multiaccess channel can be obtained by

application of interference avoidance methods.

By whitening the interference-plus-noise and using the SVD greedy interference avoidance is

applied in a given user’s signal space. We show that application of greedy interference avoidance

for any codeword/user does not decrease sum capacity. Furthermore, we show that sequential

application of the eigen-algorithm for interference avoidance by all users in a multiuser system is

equivalent to iterative water filling in which each user water fills its corresponding signal space

considering other user’s signals as noise.

The result is powerful and clears the way for application of interference avoidance methods to

a variety of problems including arbitrary dispersive channel models, multiuser multiple antenna

systems, and asynchronous multiuser systems.
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Chapter 5

Application to Multiple Antenna Systems

Multiple antenna systems, used in wireless communications to provide spatial diversity, have been

shown to improve system performance by mitigating the effects of multipath fading. Traditionally,

spatial diversity was implemented only at one side of the communication system (mainly at the

receiver). However, recent research indicates that performance can be significantly improved by

using spatial diversity both at the transmitter and at the receiver.

Performance of multiple antenna systems in fading environments has been analyzed in several

papers which have shown a potentially large increase in capacity. Since standard approaches are

not close in performance to the theoretical limits [19, 39], new modulation schemes have been

proposed and analyzed for multiple antenna systems [18,28]. It has also been shown that presence of

multipath can improve performance with an appropriate multiple antenna structure [59]. Recently,

an optimal power control algorithm for multiple antenna systems [95] has been proposed based on

an iterative water filling scheme [94].

In this chapter we present application of interference avoidance methods to multiuser systems

with multiple inputs and multiple outputs (MIMO) such as those associated with the uplink of

a wireless system in which users and the basestation are equipped with multiple antennas. Our

approach is based on application of interference avoidance to general multiaccess vector channels

presented in Chapter 4 for the particular multiaccess vector channel corresponding to a multiuser

MIMO system. We note that a vector channel characterized by a channel matrix between a given

transmitter and the receiver is a natural representation in the case of MIMO systems and several

models can be found in the literature [18,19,39,59]. We also note that the approach is completely

general and applicable to any MIMO system models regardless of the choice of signal space basis

functions.
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Information is transmitted over the MIMO channel using the multicode CDMA approach de-

scribed in Chapter 4 in which the sequence of information symbols that make up the frame to be

sent by a given user over the MIMO channel is “spread” over the available dimensions using a

precoding matrix. More precisely, the columns of the precoding matrix are used as codewords, or

spreading sequences, for the information symbols in the frame. Formulation of the MIMO channel

problem in this CDMA context allows direct application of interference avoidance techniques to

determine optimal precoding matrices in both the single user and multiple user cases. These are

optimal in the sense that the common signal-to-interference plus noise-ratio (SINR) for all symbols

is maximized, as well as in the information theoretic sense of maximizing sum capacity [63,85].

The chapter is organized as follows. We introduce the multiuser multiple antenna system with

the equivalent multiuser vector channel model and the multicode CDMA approach for transmission

of information in section 5.1. In section 5.2 we show how interference avoidance can be applied

to optimize precoder matrices in both single and multiple user cases. Numerical simulations are

presented in section 5.3 and performance is analyzed in terms of signal-to-noise ratios (SNRs) at

the receiver and sum capacity. For a single-user case we note that with random precoding matrices

the SNR at receiver antennas has a bell-shaped distribution. However, after interference avoidance

is performed optimal precoding matrices imply that the SNR is approximately the same for all

receive antennas even though no prior assumption about equal SNRs at each antenna has been

made as in [19]. We also note that for the same average noise power at the receiver, doubling the

number of antennas (both in the transmitter and in the receiver) translates to an approximately 3

dB increase in the SNR.

Next we look at sum capacity in the context of fading channels. Precoding matrices optimal

for the average channel are obtained for all users in the system using interference avoidance algo-

rithms and these are used to compute sum capacity for actual realizations of the fading channel

models. Sum capacity is treated as a random variable in this case and complementary cumulative

distribution functions (CCDFs) similar to those in [19] are plotted. The plots show what capacity

can be achieved with a given probability of outage when precoders optimal for the average channel

are used, and are consistent with those in [19], supporting the generally accepted idea that the use

of multiple antennas in both the transmitter and the receiver is beneficial for system performance.



82

User l

LUser

  1User

Figure 5.1: Multiuser MIMO system in which all users and the basestation are equipped with
antenna arrays for transmission/reception.

5.1 The MIMO System Model

We consider a multiuser system with L users communicating with a common receiver (basestation)

in which all users and the basestation are equipped with antenna arrays for transmission/reception.

We denote by T� the number of transmit antennas corresponding to user �, � = 1, . . . , L and by

R the number of receive antennas at the basestation. The system is described schematically in

Figure 5.1.

Each user � transmits information in frames of duration T . The channel between user �’s

transmit antenna i and receive antenna j at the basestation is characterized by the causal impulse

response h(�)
ij (t) of duration T (�)

ij assumed stable (time-invariant) over the duration T of the frame.

The transmitted waveform x
(�)
i (t) at transmit antenna i of user � convolved with this impulse

response yields the corresponding waveform y
(�)
ij (t) due to user � transmit antenna i at receive

antenna j

y
(�)
ij (t) = x

(�)
i (t) ∗ h(�)

ij (t) (5.1)

The received waveform at receive antenna j is then a superposition of all such received waveforms
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from all transmit antennas of all users plus additive Gaussian noise

rj(t) =
L∑

�=1

N�∑
i=1

y
(�)
ij (t) + nj(t) =

L∑
�=1

N�∑
i=1

x
(�)
i (t) ∗ h(�)

ij (t) + nj(t) (5.2)

If we approached the problem using the waveform representation above, the mathematics involved

would become very complex and would artificially increase its difficulty. The use of a signal space

approach overcomes the difficulties associated with the waveform representation above by working

with equivalent signal vectors and vector channels, and making use of much simpler linear algebra

methods. We note that different MIMO channel models may be obtained by using different basis

functions for the signal space. For example, by using sinc functions one ends up with models

similar to those in [18,59] obtained by Nyquist sampling. Our simulation results in section 5.3 are

obtained for a MIMO channel model based on a multicarrier modulation scheme similar to that

used in Chapter 2. Nevertheless, once the MIMO channel matrix H� is obtained, application of

interference avoidance methods remains unchanged.

In the equivalent signal space representation, the N -dimensional received signal vector at the

basestation is given by [18,19,59]

r =
L∑

�=1

H�x� + n (5.3)

with x� being the N�-dimensional signal vector transmitted by user �, H� the N × N� MIMO

channel matrix corresponding to user �, and n the noise vector at the receiver. We note that

equation (5.3) is identical in form with the general multiaccess vector channel equation (4.2),

and that the dimensions of the transmitter and receiver signal spaces will depend on the number of

transmit and receive antennas employed1. Similar to Chapter 4 users transmit sequences of symbols

consisting of zero-mean unit variance Gaussian random variables as frames, and for a given user

� the N�-dimensional transmitted vector x� is obtained from the sequence of symbols to be sent

b� = [b(�)1 . . . b
(�)
M�

]� through a spreading operation specified by the N� ×M� precoding matrix

S� =




| | |

s(�)
1 s(�)

2 · · · s(�)
M�

| | |


 (5.4)

1For the MIMO channel models in [18,19,59] these are actually equal to the number of antennas employed.
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whose columns have unit norm and determine the “spreading” of corresponding symbols in the

frame over the N� available dimensions. Therefore, the transmitted vector sent by user � is written

as

x� = S�b� (5.5)

which implies that the received signal vector at the basestation is given by an equation identical in

form with equation (4.6), that is

r =
L∑

�=1

H�S�b� + n (5.6)

Our problem is now to optimize the precoder matrices such that the sum capacity of the multiple

access vector channel defined in equation (5.6) corresponding to the multiuser MIMO system is

maximized.

5.2 Precoder Optimization Through Interference Avoidance

The fact that equation (5.6) is identical to equation (4.6) of the received signal corresponding to

the multiaccess vector channel in Chapter 4 suggests that the generalized eigen-algorithm for vector

multiple access channels can be directly applied to precoder optimization in the case of multiuser

MIMO systems. However we note that in Chapter 4 it is assumed that all channel matrices have

full rank which may not always be the case for the MIMO channel models presented in section 5.1.

Therefore, caution should be exercised when applying the generalized eigen-algorithm for precoder

optimization.

