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Application of PML absorbing boundary condition to
aeroacoustic problems with an oblique mean flow
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For the case of uniform mean flow in an arbitrary direction, Perfectly Matched Layer
(PML) absorbing boundary conditions are presented for both the linearized and nonlinear
Euler equations. Perfectly matched side layers and stable corner layers are proposed.
Stability issues are investigated by examining the dispersion relations of linear waves. For
increased efficiency, a pseudo mean flow is included in the derivation of the PML equations
for the nonlinear case. Numerical examples are given to support the validity of the proposed
equations. Specifically, the linear PML formulation is tested for the case of entropy and
vorticity waves traveling with oblique mean flow. The nonlinear formulation is tested with
an isentropic vortex moving diagonally with constant velocity.

I. Introduction

The use of a nonreflecting boundary condition is imperative when considering aeroacoustic problems with
open physical domains, as reflections off numerical boundaries can compromise the accuracy of the solution
within the computational domain. As the accuracy of spatial and temporal discretizations increases, the need
for greater accuracy at the boundaries increases accordingly. The Perfectly Matched Layer (PML) technique
has proven effective in eliminating boundary reflections with sufficient accuracy. Originally proposed for the
numerical solution of Maxwell equations in [4], the PML technique has been extended in recent studies to
the governing equations of Computational Fluid Dynamics (CFD) and Computational Aeroacoustics (CAA).
PML has been developed for the linearized Euler equations with a constant or non-constant mean flow and,
most recently, for the nonlinear Euler and Navier-Stokes equations [6]-[13].

Most of the work done has been specific to mean or background flow that is perpendicular to a boundary.
There are very few works where a mean flow not perpendicular to the boundary was considered. In [1], the
PML for truncating the domain in z direction was given where the mean flow Mach number M, and M,
can both be nonzero. However, the equations for the corner layers were not derived. In [5], only the acoustic
waves were considered for an oblique mean flow. In [13], a new formulation of PML for the linearized Euler
equations based on the Smith-factorizations was given in which the direction of mean flow can be arbitrary.
Whether this approach can be extended to nonlinear equations remains to be seen.

The goal of this paper is to apply the PML technique to the more general case of mean flow in an arbitrary
direction. Such a formulation can be useful in many practical applications, such as when an aircraft travels
at a nonzero angle of attack, when a slant boundary is present, or when a transformed coordinate is used
for nonlinear problems. For instance, in transformed coordinates (§,, (), the governing equation takes the
form

o0 /u 0 (GE+EF+HEG 9 (m:E+n,F+1.G o CmE—l—C'F—l—CZG B
5 (5) + g (BP0 ) L (2Rnin®) | B (SREATHS ) o

on
where E, F and G are the flux vectors in (z,y, z) coordinates and J is the Jacobian of the transformation.
In particular, the transformed velocity becomes

U= gzu + gyv + &zwa V= NzU + Tyv +n.w, W = Cﬂcu + Cyv + Czw (2)
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Therefore, the mean velocity will not be necessarily aligned with transformed coordinates, even if it is aligned
with the original Cartesian coordinates.

As we will see in this paper, the difficulty in developing PML for a mean flow that is oblique to the
boundary lies in the fact that, in addition to the acoustic waves, the vorticity and entropy waves also become
inconsistent in the phase and group velocities. Recent studies on the PML for fluid dynamics equations have
shown that it is important to apply a proper space-time transformation to the governing equations so that
the phase and group velocities are consistent for all waves before the PML technique can be applied. It seems
however there is no proper space-time transformation available to correct both type of waves simultaneously
before the application of the PML technique. In the current approach, we will develop PML for the side and
corner layers separately. Linear stability analysis will be performed to ensure the dynamic stability of the
proposed equations.

The next section examines first the dispersion relations of linear waves. Following, the PML equations
for the linearized and nonlinear Euler equations are given. Finally, numerical results are given to show the
effectiveness of the proposed equations.

