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Perfectly Matched Layer (PML) absorbing boundary conditions are proposed for the
discreet velocity BGK Boltzmann equation (DVBE). Following a study of the linear waves
supported by DVBE, nonreflecting absorbing boundary conditions are derived using a
proper space-time transformation, Linear analysis shows that the proposed equations are
stable for practical numerical calculations. The accuracy of the absorbing boundary con-
dition is validated by numerical solutions where the Boltzmann-BGK equation is solved
by a finite difference scheme. Numerical examples are given to show the effectiveness of
the proposed equations. Several IMEX Runge-Kutta schemes are considered to increase
efficiency of time integration.

I. Introduction

In recent years, numerical methods based on the Boltzmann-BGK equation have been applied to aeroa-
coustics simulations. The Boltzmann-BGK equation is based on the gas kinetic theory, which provides a
microscopic description of fluid motion.1, 2 The solution variable is the particle distribution which is a func-
tion of the space, time and particle velocity. Compared to the Euler and Navier-Stokes equations, which are
the macroscopic governing equations, the Boltzmann-BGK equation has the simplicity of a linear convection
equation. In particular, a popular numerical method for directly solving the discretized Boltzmann-BGK
equation is the Lattice Boltzmann Method (LBM), which take the full advantages of the linear convection
term.3 It is simple to implement, fast in execution, and well suited for parallel computing. Numerical solu-
tions of the Boltzmann-BGK equation by finite difference and finite volume methods have also appeared in
literature.4–7

Aeroacoustic problems require accurate nonreflecting boundary conditions in order to simulate open
boundaries as the reflections off numerical boundaries can destroy the accuracy of the solution inside the
computational domain. Compared to the extensive studies in the traditional Computational Fluid Dynam-
ics, research on the boundary conditions for numerical methods based on the Boltzmann-BGK equations
is relatively limited. In Ref. 8, three types of nonreflecting boundary conditions were studied for the dis-
creet velocity Boltzmann equation: the extrapolation method, the C1 continuity method and an absorbing
boundary condition which was formed by adding a damping term to the Boltzmann equation. In Ref. 9, an
application of the Perfectly Matched Layer technique to the Lattice Boltzmann Method was studied.

In this paper, we will derive the absorbing boundary condition for the discreet velocity Boltzmann-
BGK equation based on the Perfectly Matched Layer (PML) methodology. We start our investigation by
an examination of the linear waves supported by the Boltzmann-BGK equation. Our linear wave analysis
on a simple 9-velocity discreet Boltzmann-BGK equation shows that it supports the familiar acoustic and
vorticity waves, in addition to other highly damped wave modes. The dispersion relations of the acoustic and
vorticity waves are found to be similar to those of the Euler equations. Based on the linear wave analysis,
it would be possible to construct stable and effective PML equations following the same proper space-time
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transformation used in deriving the PML for the Euler equations.10, 11 Indeed, as we will show in this paper,
the derived PML absorbing equations performs well and are numerically stable in test examples.

The Boltzmann-BGK and the proposed PML equations will be solved numerically by a finite difference
method. Due to the stiffness of the collision term, use of explicit time integration schemes would result in
an exceedingly small time step. Implicit-Explicit (IMEX) Runge-Kutta schemes will be used in this paper.
It is worth pointing out that due to the special form of the BGK collision term, all implicit stages can be
treated explicitly.12–14

The rest of the paper is organized as follows. In sections 2 and 3, the formulation of discreet velocity
Boltzmann-BGK equation and its linear wave analysis are given. The derivation of PML absorbing equations
are shown in section 4. Numerical methods for the solution of PML equations are discused in sections 5 and
6, and followed by the numerical results in section 7. Conclusions are given in section 8.