Similar to Chapter 4 we start by rewriting the received signal in equation (5.6) from the per-

spective of user k

r = HkSkbk +
L∑

�=1,� �=k

H�S�b� + n (5.7)

and denoting by

zk =
L∑

�=1,� �=k

H�S�b� + n (5.8)

the interference-plus-noise seen by user k with the corresponding covariance matrix

Zk = E[zkz�k ] =
L∑

�=1,� �=k

H�S�S�
� H�

� + W (5.9)
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Note that if user k channel matrix is not full-rank, some of the signal space dimensions will need

to be discarded as they do not carry useful information for user k. However, this can only be done

if the interference-plus-noise present in these dimensions is statistically independent from that in

the remaining dimensions. This is accomplished by whitening the interference-plus-noise seen by

user k through the transformation

Tk = ∆−1/2
k E�

k (5.10)

in which matrices ∆k and Ek are obtained according to the generalized eigen-algorithm from the

eigenvalue decomposition of matrix Zk = Ek∆kE�
k .

In the transformed coordinates, equation (5.7) is equivalent to

r̃ = Tkr = TkHkSkbk + Tkzk = H̃kSkbk + wk (5.11)

where H̃k = TkHk is the MIMO channel matrix seen by user k in the new coordinates and

wk = Tkzk is the equivalent “white noise” term with covariance matrix E[wkw�
k ] = TkZkT�

k = I

equal to the identity matrix. Following the generalized eigen-algorithm, we apply the SVD and

obtain

H̃k = UkDkV�
k (5.12)

where matrix Uk of dimension N × N has as columns the eigenvectors of H̃kH̃�
k , matrix Vk of

dimension Nk ×Nk has as columns the eigenvectors of H̃�
k H̃k, and matrix Dk of dimension N ×Nk

contains the singular values of H̃k on the main diagonal and zeros elsewhere. Any vector in the

Nk-dimensional input space of user k can then be represented in terms of the orthonormal set of

vectors {v(k)
i } representing the columns of Vk. Similarly, any vector in the N -dimensional receiver

space is representable in terms of the orthonormal set of vectors {u(k)
i } representing the columns of

Uk. Furthermore, because these sets of vectors come from the SVD decomposition (5.12) we have

v(k)�
i v(k)

j = δij ⇒ v(k)�
i H̃�

k H̃kv
(k)
j = d

(k) 2
i δij (5.13)

Therefore, user k should only put energy into those vectors v(k)
i that correspond to non-zero singular

values d(k)
i �= 0.

Also, let us denote by ρk the rank of user k’s transformed MIMO channel matrix H̃k, equal to

the number of non-zero singular values. It is obvious that

ρk = rank(H̃k) ≤ min(N,Nk) (5.14)
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Then, the dimension of the column space of matrix H̃k will be equal to ρk. Also, the dimension of

the null space of Hk is Nk − ρk and the dimension of the left null space is N − ρk. Because there

are only ρk non-zero singular values and we are interested only in their corresponding eigenvectors,

we can partition matrix Dk containing the singular values as

Dk =


 D̄k 0

0 0


 (5.15)

with a ρk × ρk diagonal matrix D̄k which contains the nonzero singular values and zero matrices

of appropriate dimensions.

Returning to equation (5.11) in which we apply the SVD for matrix H̃k we obtain

r̃ = UkDkV�
k Skbk + wk (5.16)

We can premultiply by U�
k

r̃k = U�
k rk = DkV�

k Skbk + U�
k wk (5.17)

By defining S̃k = V�
k Sk and w̃k = U�

k wk we have

r̃k = DkS̃kbk + w̃k (5.18)

The partition in equation (5.15) on the singular value matrix Dk induces the following partition

of transformed precoder matrix S̃k

S̃k =


 S̃k1

S̃k2


 (5.19)

with S̃k1 of dimension ρk ×Mk and S̃k2 of dimension (Nk − ρk) ×Mk.

Note that because both Uk and Vk are orthogonal matrices they preserve norms of vectors.

Thus, columns of S̃k are also unit norm as were the columns of Sk. Also, because the equivalent

noise term wk is white, then w̃k will also be white.

In light of the partitions in equations (5.15) and (5.19) we can safely ignore the last N − ρk

dimensions of the received vector r̃k in equation (5.18) and reduce dimensionality of the problem

to the rank of the channel matrix ρk. This can be done because, on one hand, no transmitted

signal due to user k will be observed on these dimensions, and on the other hand noise components
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on these dimensions are statistically independent of the remaining noise components. Thus, the

reduced dimension problem in which only the first ρk components of the received vector appear

can be written as

r̄k = [Iρk
0]r̃k = D̄kS̄kbk + w̄k (5.20)

with S̄k = S̃k1 and w̄ = [Iρk
0]w̃k. The covariance matrix of the “new” noise vector is also an

identity matrix of dimension ρk.

Equation (5.20) is identical to the single user dispersive channel equation (2.18) and the eigen-

algorithm can now be directly applied to optimization of matrix S̄k. With the matrix S̄k yielded by

the eigen-algorithm for interference avoidance one can obtain the full dimension precoder matrix

Sk = Vk


 S̄k

0


 (5.21)

so that each input codeword vector is a linear combination of only those v(k)
i which actually appear

at the channel output.

The precoder optimization algorithm through interference avoidance for multiuser MIMO sys-

tems is formally stated below:

The Eigen-Algorithm for Multiuser MIMO Systems

1. Start with a randomly chosen set of precoder matrices {S�}L
�=1

2. For each user k = 1 . . . L

(a) Compute the transformation matrix Tk in equation (5.10) that whitens the interference-

plus-noise seen by user k

(b) Change coordinates and compute transformed user k’s MIMO channel matrix H̃k =

TkHk

(c) Apply SVD for H̃k and project the problem onto user k’s signal space to obtain r̃k in

equation (5.18)

(d) Reduce dimensionality to ρk the rank of the MIMO channel matrix and obtain the

reduced dimension problem in equation (5.20)
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(e) Define the equivalent inverted channel problem similar to equation (2.19) for user k by

premultiplying with D̄−1
k

r̄k,inv = D̄−1
k r̄k = S̄kbk + D̄−1

k w̄k (5.22)

(f) Adjust user k’s transformed precoder matrix by replacing its columns sequentially: col-

umnm of S̄k (s̄(k)
m ) is replaced by the minimum eigenvector of corresponding interference-

plus-noise covariance matrix

R(k)
m = S̄kS̄�

k − s̄(k)
m s̄(k)�

m + D̄−2
k (5.23)

(g) Iterate previous step until convergence (making use of escape methods [62] if the proce-

dure stops in suboptimal points)

3. Repeat step 2 iteratively for each user until a fixed point is reached for which further modi-

fication of codewords will bring no additional improvement.

We note that steps 2(f)-(g) represent application of the basic eigen-algorithm and “water fill”

user k’s signal space while regarding the remaining users in the system as noise. Therefore, applied

iteratively by each user the procedure is an instance of iterative water filling and is guaranteed to

converge to a fixed point [94] where sum capacity of the multiple access vector channel in equation

(5.6) is maximized. We again note that empirically, the algorithm seemed robust with respect to

the order of codeword replacement.

We also note, that from a practical point of view the dimensionality of the problem can be

further reduced in step 2(d) of the algorithm by taking advantage of the water filling result implied

by the eigen-algorithm. More precisely, the noise levels over which water filling occurs in steps

2(f)-(g) of the algorithm are given by the inverse of the non-zero singular values of the MIMO

channel matrix H̃k, that is

D̄−2
k =




d
(k)−2

1

. . .

d
(k)−2

i

. . .

d
(k)−2

ρk




(5.24)
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Figure 5.2: An example of water filling diagram in a signal space with 6 dimensions for which the
total power Mk of user k is split only on the first 3 dimensions with minimum “noise” energy.
The identities implied by water filling c∗k = p

(k)
1 + d

(k)−2

1 = p
(k)
2 + d

(k)−2

2 = p
(k)
3 + d

(k)−2

3 determine

c∗k = [Mk + (d(k)−2

1 + d
(k)−2

2 + d
(k)−2

3 )]/3 ≤ d
(k)−2

4 .

in decreasing order of their magnitudes as yielded by the SVD

d
(k)
1 ≥ . . . ≥ d

(k)
i ≥ . . . ≥ d(k)

ρk
(5.25)

This implies that their inverses will be in increasing order of their magnitudes, i.e.

d
(k)−2

1 ≤ . . . ≤ d
(k)−2

i ≤ . . . ≤ d(k)−2

ρk
(5.26)

Because for each user k we are limited to a fixed amount of transmitted power equal to

Trace
[
SkS�

k

]
= Mk (coming from the fact that each user k sends Mk symbols each with unit

energy) we can determine how many of the ρk dimensions will actually carry information by look-

ing at the “watermark” in the corresponding water filling diagram (see Figure 5.2). If we denote by

n the number of dimensions water-filled by the transmitted power then the “watermark” is defined

as

c∗k =

Mk +
n∑

i=1

d
(k)−2

i

n
(5.27)



90

and can be found algorithmically by checking the following inequalities

c(k)∗
m =

1
m

(
Mk +

m∑
i=1

d
(k)−2

i

)
> d

(k)−2

m+1

c
(k)∗
m+1 =

1
m+ 1

(
Mk +

m+1∑
i=1

d
(k)−2

i

)
≤ d

(k)−2

m+2




=⇒ n = m+ 1 (5.28)

The first inequality in (5.28) tells us that if we were to use only the first m dimensions to do water

filling, the resulting watermark c(k)∗
m will be larger than the (m+ 1)st “noise level”. However, the

next inequality assures that when the (m + 1)st dimension is used then the resulting watermark

c
(k)∗
m+1 will be less than or equal to the corresponding “noise level” and therefore no additional

dimensions will be water-filled.