II. Dispersion relations of linear waves

Figure 1 shows a schematic diagram of a truncated computational domain. Absorbing boundary condi-
tions are needed at the x- and y-layers and the corner layers. Recently, a new PML formulation was given
in [13] for the linearized Euler equations based on Smith-factorizations. This approach, however, does not
seem to be easily extendable to nonlinear Euler and Navier-Stokes equations. In [1], a situation without
top and bottom y-layers was considered. It was suggested that for the z-layers alone, the PML derived for
M, = 0 can still be used when the time derivative was replaced with a material derivative based on the
nonzero transverse velocity M. Such a treatment, however, will not be complete if a top or bottom y-layer
is present, giving rise to corner layers. Indeed, although the part of the mean flow transverse to the layer
interface can be easily eliminated by using a moving frame along the same direction, the difficulty as we will
show next is that no such treatment is possible for the corner layers.

corner—layer corner—layer
N 1 -~
y—layer
Ox Oy oy Ox Oy
x—layer
Gy x—layer
/ Gx
My, M)
corner—layer corner—layer
A ]
—layer
Gy .0 y
x Oy oy Cx .0y

Figure 1. Schematics of absorbing layers at the vertical, horizontal and corner regions, with nonzero absorption
coefficients indicated.

To illustrate the main difficulties in constructing a PML for a mean flow of arbitrary direction, consider
the two-dimensional linearized Euler equation with a mean flow of Mach number (M, M,),

ou ou u
— 4+ A—+B— =
5 + 9 + By 0, (3)
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p M, 1 0 0 M, 0 1 0
ue | A= 0 M, O 1 B= 0 M, O 0 (4)
v 0 0 M, O 0 0o M, 1
P 0 1 0 M, 0 0 1 M,
where p is the density, v and v are velocity components, and p is the pressure.
The dispersion relations of all linear waves for (3) are well-known, i.e.,
(w— Myky — Myk,)? — k> —k,* =0 (5)
for the acoustic waves and
w— Mk, — Myk, =0 (6)
for the vorticity and entropy waves. They are illustrated in Figure 2.
HON ®
kx<0
do 0 acoustic
dk,”
vorticity
entropy
/ Myky
k.
acoustic

Figure 2. Schematics of the dispersion relations for the acoustic, vorticity and entropy waves with mean flow
Mach number (M, M,). Dark lines indicate waves with inconsistent phase and group velocities.

As shown in Figure 2, with nonzero transverse velocity component M, both types of dispersion relations
support waves with inconsistent signs for the phase and group velocities, where the group velocity is positive
while the phase velocity is negative. It has been recognized in recent studies that the PML technique will
lead to numerical instability if the inconsistency in the phase and group velocities was not removed by a
proper space-time transformation or other means, before applying the PML complex change of variable in
the derivation process. With both types of waves having inconsistent phase and group velocities, a single
linear space-time transformation, as employed in recent PML studies [2]-[10], will not be sufficient.

III. Absorbing boundary condition for the linearized Euler equations

We will first consider the x- and y-layers separately, and then form stable equations for the corner layer.
To construct vertical z-layers, we introduce a moving frame so that the mean flow is stationary in the
vertical direction, similar to the approach used in [1]. Let

g:y*Myt (7)

which gives

30f 13

American Institute of Aeronautics and Astronautics



9.0 0 0 0 -
oy 0y ot Ot Yoy

Then, the Euler equations in z, ¢, and ¢ become

ou ou ou ou

M IS LA IBIE -
ot~ Mugy TAG, TBy; =0 )
or
ou ou ou
AT g, 2 = 1
5 + 9 + 08;17 0 (10)
where

Bo =B — M,I (11)

Therefore, the stable PML for (10) will be the same as that of no vertical mean flow component, as given in
[9], namely,

ou ou ou 0q1
gt T A TBogy toaBogs FosutonfAu=0 (12)
Oqi
— 1
5 U (13)
where
M,

Because the moving-frame transformation (7) does not affect the location of the Euler/PML interface, which
is vertical, the above gives a valid z-layer. After rewriting the above in the original physical coordinates x,
y, and t, we get the following stable PML z-layer:

ou ou ou Jdqa
— +A—+B— +Bo—— z 20 Au = 1
8t+ 8x+ ay—i—o an+ou+aﬂ u=0 (15)
dq1 dq1
M. = 16
ot + Y 6y u ( )
Equations (15)-(16) should be equivalent to the PML given in [1]. Similarly, we get the stable PML y-layer:
ou ou ou dqs
042 992
— +M,— = 1
ot Mo ¢ (18)
where
M,
= ].