II. The Boltzmann Equation

The continuous Boltzmann equation can be written as

∂f

∂t
+ ξ · ▽xf + a · ▽ξf = Ω(f) (1)

where Ω(f) represents the collision integral and a is the external force on the particle .
By solving the Boltzmann equation, we are solving for the particle distribution function f(x, ξ, t) in which

ξ is the particle velocity vector, x is the spatial position vector, and t is the time. The macroscopic quantities
of interest, mass density ρ and momentum density ρu, are obtained from the hydrodynamic moments of
the distribution function f . In the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation, the
collision integral is replaced by an approximation in terms of the Maxwell-Boltzmann distribution function
feq and a relaxation parameter λ.15 Absent of any external force, the Boltzmann-BGK equation is

∂f

∂t
+ ξ · ▽f = −

1

λ
(f − feq) (2)

To solve for f numerically, we must first discretize Eq. (2) in velocity space using a finite set of velocity
vectors {ξi}. The velocity discretization must satisfy the conservation laws and thus be able to produce
accurate macroscopic fluid dynamics.16 For example, a widely used two dimensional velocity discretization
of Eq. (2), referred to as the 2D 9-velocity (D2Q9) model, uses the following discreet velocity set:17

ξ1 = c(1, 0)T ξ2 = c(0, 1)T ξ3 = c(−1, 0)T ξ4 = c(0,−1)T

ξ5 = c(1, 1)T ξ6 = c(−1, 1)T ξ7 = c(−1,−1)T ξ8 = c(1,−1)T

ξ9 = c(0, 0)T (3)

with c is a reference speed.
In this model, the equilibrium distribution is obtained by expanding the Maxwell-Boltzmann distribution

function as a second order Taylor series in u15

feq
i = wiρ

[

1 +
3 (ξi · u)

c2
+

9 (ξi · u)
2

2c4
−

3 (u · u)

2c2

]

(4)

where ρ and u are macroscopic density and velocity respectively and wi is the weight for velocity ξi with

w1 = w2 = w3 = w4 = 1/9 w5 = w6 = w7 = w8 = 1/36 w9 = 4/9 (5)

and speed of sound

cs =
√

c/3 (6)

In general, a discreet velocity Boltzmann-BGK equation (DVBE) can be written in component form as

∂fi

∂t
+ ui

∂fi

∂x
+ vi

∂fi

∂y
= −

1

λ
(fi − feq

i ) (7)

2 of 18

American Institute of Aeronautics and Astronautics Paper 2010-3935



where fi is the distribution function for velocity ξi = (ui, vi).

In discretized velocity space, the macroscopic density and momentum are given by:

ρ =

N
∑

j=1

fj (8)

ρu =

N
∑

j=1

fjξj (9)

where N is the number of discreet velocities.
If we define f = (f1, f2, ..., fN), we can write Eq. (7) in matrix form as

∂f

∂t
+ A

∂f

∂x
+ B

∂f

∂y
= −

1

λ
(f − f eq) (10)

where A and B are diagonal matrices such that Aii = ui and Bii = vi.

III. Linear Analysis of Boltzmann BGK Equation

We first investigate the linear waves supported by the discreet velocity Boltzmann-BGK equation. A
similar study for a 3D DVBE has been conducted in a recent work in Ref. 18.

To perform a linear analysis of Eq. (7) or Eq. (10), we first separate the distribution function into a
uniform mean flow component and a perturbation component as

fi = f̄eq
i + f ′

i (11)

where the overbar and the prime sign denote the mean and the perturbation values, respectively.
Redefining the right side of Eq. (7) as gi(fj) and linearizing it yields

gi(fj) = gi(f̄
eq
j ) +

∂gi

∂fj
(f̄eq

j )f ′
j + O(f ′2

j ) (12)

Noting that

∂gi

∂fj
(f̄eq

j ) = −
1

λ

(

δij −
∂feq

i

∂fj
(f̄eq

j )

)

f ′
i (13)

and that gi(f̄
eq
j ) = 0 and plugging back into Eq. (7) gives

∂f ′
i

∂t
+ ξi · ▽f ′

i = −
1

λ

(

δij −
∂feq

i

∂fj
(f̄eq

j )

)

f ′
i (14)

The two dimensional form of the above can be written in matrix form as

∂f ′

∂t
+ A

∂f ′

∂x
+ B

∂f ′

∂y
= −

1

λ
(I − J)f ′ (15)

where I is the identity matrix and J is defined by Jij =
∂feq

i

∂fj
(f̄eq

j ).