Reducing the number of dimensions to only those which are actually water-filled by user k is

advantageous from a numerical point of view since the eigen-algorithm will be performed on a lower

dimensional problem. We note however, that sum capacity of the MIMO channel does not change

since it is still obtained by water filling over the maximum number of dimensions with smallest

“background” noise energy in user k’s inverted channel signal space.

5.3 Simulation Results

In this section we perform simulations and look at performance in terms of signal-to-noise ratios

(SNRs) at the receiver and channel capacity. Capacity is analyzed in the context of fading channels

which are characteristic of wireless communications. Due to the randomness of channel realizations,

the resulting capacity is a random variable and we plot Complementary Cumulative Distribution

Functions (CCDFs) similar to those in [19] from which one can see what capacity can be achieved

with a given probability. More precisely, we say that an outage occurs whenever capacity is below

a given value, and identify the probability of outage Pout from the corresponding CCDF.

The MIMO channel model used for simulations is derived by using the same set of basis functions

for the signal space as in Chapter 2 consisting of real sinusoids (sine and cosine functions). Similar

to Chapter 2 we assume that the frame duration T � T
(�)
ij , ∀�, i, j. Consequently, sinusoids are

eigenfunctions for all the channels in the multiple antenna link, and let us denote by Nc the number

of frequencies used. The number of transmit antennas for user � is T� and the number of receiver
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antennas is R.

Decomposition of each channel into orthogonal sub-channels implied by the sinusoidal basis

functions leads to multicarrier modulation for transmission of information on each pair of trans-

mit/receive antennas. In this context the equivalent vector channel representation for equation

(5.1) is

y(�)
ij = Λ(�)1/2

ij x(�)
i (5.29)

where x(�)
i and y(�)

ij are the 2Nc-dimensional input and output vectors, and Λ(�)
ij the 2Nc × 2Nc

matrix containing the eigenvalues corresponding to channel having impulse response h(�)
ij (t). We

note that in the context of multicarrier modulation when real sinusoids are approximately channel

eigenfunctions, channel eigenvalues correspond to the real channel gains for the frequencies that

span the signal space. The received vector at receive antenna j corresponding to the received

waveform in equation (5.2) is then given by

rj =
L∑

�=1

T�∑
i=1

y(�)
ij + nj =

L∑
�=1

T�∑
i=1

Λ(�)1/2
ij x(�)

i + nj (5.30)

where nj is the additive noise vector at receive antenna j with covariance matrix E[njn�
j ] = Wj .

By stacking together all received signal vectors from all receive antennas we can write




r1

...

rj

...

rR




=
L∑

�=1




Λ(�)1/2
11 . . . Λ(�)1/2

i1 . . . Λ(�)1/2
T�1

...
...

...
...

...

Λ(�)1/2
1j . . . Λ(�)1/2

ij . . . Λ(�)1/2
T�j

...
...

...
...

...

Λ(�)1/2
1R . . . Λ(�)1/2

iR . . . Λ(�)1/2
T�R







x(�)
1

...

x(�)
i

...

x(�)
T�




+




n1

...

nj

...

nR




(5.31)

or simply

r =
L∑

�=1

H�x� + n (5.32)

where we have denoted by H� the 2NcT�×2NcR matrix containing channel eigenvalue matrices of all

channels in the multiple antenna link between user � and the basestation, x� the 2NcN�-dimensional

transmitted vector of user �, and n the 2NcR-dimensional noise vector at the basestation. Under

the assumption that noise vectors at different antennas are independent then the noise covariance

matrix will be block diagonal, each block containing the covariance of the noise that corrupts the
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received signal at the corresponding receive antenna

E[nn�] = W =




W1

. . .

WNr




with Wj = E[nn�].

The above MIMO channel model has been derived under the implicit assumption that the

Nc periods of spanning sinusoids are large compared to the propagation delays between antenna

elements so that the sine and cosine components are still approximately synchronized at the receiver

even in the presence of multiple transmit and receive antennas. In addition, for simplicity, carrier

synchronization for all users has also been assumed.

We start with the single user multiple antenna case which was the case considered in previous

approaches. For this case we analyze SNR distribution when random precoding matrices are used

as well as when the optimal precoding matrices yielded by the eigen-algorithm are used, and we

also look at improvement in SNR generated by an increase in number of antennas. CCDFs for sum

capacity for single user as well as multiple user cases are also plotted.

5.3.1 Receiver SNR Distribution

In order to compute the SNRs at the receiver antennas we return to equation (5.30) which for only

one user becomes

rj =
T∑

i=1

yij + nj =
T∑

i=1

Λ1/2
ij xi + nj (5.33)

Note that we have dropped the user index � and replaced the number of transmit antennas by T

since there is only one user in the system. The average energy of the signal at receive antenna j

E[r�j rj] = Trace
[
E[rjr�j ]

]

= Trace


 T∑

p=1

T∑
r=1

Λ1/2
pj E[xpx�

r ]Λ1/2
rj + Wj




= Trace


 T∑

p=1

T∑
r=1

Λ1/2
pj E[xpx�

r ]Λ1/2
rj


+ Trace [Wj ]

(5.34)
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where xp, xr represent signals coming from transmit antennas p and r respectively, which can be

obtained explicitly by partitioning the 2NcT ×M precoding matrix S in T blocks of dimensions

2Nc ×M stacked together

x = Sb =




S1

...

Si

...

ST




b =




S1b
...

Sib
...

STb




=




x1

...

xi

...

xT




(5.35)

With these partitions we get E[xpx�
r ] = SpS�

r and we compute the SNR at receive antenna j

as the ratio of the first term in the right hand side of equation (5.34) to the second term

SNRj =

Trace


 T∑

p=1

T∑
r=1

Λ1/2
pj SpS�

r Λ1/2
rj




Trace [Wj ]
(5.36)

Note that knowledge of channels composing the multiple antenna link implies different SNRs at

different receive antennas even in the context of white noise with the same average power. This

is different from [19] where the same average SNR at all receive antennas has been assumed.

However, we have a similar constraint on the total transmitted power which is constant regardless

of the number of transmit antennas used.

With random precoding matrices and for a particular set of channels comprising the multiple

antenna link, the SNRs at different receive antennas have the bell-shaped distribution shown in 5.3

(upper plots). The SNR at all receiver antennas has been recorded for a number of Nc = 5 spannig

frequencies (corresponding to 10 real sinusoids), with equal number of antennas at transmitter and

receiver T = R = 1, 2, 4, 8, and average power of the white noise N0 = 0.5 at each receive antenna

for the same set of channels but for different (random) precoding matrices. However, application

of interference avoidance water fills the channels appropriately and results in a fixed set of SNRs

at each receive antenna for given instances of the channel(s). As it can be seen from Figure 5.3

doubling the number of antenna elements in both transmitter and receiver results in about a 3 dB

improvement in the SNR. Also note that after interference avoidance the SNR is approximately

the same for all receive antennas, even though no a priori assumption about equal SNRs at each

antenna [19] has been made.
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Figure 5.3: SNR distributions for a single user multiple antenna system with random precoding
matrices (upper plot). SNRs with optimal precoding matrices yielded by the interference avoidance
algorithm for a single user multiple antenna system (lower plot). Signal space dimension is N = 10
and average power of white noise is N0 = 0.5 at each receive antenna.
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5.3.2 Fading Channels and Outage Capacity

In the case of fading environments, which is characteristic of wireless communications, the impulse

responses of channels in the multiple antenna link change over time and it becomes difficult, if not

impossible, to apply interference avoidance to determine optimal precoding matrices corresponding

to all channel realizations that occur during the duration of the transmission. However, in such

cases interference avoidance is applied using average characteristics of the channels as described in

Chapter 3 to determine precoder matrices which are optimal for the average channel.