Note that Ag and Bg are the reduced matrices of A and B without the mean flow. The parameters 3, and
B, are necessary for the stability of the layer [9]. The absorption coefficients o, and o, are positive functions
of x and y, respectively.

The remaining issue is the construction of equations for the corner layers where both o, and o, are
nonzero. A study for a corner layer based on a combination of the two layer equations (15)-(18) leads to the
following corner equations:

Oou ou ou 0q2 dq1
Fr A% + Ba—y + aonW + anga—y + (02 + oy)u+ 0.6, Au+ 0, 3,Bu =0 (20)
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Oqx dqx

s + y—ay +oyq1=1u (21)
0qz Jqz

=2 LM, =+ = 22
ot T ox Iz=q2 =1 (22)

Equation (20) results from a simple combination of (15) and (17). One feature of (20)-(22) is that they
automatically reduce to the 2- and y-layer equations (15)-(18), when o, and o, are zero, respectively. For
stability, modifications have been made to the equations for q; and gz, with the addition of 0,q; and oyqs

terms to the left hand sides of (21) and (22), respectively. As we will see next, the corner equations as given
by (20)-(22) are stable for all subsonic Mach numbers (M, M,).

Contours of Maximum o,

Figure 3. Contours of maximum imaginary part of w for o, = oy = 2.

Contours of Maximum o,

M =05M =0.5,-5<k,k <5
X y Xy
Figure 4. Contours of maximum imaginary part of w for M, = My =0.5

By substituting
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u u
qp | =eFerthmed g (23)
a2 d2

into (20)-(22) and assuming o, and o, to be constants, an eigenvalue problem is formed for w with given
values of k, and k,. Existence of any eigenvalue w with a positive imaginary part will indicate instability.
On the other hand, the system is dynamically stable if all eigenvalues have a nonpositive imaginary part.
In Figures 3 and 4, the results of the stability analysis for (20)-(22) are shown. We plot in Figure 3 the
contours of maximum w;, the imaginary part of w, for 0 < M, < 0.95, 0 < M, < 0.95, |kz| < 5, |ky| < 5,
with fixed values o, = 0 = 2. In Figure 4, we show the contours of maximum w; for fixed Mach numbers
M,=M,=05and 0<o0, <5,0<0, <5, |ks| <5, |ky| <5. We see that the imaginary part of w for all
eigenvalues is negative for the range of absorption coefficients considered. This indicates that the proposed
corner equations are stable.

IV. Absorbing boundary condition for the nonlinear Euler equations

We will use a similar approach in formulating a PML equation for the nonlinear Euler equations, con-
sidering z- and y-layers individually, then constructing stable corner layers. For easy implementation, the
Euler equations are kept in conservation form:

ou i 8F1(u) 4 8F2(u)

s =0 24
ot ox oy (24)
with
P pu pv
pu qu +p puv
u = s F1 = s F2 = 9 (25)
pv puv pv° +p
pe phu phv
and
u? + v?
h=e+Lip=(-vp e H0) ()

where p is the density, u and v are components of velocity, p is the pressure, and e is the energy. Assume a
background flow is moving with constant velocity (Up, Vo).
We begin by partitioning the solution inside the PML domain into two parts as follows:
u=1ap,+u (27)
where iy, is the time-independent pseudo mean flow which satisfies the steady Euler equation

8F1 (ﬁp) + 8F2 (ﬁp)
Ox dy

For the present case, Gp = [po, poUo, po Vo, poeo]. The equation for u’ then becomes

=0 (28)

ou  O[F; —F O[Fy — F

w | OFy —Fa] | O[F> — Iy
ot or dy

where the shorthand notations F; = Fy(u), F; = Fy(fip), F2 = Fa(u), and F2 = F2(fip) have been used.