We look for plane wave solutions f ′(x, t) = f̂eik·x−iωt and we obtain an eigenvalue problem for ω with
given values of kx and ky, as follows:

− iωf̂ + ikxAf̂ + ikyBf̂ = −
1

λ
(I − J)f̂ (16)

or equivalently

ωf̂ = Mf̂ (17)
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Figure 1. Dispersion relations of all linear waves supported by Eq. (17).
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where M := kxA + kyB − i
λ (I − J)

The eigenvalue problem in Eq. (17) will be solved numerically. Using the D2Q9 model as an example,
Figure 1 shows the dispersion relations of ω v.s. kx for all the nine wave modes, with ky = 10, λ = 0.005 and
the mean flow velocity U0 = 0.5cs. The nine eigenvalues shown can be divided into two groups. One group
of modes, shown in the left side of Figure 1, consist of three hydrodynamic waves, namely the two acoustic
modes and one vortical mode. The imaginary parts of the three modes are negative, showing a damping
effect of the viscosity in the BGK model. The other group of modes, shown on the right side of Figure 1,
have significantly higher damping rates.

It has been verified that dispersion relations of the three hydrodynamic waves, for the real part of ω,
follow closely the curves given by

Da(ω, kx, ky) = (ω − U0kx)2 − c2
s(k

2
x + k2

y) = 0 (18)

for the acoustic waves and
Dv(ω, kx, ky) = ω − U0kx = 0 (19)

for the vortical wave. These are the dispersion relations for the linearized Euler equations. These findings
are similar to those reported in Ref. 18.

IV. PML Derivation
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σy 6= 0
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σy 6= 0

σx 6= 0

σy 6= 0
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σx = 0 σy 6= 0
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DVBE

Ymin

Ymax

Xmin Xmax

Figure 2. Illustration of a computational domain combining the DVBE and PML domains.

The PML technique involves a complex change of variables in the frequency domain.10, 19 A requirement
for stability is that the waves have consistent phase and group velocity. In the case of Euler equations, the
inconsistency can be corrected by a proper space-time transformation in the derivation process.10, 11, 20, 21

The acoustic wave modes in Figure 1 would similarly exhibit inconsistent phase and group velocities when
the mean velocity U0 is not zero. The symbols in Figure 1 denote the location where the group velocity
is zero, indicating that parts of the dispersion curves have inconsistent phase and group velocities, namely,
a negative phase velocity but a positive group velocity for the waves that lie between the location of the
symbol and the vertical axis. However, as has been demonstrated in previous studies, these inconsistencies
in the phase and group velocities can be corrected by a proper linear space-time transformation of the form

t̄ = t + βx (20)
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where β is defined by

β = −
k∗

x

ω∗
(21)

in which k∗
x and ω∗ are the roots of

Da(ω∗, k∗
x, ky) = 0, and

∂Da

∂kx
(ω∗, k∗

x, ky) = 0 (22)

By Eqs. (18) and (22), we find that, for any ky, ω∗ = [(U2
0 − c2

s)]/U0]k
∗
x which leads to

β = −
U0

c2
s − U2

0

(23)

For the second group of waves, the inconsistencies of phase and group velocities are also found but
cannot be corrected easily. However, with intrinsic high damping rates associated with these modes, the
application of PML change of variables may not cause instability when the PML absorption coefficients are
not exceedingly large.