We analyze the effect of fading on the sum capacity of our MIMO channel model by using

precoding matrices which are optimal for the average channel (obtained by application of the

eigen-algorithm) and computing the corresponding sum capacity for various realizations of the

fading channel models assumed. The results are used to plot the corresponding CCDFs.

We assume the same frequency-selective fading channel model as in Chapter 3 which is suited

to the multicarrier modulation scheme used for transmission [92].

For a single user system, we perform a set of experiments in which we first determine a precoding

matrix which is optimal for the average channel defined in terms of a set of average values of the

Rayleigh random variables, and then compute capacity values for distinct realizations of these

Rayleigh random variables using equation

C =
1
2

log[det(HSS�H� + W)] − 1
2

log(detW) (5.37)

where H is the MIMO channel matrix of the considered user. Again there is no need for user index

� as there is only one user in the system. The resulting set of capacity values are used to derive

the CCDFs presented in Figure 5.4. In these plots we compare the case of only one transmit and

one receive antenna with the case of two transmit and two receive antennas, and four transmit and

four receive antennas respectively. Simulations are done with a set of N = 5 carrier frequencies for

different average white noise power at the receiver N0 = 1, 0.5, 0.25, 0.1. These values correspond

to a 3 dB increase in the SNR at receiver antennas and for the average channel imply SNRs of

approximately2 1dB, 4dB, 7dB, and 10 dB for the T = R = 1 antenna case, 4 dB, 7dB, 10dB and

2As it has been seen, the SNRs at receive antennas are not necessarily the same. However, when optimal codewords
are used they are approximately equal.



96

13dB for the T = R = 2 antenna case, and 7 dB, 10 dB, 13 dB, and 16 dB for the T = R = 4

antenna case.

From the CCDFs in Figure 5.4 see that for the analyzed scenario, the use of multiple antennas

at both transmitter and receiver improves outage capacity. For example, for an outage probability

Pout = 1%, capacity is increased for low SNR from less than 0.5 bits/sec/Hz to approximately 1.1

bits/sec/Hz for two transmit and receive antennas, and almost 2.7 bits/sec/Hz for four transmit

and receive antennas. For high SNR, the rates increase from from about 1.5 bits/sec/Hz to about

3.6 bits/sec/Hz for two transmit and receive antennas and 5.7 bits/sec/Hz for four transmit and

receive antennas.

Next we consider a multiuser MIMO system with L = 2 users and perform similar simulations

as in the single user case with N = 5 carrier frequencies for different average white noise power

at the receiver N0 = 1, 0.5, 0.25, 0.1. Optimal precoding matrices for the average channel for

two users are determined, and then sum capacity values for distinct realizations of these Rayleigh

random variables is computed using equation

C =
1
2

log

[
det

(
L∑

�=1

H�S�S�
� H� + W

)]
− 1

2
log(detW) (5.38)

and the resulting set of capacity values are used to derive the CCDFs presented in Figure 5.5.

In these plots we compare sum capacity for the two user system in the case of only one transmit

antenna per user and one receive antenna with the case of two transmit antennas per user and two

receive antennas, and four transmit antennas per user and four receive antennas respectively. From

the CCDFs in Figure 5.5 we see similar improvements in sum capacity for the analyzed scenario and

conclude that the use of multiple antennas in the transmitters as well as in the receiver improves

outage capacity.

5.4 Chapter Summary

Application of interference avoidance methods to multiuser MIMO systems systems has been pre-

sented and analyzed in this chapter. Such systems are associated with the uplink of a wireless

system in which users and the basestation have multiple antennas.

Our approach is based on application of interference avoidance to general multiaccess vector
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Figure 5.4: Capacity CCDFs for single user MIMO system. The T = R = 1 antenna case is
compared with the T = R = 2 antenna case (upper plot) and with the T = R = 4 antenna case
(lower plot).
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antenna case (lower plot).
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channels presented in Chapter 4 for the particular multiaccess vector channel corresponding to the

multiuser MIMO system. We note that the approach is completely general and applicable to any

MIMO system models regardless of the choice of signal space basis functions. Information is sent in

frames using a multicode CDMA approach with spreading over the available dimensions implied by

a precoding matrix. Optimal precoding matrices for which sum capacity is maximized are obtained

for all users in the system through sequential application of the eigen-algorithm for interference

avoidance. The procedure, which is an instance of iterative water filling [94], works in the single

user case as well as in the multiuser case.

Numerical results based on simulations were also presented in the paper. We note that these

results are consistent with the well known results in the multiple antenna literature, namely that

the use of multiple antennas in both the transmitter and the receiver is beneficial for system

performance.

For a single user system, the SNR distribution at receiver antennas was computed with both ran-

dom precoding matrices as well as with optimal precoding matrices yielded by the eigen-algorithm,

and it has been noted that with the latter the SNR is approximately the same for all receive an-

tennas in the absence of any a priori assumptions (like those made for example in [19]). It has also

been noted that doubling the number of antennas (both in the transmitter and in the receiver)

translates to a gain of about 3 dB in the SNR when optimal precoding matrices are used.

Sum capacity of the multiuser MIMO channel was also investigated in the context of fading

environments. A frequency-selective fading channel model was assumed and precoding matrices

optimal for the average channel were used and sum capacity was treated as a random variable in

this case for which CCDF curves were plotted. We note that single user CCDFs are comparable

to those in [19] showing similar capacity improvements when multiple antennas are used in both

the transmitter and the receiver. The CCDFs for multiple users show also improvement in sum

capacity when multiple antennas are used in conjunction with designing precoding matrices that

are optimal for the average channel for all users in the system.
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Chapter 6

Interference Avoidance for Asynchronous Systems

An asynchronous multiuser system consists of a number users received at a common receiver with

non-coincident symbol intervals. This can be a consequence of lack of synchronization for systems

with users having the same data rate, or can be generated by differences in data rates for systems

where distinct users are allowed to transmit at different data rates. The latter case is especially

interesting for future wireless systems which may have to support users with different data rates.

Relaxing synchronization constraints simplifies the system design by relaxing timing control.

The capacity region of symbol-asynchronous Gaussian multiple access channels has been derived

in [82] using an equivalent multiple access channel model with memory and frame synchronism [81].

Recently, for chip-based DS-CDMA systems user capacity of the asynchronous system has been an-

alyzed and compared to that of the synchronous system [33] and a class of optimum signature

sequences has been identified [77] for which there is no loss in user capacity due to asynchrony.

However, the analysis is restricted to symbol-asynchronous but chip-synchronous DS-CDMA sys-

tems.

In this chapter we present application of interference avoidance methods to codeword optimiza-

tion in an asynchronous CDMA system. Similar to [82] we consider users in the system frame

synchronous and use a multicode CDMA transmission scheme. Symbols of a frame are sent in

parallel using distinct signature waveforms of extended duration. This approach relaxes the syn-

chronization requirements for the multiuser system since the frame duration will be larger than the

duration of individual symbol intervals would have been if sequential transmission of symbols in a

frame had been used.

An equivalent discrete time vector channel model is obtained for which application of interference

avoidance is straightforward and results in codeword (or equivalently waveform) ensembles that

maximize sum capacity.
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Figure 6.1: Symbol-asynchronous users with the same data rate 1/T modeled as frame synchronous.
Within the frame duration each user sends M symbols.