We will derive the equations that absorb u’.
To construct the z-layer equations, we now introduce a moving-frame change of variable

=0 (29)

g=y— "V (30)

which gives
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8u’ + 8[F1 — F]_] + a[Fz — Fz — V()U.I]
ot Jr Yy

With the moving-frame, the vertical flow is stationary, so the PML equations are the same as those given in
[12], which become

=0 (31)

8u’ + 6[F1 - F]_] + 8[F2 — Fz — Vou/]

ot ox 6@7 + 0291 + Uzﬂx[Fl — Fl} =0 (32)
Oqn  O[F, — Fyq] _
ot T s T ot toufi[F1—Fa] =0 (33)
where
__Uo
o= Ug (34)

Changing back to the original time and space coordinates, we arrive at the x-layer equations:

0 oF, —F OFy — F
u+[1 1]+[2 2

el F,-F,]=
3t 8fﬂ ay + O0zq1 + Uwﬁw[ 1 1] 0 (35)
0 OF, —F 0 _
(,;514'[18:61]+‘/()(.;1y1+0xq1+0'xﬂx[F1—F1]:0 (36)
A similar derivation leads to the y-layer equations:
au 8[F1 - Fl] 8[F2 — Fz] —
— Fo —F3| =
ot + or + oy + oyqz + O'yﬁy[ 2 2] =0 (37)
an aQZ 8[F2 — Fg] _
o TV, T gy TovztouflF2 —Fa =0 (38)
where
W
by =1y (39)

Corner layers are again constructed based on a combination of equations (35)-(38). We want the corner layer
equations to reduce automatically to the z- and y-layer equations when o, and o, are zero, respectively, and
to be dynamically stable. These considerations lead to the following corner equations:

ou  O[F; — Fq] L OlFa - F,]

T gy "ot oyt t0ufelF1 —Fa] +0y5y[F2 —Fa] o0y (u—10p) =0 (40)
a(:11 a[Fl — Fl] aql ~ B
TR e A g (00 +0y)q1 + 02B:]F1 —F1] =0 (41)
9q dqz _ O[F2 — Fy .
67:+U087;+%+(01+0y)(h+0yﬁy[]?2_Fz}:0 2)

A linear stability analysis has again been performed for (40)-(42). No instability mode is found, as is shown
in Figures 5 and 6.
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Figure 5. Contours of maximum imaginary part of w for o, = oy = 2.0

V. Numerical Examples

A. Vorticity and entropy waves

To assess the performance of the proposed absorbing boundary condition (20)-(22) for the linearized Euler
equation, we present a numerical example with oblique mean flow (M, M,) = (0.5,0.5). The physical
computational domain is [—50,50] x [—50,50] and is surrounded by absorbing layers of width D to absorb
the outgoing waves. The equations are solved by a finite difference scheme with Ax = Ay = 1. The initial
conditions for density p, velocity components v and v, and pressure p are

3
—(In2)22x4? —(In2) Gz 4 =yn)? —(in2) 22ty?
p=c w4 e o ,p=e 16 (43)
n=1
3 3
_ (e—2n)?+y—yn)? _ (o—on)?+y—yn)?

= (y—yn)e " s Ju=—Y (@ —zy)e ) = (44)
n=1 n=1

where (21,y1) = (25,0), (z2,y2) = g(%, 25), and (z3,y3) = (0, 25) are the initial locations of three vorticity
and entropy pulses. The vorticity and entropy waves advect with the mean flow. As time progresses, two
sets of the vorticity and entropy waves exit the top and right computational domain, while the third set
exits at the upper right corner.

The absorption coefficient o, varies with space as

[e3
Tr — X9

w:2
? D

(45)

where zg is the location of the Euler/PML interface. Similar functions are used for o,,.

Figure 7 shows the contours of the density at ¢t = 0, 70, 100 and 200. Since the numerical solution
decays exponentially toward the edges of the PML domain, periodic boundary conditions are applied in
this example. The absorption of waves inside the PML domain is observed in the contour plots. We also
see that the reflection occurring at the corner is larger than that at the sides, because the corner layer is
not perfectly matched, while the PML for z- and y-layers are. To assess the reflection error quantitatively,
Figure 8 shows the maximum difference between the numerical solution and a reference solution obtained
using a larger computational domain. The maximum difference for the density along x = +45, y = +45 is
plotted as a function of time for given choices of PML width D and absorption coeflicient power «. Clearly,
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the reflection error reduces as the width of the layer increases. A reflection error of less than 1% is achieved
for density, pressure and velocity with a choice of @ = 3 and D = 10Az.

B. Isentropic vortex

We will test the nonlinear PML equations (40)-(42) for a solution of the form

p(x1) 0 pr(r)
o |7 v || e us)
p(x,1) 0 (1)
where 7 = /(x — Upt)2 + (y — Vot)2, and for a given u,.(r) and p,(r), the pressure p,.(r) is given by
4 ) = o)) (1)

This solution to the nonlinear Euler equations advects with constant velocity (Up, Vp). For this example, we
will assume a velocity distribution of the form

U/ 1 r2
up(r) = 772‘” rez(1=32) (48)
where U, . is the maximum velocity at r = b. For isentropic flow, we enforce the relationship
0 (49)
Pr = —pr
Y
which leads to the following density and pressure distributions
1 2 1/(v=1)
1) = (1= 30 = DUt ) (50)
1 1 2 v/ (v=1)
per) =2 (1 50 D02 G1)
0 2
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Figure 7. Contours of density at time ¢t = 0, 70 , 100 and 200, showing three entropy waves and an acoustic
wave located at the center. The mean flow Mach numbers are M, = M,y = 0.5. D = 10Az, o = 3.

Figure 9 shows the contours of v-velocity at ¢ = 0, 1.5, 2.0 and 2.5. Constant velocity was taken to be
(Uo, Vo) = (0.5,0.5), and in the above distributions, U,,,. = 0.25, b = 0.2, and v = 1.4. The PML width was
chosen to be 10 grid points, and the entire domain [—1.2,1.2] x [-1.2, 1.2] was discretized by Az = Ay = 0.02.
For the PML absorption coefficients, o, and o, parameter values 0 pq, = 20 and o = 4 were chosen. To test
the accuracy, numerical solutions were compared with reference solutions computed on the larger domain
[-6.2,6.2] x [—6.2,6.2]. Maximum difference between the numerical and reference solutions as a function of
time was calculated along x = £0.9 and y = £0.9, shown in Figure 10.

Satisfactory results were also achieved for various cases of higher strength vortices. Taking (Uy, Vo) =
(0.2,0.2), vortex strengths U/ .. = 1.2Uy,1.4Uy,1.6Uy, 1.8U, were tested with good agreement between
numerical and reference solutions. Error results are shown in Figure 11. In both cases, the background flow
was taken as the uniform flow (U, Vp).

VI. Conclusions

PML absorbing boundary conditions for the linearized and nonlinear Euler equations have been derived
in the form of z-, y-, and corner layer equations for the case of mean flow in an arbitrary direction. The z-
and y-layer equations are perfectly matched, while the corner layer equations were shown to be stable. The
proposed equations performed well in the given examples.

The capability of PML equations to absorb outgoing waves that exit the domain at an arbitrary angle
is an important step in the movement toward modeling increasingly realistic aeroacoustic problems. Such
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Density Error vs. Time
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Figure 8. Maximum difference in density p between the numerical and reference solutions along x = +45 and
y = £45.

capability will allow for a number of new configurations to be tested numerically.
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Figure 10. Maximum difference versus time along x = £0.9, y = £0.9 for Uy = V5 = 0.5,
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Figure 11. Maximum difference versus time along z = £0.9, y = +0.9 for Uy = Vp = 0.2 and varying U/, ...
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