6.1 Problem Statement

We start by considering an asynchronous CDMA system with users transmitting at the same data

rate 1/T for which symbol intervals corresponding to different users are not synchronized at the

common receiver. Following the methodology described in [83, p. 21] one needs to introduce offsets

that model the lack of alignment of symbol intervals at the receiver. As opposed to the synchronous

model for which the received signal can be written by taking only one-shot of the model over the

symbol interval [0, T ] as in equation (1.2) for the asynchronous case one needs to include the

offsets τ� ∈ [0, T ), � = 1, . . . , L, and consider the fact that users send frames with many symbols

b� = [b(�)1 , . . . , b
(�)
M ] of duration T as shown in Figure 6.1. This implies that frame-synchronism

rather than symbol-synchronism is assumed, and users start and finish their transmissions within

T units of each other. The received signal is then written as

R(t) =
L∑

�=1

M∑
m=1

b(�)m S�(t−mT − τ�) + n(t) (6.1)

Similar to [82] we assume that the offsets τ�, � = 1, . . . , L, are known to the receiver, but unknown

to the transmitters so that they cannot advance or retard their transmissions. As noted in [82]

the assumption of frame synchronism can be made at any rate with some sort of channel feedback

which is an underlying assumption for systems using interference avoidance methods [63].
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Since each symbol transmitted by a given user overlaps also with past/future symbols trans-

mitted by the other users the symbol asynchronous multiple access channel has memory and can

be modeled through an equivalent multiple access channel with memory [81, 83]. Thus, one can

think of approaching the asynchronous system similar to a system where symbols are subject to

ISI (dispersive channels): the use of a multicode CDMA scheme for transmission of symbols using

signature waveforms of extended duration to convey each symbol in the frame. While in the case

of dispersive channels this approach makes ISI inconsequential, for asynchronous systems this re-

laxes the synchronization requirement, making it easier to be obtained in practice. Furthermore,

this approach can be easily generalized to users with different data rates by considering a different

number of symbols M� in a frame for distict user �. The transmitted signal corresponding to user

� is written as

x�(t) =
M�∑

m=1

b(�)m s(�)m (t) (6.2)

with s(�)m (t) being the signature waveform corresponding to symbol m of user � of duration T . We

note here that a similar approach has been used in [83, Ch. 4] in the analysis of multiuser detectors

for asynchronous CDMA systems. The received signal at the basestation is the sum of signals

transmitted by all users plus additive Gaussian noise and is written as

R(t) =
L∑

�=1

x�(t− τ�) + n(t) =
L∑

�=1

M�∑
m=1

b(�)m s(�)m (t− τ�) + n(t) (6.3)

Our goal is then to find an optimal ensemble of waveforms s(�)m (t), � = 1, . . . , L, m = 1, . . . ,M�,

for which the sum capacity of the multiple access channel is maximized.

6.2 The Equivalent Vector Multiple Access Channel

The multicode CDMA scheme in the previous section implies a vector multiple access channel

representation for which application of interference avoidance as presented in Chapter 4 is straight-

forward. In order to derive the equivalent vector channel model, we assume that each user � resides

in a signal space of finite dimension N� implied by the frame duration T and finite bandwidth W�,

and spanned by the vector of functions Ψ(�)(t) = [Ψ(�)
1 (t) . . .Ψ(�)

N�
(t)]�. Furthermore, we assume

that the receiver signal space of dimension N is spanned by Φ(t) = [Φ1(t) . . .ΦN (t)]� and is im-

plied by bandwidth W that includes all W�’s corresponding to all users and observation interval
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T + τ with τ = max�{τ�} being the largest user delay measured with respect to the begining of the

observation interval at the receiver (see Figure 6.2).

We note that, by adding the maximum delay τ to the frame duration we ensure that all wave-

forms corresponding to the current frame are completely observed during the observation interval at

the receiver. We also note that, in order to avoid overlap between succesive frames at the receiver,

time guard intervals are inserted at the begining and end of each transmitted frames as it can be

seen in Figure 6.2.

Each user � transmits the signal x�(t) given by equation (6.2) which is written in terms of user

� basis functions as

x�(t) = Ψ(�)(t)�x� = Ψ(�)(t)�S�b� (6.4)

with

S� =




| | |

s(�)
1 s(�)

2 . . . s(�)
M�

| | |


 � = 1, . . . , L

the codeword matrix of user �. The received signal at the common receiver contains signals of all

users with corresponding delays plus additive noise

r(t) =
L∑

�=1

x�(t− τ�) + n(t) (6.5)

and is observed over the interval [0,T +τ ]. By projecting the received signal onto the basis functions

of the receiver signal space an equivalent vector channel model is obtained for which the received
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signal vector is

r =
L∑

�=1

H�x� + n =
L∑

�=1

H�S�b� + n (6.6)

with the N ×N� matrix H� relating the user � signal space and receiver signal space defined by

H� =
∫ T +τ

0
Φ(t)Ψ(�)(t− τ�)�dt (6.7)

Note that equation (6.6) is identical in form to equation (4.6), thus allowing straightforward

application of the generalized eigen-algorithm to determine optimal codeword ensembles that max-

imize sum capacity as described in Chapter 4. For completness we formally state the generalized

eigen-algorithm as it applies to codeword optimization for asynchronous systems:

The Generalized Eigen-Algorithm for Asynchronous CDMA Systems

1. Start with a randomly chosen codeword ensemble specified by the codeword matrices {Sk}L
k=1

and a specified set of user offsets {τk}L
k=1

2. Determine the set of channel matrices {Hk}L
k=1 using equation (6.7)

3. For each user k = 1 . . . L

(a) compute the transformation matrix Tk that whitens the interference-plus-noise seen by

user k

(b) Change coordinates and compute user k’s transformed channel matrix H̃k = TkHk

(c) Apply SVD for H̃k and project the problem onto user k’s signal space to obtain r̃k in

equation (4.31)

(d) adjust user k codewords sequentially: the codeword corresponding to symbol m of user

k is replaced by the minimum eigenvector of the autocorrelation matrix of the corre-

sponding interference-plus-noise process in the inverted channel space

(e) Iterate step (d) until convergence (making use of escape methods [62] if the procedure

stops in suboptimal points)

4. Repeat step 2 iteratively for each user until a fixed point is reached for which further modi-

fication of codewords will bring no additional improvement.
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So, in summary, by using parallel transmission of symbols in a frame with signature waveforms

of extended duration the asynchronous multiuser system can be modeled as a multiaccess vector

channel for which application of the generalized eigen-algorithm of is straightforward. We note that,

using the resulting optimal codeword ensembles implies a very simple structure at the receiver with

matched filters as optimal linear receivers [84,85].

6.3 Chapter Summary

Application of interference avoidance for asynchronous CDMA systems was presented in this chap-

ter. The asynchronous system is modeled as frame-synchronous and a multicode CDMA approach

is used for transmission of symbols in a frame through signature waveforms of extended duration.

A vector multiple access channel model is derived to which interference avoidance applies in a

straightforward way and yields optimal codeword ensembles that maximize sum capacity.
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Chapter 7

Empirical Studies

In this chapter we present some empirical studies on various issues of the eigen-algorithm for

interference avoidance. Since power is a main factor in determining interference, in a practical

implementation one could also think of incorporating some power control mechanism along with

interference avoidance in order to provide better performance and possibly minimize transmitted

power. In section 7.1 we present some theoretical considerations leading to an algorithm that

combines interference avoidance with a power control mechanism in which each user adjusts both

codeword and power so as to achieve a target SINR with minimum power.

In section 7.2 the SINR variation during the transient phase of the greedy algorithm for inter-

ference avoidance is analyzed, and empirical evidence showing that at any step of the algorithm

the SINR cannot go below the minimum starting value is provided.

Quantization issues for interference avoidance are explored in section 7.3. Codewords are calcu-

lated based on information at the receiver and must be fed back to the transmitter either directly

or indirectly (by feeding back covariance information for example). In either case, the accuracy

of the feedback affects performance. We therefore examine the level of quantization necessary

to achieve almost optimal performance, noting that high accuracy entails high demands on the

feedback channel.

In section 7.4 we look at complexity issues. We evaluate operational complexity of the eigen-

algorithm and explore the reduction in receiver complexity implied by the channelization produced

by application of interference avoidance for dispersive channels.
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7.1 Interference Avoidance and Power Control

We consider a synchronous multiuser communication system with M users, similar to the one

considered in Chapter 1 but in which users are received with different powers at the basestation.

The received signal at the basestation is described by a relation similar to equation (1.2) modified

to reflect the unequal user powers

r =
M∑
i=1

bi
√
pisi + n (7.1)

All terms have the same meaning as in equation (1.2), and pi is the received power of user i. We

define the M ×M diagonal matrix P containing received powers of all users

P =




p1

p2

. . .

pM




(7.2)

and rewrite the received signal similar to equation (1.4)

r = SP1/2b + n (7.3)

Following the same line of reasoning as in Chapter 1 we assume simple matched filters at the

receiver for all users and compute the SINR for user k

γk =
power of user k

power of interference-plus-noise seen by user k
=
pk

ik

=
(
√
pks�k sk)2

M∑
j=1,j �=k

(s�k sj
√
pj)2 + E[(s�k n)2]

=
pk

s�k


 M∑

j=1,j �=k

pjsjs�j + W


 sk

(7.4)

We define the correlation matrix of the interference-plus-noise seen by user k in this case

Rk =
M∑

j=1,j �=k

pjsjs�j + W = SPS� − pksks�k + W (7.5)

which implies that the SINR for user k becomes

γk =
pk

s�k Rksk
(7.6)
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When the powers of users are fixed but unequal and only the codewords are modified, greedy

interference avoidance algorithms have also been introduced and analyzed in [63]. We note that

using the SINR as metric maximizing it through adaptation of user codewords implies decreasing the

term s�k Rksk in equation (7.6). Therefore, similar to the equal power case presented in Chapter 1,

replacement of user k’s codeword sk by a new codeword xk such that equation (1.15) is satisfied

would define a valid interference avoidance algorithm. We again note, that the quantity s�k Rksk

which is the Rayleigh quotient of matrix Rk, is absolutely minimized by choosing xk to be the

minimum eigenvector of Rk. Replacement of user k’s codeword sk by minimum eigenvector xk of

the interference-plus-noise correlation matrix Rk defines greedy interference avoidance for unequal

powers, and its properties and convergence analysis can also be found in [62,63].

For a combined interference avoidance and power control algorithm, we first note that when the

goal is to achieve a specified target SINR for each user, it may not necessarily imply maximizing or

even increasing the SINR. For example a user might have a better SINR than required and might

like to adjust both codeword and power so that the target SINR value is met.

We also note that if user power were the only adjustable parameter, then standard power control

algorithms [91] could be employed to meet the target SINR for each user in the system. However,

interference avoidance methods provide additional degrees of freedom, by allowing users to change

their codewords in addition to their power. Therefore, our goal in combining interference avoidance

with power control is to achieve a target SINR with minimum user power by decreasing effective

interference through codeword adaptation.

Let us denote by γ∗k the target SINR for user k which is achieved for a given power p∗k and

codeword xk. According to equation (7.6) this can be written as

γ∗k =
p∗k

x�
k Rkxk

(7.7)

It is obvious that when both the power and the codeword are adjustable, the target SINR for user

k can be met by a multitude of combinations {p∗k, xk}. However, since power is a precious resource

in a wireless system, we are interested in that combination for which the target SINR is achieved

with minimum user power. This is possible when effective interference seen by user k is minimum

as well and this can be obtained by replacing user k codeword with the minimum eigenvector of

Rk. The resulting SINR after codeword replacement will be proportional to the inverse minimum
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eigenvalue λ∗k of Rk, and the target γ∗k for user k will be obtained by adjusting power to

p∗k = γ∗kλ
∗
k (7.8)

This leads to the following algorithm of combined interference avoidance and power control:

The Combined Interference Avoidance and Power Control Algorithm

1. For a given background noise with covariance matrix W start with a random set of user

codewords and powers specified by matrices S and P respectively.

2. Specify the desired target SINRs γ∗1 , . . . , γ
∗
M .

3. For each user k = 1, . . . ,M do

(a) Compute covariance matrix of the interference-plus-noise

Rk = SPS� +W − pksks�k (7.9)

and determine minimum eigenvalue λ∗k and corresponding eigenvector xk

(b) Minimize effective interference for user k by replacing its current codeword sk with the

minimum eigenvector xk of Rk

(c) Adjust power to meet the target SINR for user k

p∗k = γ∗kλ
∗
k (7.10)

4. Repeat step 3 until a fixed point is reached.

Even though this algorithm is simple and easy to apply, simulations have shown that it does

not always reach a fixed point. Two distinct situations have been observed from simulations:

• User codewords keep changing and powers keep increasing in their attempt to meet target

SINRs. This situation is similar to that occuring for regular power control algorithms when

targets are unfeasible and, without a maximum power limit set user powers would probably

increase indefinitely.

• The algorithm gets trapped in limit cycles where codewords keep changing to minimize effec-

tive interference while powers cycle through distinct values but do not increase indefinitely.
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A “lagged” version of this algorithm can be defined by modifying step 3(b) and replacing the

current codeword of user k with a linear combination of the old codeword sk and the minimum

eigenvector xk normalized to unit norm

v =
αsk + (1 − αxk)
‖αsk + (1 − αxk)‖

(7.11)

With an appropriately chosen lag constant α ∈ (0, 1) simulations have shown that the lagged

version of the combined interference avoidance and power control algorithm usually reaches a fixed

point which is defined by the requirement that user codewords be minimum eigenvectors of their

respective Rk matrices.

Although we have not been able to prove this result theoretically, simulations have shown that

at the fixed point reached by the algorithm user coderwords and powers have properties identical

to those in [84], thus leading to an optimal situation in which users water fill the signal space, with

eventual oversized users that have private channels for communication [63, 84]. We note that in

our case oversized users are implied by high target SINRs relative to the target SINRs of the other

users. More precisely, in our case users with high target SINRs relative to the rest of the users end

up using those signal space dimensions with lowest background noise energy thus ensuring that

minimum power is used to achieve the target SINR.

We also note that a more detailed theoretical analysis of the fixed point for the combined

interference avoidance and power control algorithm and an eventual convergence proof must take

into account the fact that the total received power at the basestation is not constant throughout

the algorithm. Therefore the use of global criteria like TSC or sum capacity as in [3,62] is no longer

possible, thus making the convergence analysis more difficult.

7.2 Transients of the Eigen-Algorithm

Consider the transient phase of the greedy interference avoidance algorithm before the codewords

have settled. We ask the following question: What if the SINR of one or several users drops below

a certain level and the connection with the basestation is lost? We present empirical evidence which

suggests that the minimum SINR is usually not decreased during application of the eigen-algorithm

for interference avoidance. As a consequence, this ensures that if the user with the worst SINR had
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Figure 7.1: Variation of the minimum SINR normalized by the initial minimum SINR represented
vs. the number of codeword updates for 1,000 random codeword ensembles for M = 5 users in a
signal space with dimension N = 3 and white noise with variance N0 = 0.1. We note that after 6
iterations the eigen-algorithm settles down.

an acceptable connection with the basestation, then usually no one’s connection will be any worse

than this as codewords are updated.

We have performed experiments for various values of signal space dimensions N , and number of

users M . For each value of M and N , the eigen-algorithm was applied to 1,000 random codeword

ensembles and the minimum SINR value was recorded before and after a codeword update was

performed. We note that convergence to near optimal codeword ensembles occurs after several

iterations of the eigen-algorithm [63], and therefore each user updates its codeword several times.

The minimum SINR after each codeword update was normalized by the initial minimum SINR and

this value was plotted versus the number of codeword updates. From Figure 7.1, which is typical

for randomly chosen initial codeword ensembles, we note that the value of the normalized minimum

SINR is always larger than 1 which implies that at any step of the algorithm the minimum SINR

does not go below the initial minimum SINR. Furthermore, we note that with each codeword update

the minimum SINR is increasing and after several iterations (6 for the experiment in Figure 7.1),
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once the the eigen-algorithm settles down, the minimum SINR becomes equal to the optimal value.

As we have already mentioned, this empirical evidence suggests that if the user with the worst SINR

has an acceptable connection with the basestation when codeword update begins, connections of

all users with the basestation will not be lost during the codeword adaptation process.

Of course there exist special cases of codeword ensembles for which the codeword update of a

given user has a negative impact on the user with worst SINR, thus contradicting the empirical

results that have been obtained. We provide such an example for M = 4 users in a signal space of

dimension N = 3 and additive white Gaussian noise with zero mean and variance N0 = 0.1. The

matrix containing initial user codewords is

S =




0 0.1 −
√

0.99
√

0.99

0.1
√

0.98 0 0.1
√

0.99 0.1 0.1 0


 (7.12)

with initial SINR values equal to

γ1 = 6.6935 γ2 = 5.3530 γ3 = 0.9107 γ4 = 0.8932 (7.13)

When user 1 changes codeword according to the eigen-algorithm the new codeword matrix becomes

S =




0.0558 0.1 −
√

0.99
√

0.99

−0.1108
√

0.98 0 0.1

0.9923 0.1 0.1 0


 (7.14)

and the new SINR values are

γ1 = 9.6238 γ2 = 6.7827 γ3 = 0.9174 γ4 = 0.8917 (7.15)

As it can be seen, the resulting minimum SINR after codeword replacement by user 1 is smaller

than the original minimum SINR.

However, since the order in which codewords are updated is not fixed this situation can be

easily avoided by changing the codeword corresponding to the user with worst SINR first. For the

particular example above changing user 4 codeword according to the eigen-algorithm results in the

new codeword matrix

S =




0 0.1 −
√

0.99 −0.4487

0.1
√

0.98 0 0.6499
√

0.99 0.1 0.1 −0.6135


 (7.16)
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with the corresponding SINR values

γ1 = 2.2383 γ2 = 2.2941 γ3 = 3.7562 γ4 = 1.1987 (7.17)

with the minimum SINR after codeword update being larger than before.

An intuitive explanation of this nice behaviour of the eigen-algorithm can be given in terms of

codeword migration in signal space. More precisely, the user with worst SINR dwells in a crowded

region of the signal space, receiving a lot of interference from other users that share the same part of

the signal space, and which have also bad SINRs. By applying the eigen-algorithm for interference

avoidance the user with worst SINR goes away from the “noisy crowd”, thus offering some relief in

terms of energy in the crowded region. Consequently, the SINRs can not decrease below the initial

value.

7.3 Codeword Quantization

For interference avoidance methods, user codewords and corresponding receiver filters are adapted

iteratively in order to improve performance. For practical implementation one must consider the

feedback channel between the receiver, which calculates the codeword adjustments, and the trans-

mitter which uses them. In particular, compact representation of codewords is extremely important

for systems which employ interference avoidance since as opposed to current CDMA systems where

uniform-amplitude codeword chips are used, interference avoidance employs real-valued “chips”–

real-valued coefficients for a set of orthonormal basis functions of the signal space used by the

transmitter and receiver.

Individual user waveforms are represented as linear superpositions of orthonormal basis func-

tions which span a signal space. For a single waveform, the real-valued superposition coefficients

comprise the codeword. These codewords are adjusted iteratively in response to interference condi-

tions and fed back to the transmitter. Since in a real system real values cannot be specified with

infinite precision, if interference avoidance is to move from theory to practice, then the necessary

precision of codeword representation must be considered.

The problem of quantizing the optimal codewords generated by the interference avoidance al-

gorithms is investigated in order to determine its influence on system performance. Quantization
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effects may be seen when comparing the SIR obtained with optimal codewords vs. the SIR ob-

tained with quantized optimal codewords. Also, the value of the TSC which was minimized by the

interference avoidance algorithms is usually increased by quantizing optimal codewords.

Scalar quantization of each codeword component is considered, with the final goal of encoding

the resulting levels into a binary sequence to be transmitted over a control channel. The amount

of information sent over this control channel can be regarded also as a measure for the efficiency

of codeword feedback for interference avoidance.

In scalar quantization [56] the set of real numbers R is partitioned into L disjoint subsets

{Rk}L
k=1 and a representation point is chosen for each subset. The quantization function is

Q(x) = x̂k ∀x ∈ Rk (7.18)

and is nonlinear and noninvertible. For L quantization levels a number B = log2 L of bits are

enough to encode them into a binary sequence1. Uniform and non-uniform quantization schemes

are considered and their effects on the SIR and TSC will be investigated.

Uniform quantizers are the simplest type of quantizers in which regions {Ri}L
i=2 − 1 are equal

with some ∆, called quantization width. The design of a uniform quantizer for random variables

is done to minimize the squared error distortion

D = E[(X −Q(X))2] (7.19)

and is done mainly by numerical techniques.

In the case of non-uniform quantizers, the condition that quantized regions be equal is not

imposed which implies fewer constraints in the minimization of distortion. The quantizer is designed

based on the necessary conditions for optimality, known as Lloyd-Max conditions [56].

A set of quantization experiments has been performed using codewords obtained in 1000 trials

of the eigen-algorithm. The resulting optimal codewords have been quantized using both uniform

and non-uniform quantizers, with up to 32 quantization levels (which implies up to 5 bits in the

representation of quantized codewords), and both the SIR and the TSC for quantized optimal

codewords have been computed. The SIR is the same for all users and equal to N/(M −N) [63] for

1L is chosen in general to be a power of 2.
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the optimal codeword set, but this is no longer true for the quantized codeword set. Different users

have different SIRs with a distribution which is approximately Gaussian as it can be seen from

figures 7.2 and 7.3. The mean of the distribution gets closer to the optimal SIR and the variance

decreases as the number of quantization levels increases.

Similar remarks can be made about the TSC value, which is equal to M2/N for the optimal

codeword set, whose resulting distributions for different number of quantization levels are plotted

in figures 7.4 and 7.5.

Mean values of the SIR and TSC distributions presented in the previous plots are presented in

figures 7.6 and 7.7.

We can conclude that quantization degrades the performance of interference avoidance algo-

rithms, by decreasing the mean value of the SIR and increasing the mean value TSC. Furthermore,

coarse quantization leads to reasonably large non-uniformity in performance across a given code-

word ensemble. Each effect constitutes a degradation in overall performance. With non-uniform

quantization 16 to 32 quantization levels (corresponding to 4 – 5 bits) seem to be enough to keep

the SIR distribution and overall TSC close to optimal values. The average number of bits required

for codeword representation might be further decreased by doing entropy coding [55]. This is done

by assigning codewords of variable lengths to the possible outcomes of the quantizer, such that

highly probable outcomes are assigned shorter codewords, and outcomes with lower probability are

assigned longer codewords.

7.4 Complexity Issues

7.4.1 Operational Complexity

At each step, the eigen-algorithm for interference avoidance performs an eigen-decomposition of the

correlation matrix of the interference plus noise seen by a given user after which the given user’s

codeword is replaced by the minimum eigenvector computed. For a system with M users operating

in an N -dimensional signal space, the eigen-decomposition has to be performed M times – each on

an N ×N matrix – for one iteration of the algorithm, with convergence occuring usually within 3

– 6 iterations. Note that we assume the case of overloaded systems with M > N .

For symmetric matrices computation of eigenvalues and eigenvectors can be done using various
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Figure 7.2: SIR distribution with uniformly quantized codewords for 1000 interference avoidance
algorithm trials, M = 15 users with N = 10 dimensions.

1 2 3 4 5

0
0.5

1
1.5

2
2.5

3

0

1000

2000

3000

4000

5000

6000

7000

no. of bits

quantized SIR bins

O
cc

u
re

n
ce

s/
b
in

Figure 7.3: SIR distribution with non-uniformly quantized codewords for 1000 interference avoid-
ance algorithm trials, M = 15 users with N = 10 dimensions.
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Figure 7.4: TSC distribution with uniformly quantized codewords for 1000 interference avoidance
algorithm trials, M = 15 users with N = 10 dimensions.
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Figure 7.5: TSC distribution with non-uniformly quantized codewords for 1000 interference avoid-
ance algorithm trials, M = 15 users with N = 10 dimensions.
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Figure 7.6: Mean values of SIR after uniform and non-uniform quantization of codewords. 1000
interference avoidance algorithm trials, M = 15 users, N = 10 dimensions.
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numerical techniques among which the Jacobi and Hauseholder methods [54, Ch. 11] are the most

widely used.

The Jacobi method consists of a sequence of orthogonal similarity transformations and its

computational complexity is O(N3) (usually 18N3 to 30N3) operations when eigenvectors as well

as eigenvalues are desired.

The Hauseholder method is based on reduction of the symmetric matrix to a tri-diagonal form

followed by a QL algorithm (consisting of a sequence of factorizations Q·L in which Q is orthogonal

and L is lower triangular). The computational complexity of this method is also O(N3), but the

constants are lower than in the case of Jacobi method (it requires (4/3)N3 operations for the

Hauseholder reduction to a tri-diagonal form and 3N3 for the QL algorithm when both eigenvalues

and eigenvectors are desired).

When only a few eigenvectors2 are desired instead of the full eigenvector set, computational

complexity can be reduced by using the inverse iteration method to determine the eigenvectors.

Eigenvalues will still be obtained by the Hauseholder method whose computational complexity is

reduced to (2/3)N3 + 30N2 in this case. The inverse iteration method requires O(N2) operations

to determine the eigenvector associated with a given eigenvalue.

Since all these methods require O(N3) operations, their use in conjunction with the eigen-

algorithm for interference avoidance will imply a computational complexity of O(MN3) for the

eigen-algorithm. For comparison we look at the algorithm proposed in [84], which yields codeword

ensembles with the same properties as the eigen-algorithm (WBE sequence sets). This algorithm

is based on a mathematical procedure of constructing a symmetric matrix with given eigenvalues

and diagonal elements and requires M multiplications of M ×M matrices. Although in general

this requires O(M4) operations, we note that the matrices involved are rotation matrices [14] and

have simpler form, thus the actual complexity of the algorithm being O(M3).

From a different perspective however, the eigen-algorithm is suited for distributed implemen-

tation, while the alternative algorithm in [84] is not. We note that the distributed nature of the

eigen-algorithm makes it more attractive for implementation in a real system. In addition, the

adaptive algorithms for estimating the eigenstructure of covariance matrices [71] or for tracking

2Usually less than 25% of the eigenvectors



120

only a few eigenvectors [13] developed in the context of signal processing applications might be

successfully used for further reducing the computational complexity of the eigen-algorithm as well

as for more efficient implementations.

7.4.2 Receiver Complexity

In Chapter 2 we have seen that under reasonably loose assumptions on the channel gain matrices,

two given users can overlap in at most one frequency. And when taken together with the optimality

of matched filter receivers, single frequency overlap can drastically reduce the receiver complexity.

Specifically, suppose that our signal space is spanned by N frequencies. In the real-valued formula-

tion of Chapter 2 this implies a signal space of dimension 2N in which each user requires in general

2N matched filters with 2N coefficients each for an implied 4N2 multiply operations per frame

per user. However, if users can only overlap in at most one frequency (2 signal space dimensions

in our formulation) one might expect, depending on the actual gain matrices that each of k users

will occupy on the order of 2N/k signal dimensions. This implies that only 2N/k codewords are

necessary and for each codeword only 2N/k coefficients will be nonzero. Thus, complexity could

be reduced by a factor on the order of k2 per user receiver and k overall.

To illustrate with a more concrete example, consider 2N dimensions and k users. Assume that

the user gain matrices are randomly perturbed identity matrices (pairwise perturbation since each

sinusoid frequency must have the same gain) as given by equation (7.20) where ε(�)i is uniform

random number with |ε| ≤ 0.1. Uniform white background noise is also assumed.

Λ� =




1 + ε
(�)
1 0 · · · · · · · · · · · · 0

0 1 + ε
(�)
1 0 · · · · · · · · · 0

... 0
. . . 0 · · · · · ·

...
... · · · 0

. . . . . . · · ·
...

... · · · · · · . . . . . . . . .
...

... · · · · · · · · · . . . 1 + ε
(�)
N 0

0 · · · · · · · · · · · · 0 1 + ε
(�)
N




(7.20)

For N = 10 and k = 2, 3, 4, 5, 6 we have applied interference avoidance to a number of such

randomly chosen systems and a plot of the average number of dimensions per user is provided in
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Figure 7.8: Average number of frequencies occupied per user for increasing numbers of users. The
signal space is spanned by N = 10 frequencies and each user’s gain matrix was selected according
to equation (7.20).

Figure 7.8. As a consequence of the fact that users overlap in only one frequency we note that the

more users are present in the system, the fewer frequencies are spanned by each user – with the

implied decrease in user receiver complexity with k.

7.5 Chapter Summary

In this chapter, some issues related to the practical implementation of interference avoidance algo-

rithms have been examined. An algorithm that combines power control and interference avoidance

was introduced where users adjust both codewords and power to achieve target SINRs with mini-

mum power. Although we have not been able to prove theoretically convergence of the proposed

algorithm to a fixed point, simulations suggest that the algorithm usually reaches an optimal fixed

point with properties similar to those described in [63,84].

An analysis of the transient phase of the eigen-algorithm was also performed. Empirical evidence

shows that when starting with random codeword ensembles, the minimum SINR after any codeword
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update is always larger than the initial minimum SINR. Pathological cases in which the codeword

update for a given user has a negative impact on the user with worst (smallest) SINR can usually

be avoided by updating codewords for users with worst SINR first.

Quantization of optimal codewords generated by interference avoidance algorithms has also

been considered. Quantization degrades the performance of interference avoidance algorithms, by

decreasing the mean value of the SIR and increasing the mean value TSC. Furthermore, coarse

quantization leads to reasonably large non-uniformity in performance across a given codeword

ensemble. Each effect constitutes a degradation in overall performance. With non-uniform quanti-

zation 16 to 32 quantization levels (corresponding to 4 - 5 bits) seem to be enough to keep the SIR

distribution and overall TSC close to optimal values.

Finally, complexity issues are analyzed. The operational complexity of the eigen-algorithm is

evaluated and compared to that of the algorithm proposed in [84] which yields codeword ensembles

with the same properties (WBE sequence sets). The reduction in receiver complexity implied by the

channelization produced by interference avoidance for dispersive channels was also analyzed. The

potentially large reductions in receiver complexity coupled with the fact that matched filters are

optimal linear receivers providing uniform SINR for all symbols imply a uniform receiver structure

which may be attractive for integration purposes.
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Chapter 8

Conclusion and Future Work

8.1 Thesis Summary

In this thesis we have provided a comprehensive theoretical analysis of interference avoidance meth-

ods for the uplink of wireless systems. Interference avoidance algorithms, by which individual users

in a multiuser system adjust transmitted waveforms and corresponding receiver filters, assume

waveform agile transmitters and receivers as would be the case with software radios [1, 42, 68, 69].

The algorithms are developed in a general signal space framework which makes them applicable to

a wide variety of communication scenarios with multiple users accessing the same communication

resources (bandwidth) through a CDMA approach in which codewords rather than waveforms are

optimized.

The core for all presented algorithms is a greedy interference avoidance procedure based on SINR

maximization in which the codeword of a given symbol/user is replaced by the minimum eigenvector

of the corresponding interference-plus-noise covariance matrix. Using results from majorization

theory it is shown that application of this greedy procedure which defines the eigen-algorithm, does

not decrease sum capacity.

Application of the eigen-algorithm is presented first for codeword optimization in the uplink

of a CDMA system in which the dispersive channels between each user and the basestation are

assumed known. This is extended to general multiaccess vector channels for which it is shown that

sequential application of the eigen-algorithm for interference avoidance by all users in a multiuser

system is equivalent to iterative water filling and always yields codeword ensembles that maximize

sum capacity. This powerful result enables straightforward application of interference avoidance to

codeword optimization in more complex problems like systems with multiple inputs and multiple

outputs (MIMO) and asynchronous CDMA systems.
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For MIMO systems, usually associated with the uplink of wireless systems in which the trans-

mitters and the receiver use multiple antennas for transmission/reception, information is sent using

a multicode CDMA approach in which the colums of the precoding matrix are used to “spread”

symbols over the available signal space dimensions. Optimal precoding matrices that maximize

sum capacity are then obtained by application of interference avoidance.

Asynchronous systems are modeled as frame-synchronous with symbols transmitted using a

similar multicode CDMA scheme and frames of extended duration. This approach relaxes synchro-

nization requirements at the common receiver and allows also the presence of users with different

data rates.

It is worth noting that the use of optimal codeword ensembles which maximize sum capacity

has potential advantages. Most notable is the fact that they provide each user a uniform SINR

for all its symbols and that the optimal linear multiuser detector for each symbol is a matched

filter. Such uniform identical receiver structures seem good candidates for integration. From this

perspective, interference avoidance provides a class of simple and effective algorithms for obtaining

such optimal codeword ensembles. Furthermore, when multiple users are present, loose assumptions

on the channels seen by each user cause natural segregation of users and potentially large reductions

in receiver complexity.

Additional aspects of interference avoidance algorithms are also investigated in the thesis. These

address issues of practical importance like incorporating power control with interference avoidance,

an analysis of the transient phase of interference avoidance algorithms, and codeword quantization

for interference avoidance.

Most of the research results in this thesis have been presented previously at various conferences,

see [45–51].

8.2 Future Directions

In order for interference avoidance to become a useful tool in the design of future wireless commu-

nication systems, additional theoretical issues should be addressed.

For single base systems these include a more rigurous theoretical analysis of the combined in-

terference avoidance and power control algorithm introduced in Chapter 7, as well as downlink
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related issues. For the former problem, a more thorough analysis of fixed-point properties is neces-

sary with eventual convergence results established. For the latter problem, recent work on codeword

optimization for downlink CDMA systems [4] can be used as a starting reference.

To determine the utility for real systems, application of interference avoidance methods in a

cellular system must be investigated. Cellular systems consist of a collection of basestations and

associated users in which all users interfere with one another to some extent, and experimental re-

sults [63] have shown unstable behaviour of interference avoidance algorithms when applied directly.

More recent results [52,53] have established application of interference avoidance in a collaborative

scenario in which information received at all bases is centrally processed. However, the general

problem of decoding one base while interfering with reception at other bases is an instance of a

still mostly open information theory problem – the interference channel [2,8–10,25,65–67,70]. We

think that a better understanding of the interference channel along with results on interference

avoidance and itertive water filling for multiaccess vector channels may provide a starting point

towards establishing application of interference avoidance in cellular systems.

Finally, for implementation purposes on a real software radio, the aspects in Chapter 7 and [73]

must be complemented with more specific details and a software radio architecture for interference

avoidance should be defined, as it has been done for related applications [68,69].

We are confident, owing to the simplicity of interference avoidance concepts and because of

advances in hardware capabilities, interference avoidance methods will develop into practical, af-

fordable, and efficient methods of wireless systems resource allocation.
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