To derive the PML, we assume a mean flow with velocity U0 and we decompose the distribution functions
into a uniform mean flow component and a perturbation component

f = f̄ + f ′ (24)

where the overbar and the prime sign denote the steady mean and the perturbation values, respectively.
We also assume that f̄ = f̄

eq
and the mean flow equilibrium distribution function, f̄ , satisfies the time-

indepedent equation

A
∂f̄

∂x
+ B

∂f̄

∂y
= 0 (25)

We will derive the absorbing equation for the perturbation distribution function f ′:

∂f ′

∂t
+ A

∂(f − f̄ )

∂x
+ B

∂(f − f̄)

∂y
= −

1

λ
(f − feq) (26)

Two formulations will be given below, following the work in Ref. 22.

IV.A. Unsplit Formulation

To derive the PML equation for f ′, we first apply a space-time transformation,

t̄ = t + βx (27)

where β is given in Eq. (23). Equation (26) becomes

∂f ′

∂t̄
+ βA

∂(f − f̄ )

∂t̄
+ A

∂(f − f̄ )

∂x
+ B

∂(f − f̄)

∂y
= −

1

λ
(f − f eq) (28)

Writing the above in the frequency domain and applying the PML complex change of variables as in
Ref. 10 yields

(−iω)f̂ ′ + (−iω)βA( ˆf − f̄) + A
1

1 + iσx

ω

∂( ˆf − f̄ )

∂x
+ B

1

1 +
iσy

ω

∂( ˆf − f̄)

∂y
= −

1

λ
( ˆf − f eq) (29)

To write the above in the time-domain, we multiply Eq. (29) by
(

1 + iσx

ω

)

(

1 +
iσy

ω

)

to obtain

(−iω)f̂ ′ + (σx + σy) f̂ ′ + σxσy
i

ω
f̂ ′ + (−iω)βA( ˆf − f̄) + (σx + σy)βA( ˆf − f̄) + σxσy

i

ω
βA( ˆf − f̄)

+ A

(

1 +
iσy

ω

)

∂( ˆf − f̄ )

∂x
+ B

(

1 +
iσx

ω

)

∂( ˆf − f̄)

∂y
= −

1

λ

(

1 +
iσx

ω
+

iσy

ω
−

σxσy

ω2

)

(

ˆf − f eq
)

(30)
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We can write the above back in the time domain by introducing auxiliary variables q, r1 and r2 such that

∂q

∂t
= f − f̄ ,

∂r1

∂t
= f − feq,

∂r2

∂t
= r1 (31)

In the original physical space and time, the PML absorbing equation can finally be written as

∂f

∂t
+ A

∂f

∂x
+ B

∂f

∂y
+ σyA

∂q

∂x
+ σxB

∂q

∂y
+ (σx + σy) (f − f̄) + σxσyq

+ σxβA
[

(f − f̄) + σyq
]

= −
1

λ
(f − f eq) −

1

λ
(σx + σy) r1 −

1

λ
σxσyr2

(32)

IV.B. Split Formulation

To derive the split PML equations, we start with Eq. (29) and we introduce auxiliary variables q1, q2 and
q3 which satisfy the following equations

(−iω)q̂1 + (−iω)βA( ˆf − f̄) +
1

1 + iσx

ω

A
∂( ˆf − f̄)

∂x
= 0 (33)

(−iω)q̂2 +
1

1 +
iσy

ω

B
∂( ˆf − f̄)

∂y
= 0 (34)

(−iω)q̂3 = −
1

λ

(

ˆf − f eq
)

(35)

Eq. (29) is recovered where f̂ ′ = q̂1 + q̂2 + q̂3.

Multiplying Eqs. (33) and (34) by
(

1 + iσx

ω

)

and
(

1 +
iσy

ω

)

respectively, we obtain

(−iω)q̂1 + σxq̂1 + σxβA( ˆf − f̄ ) + (−iω)βA( ˆf − f̄) + A
∂( ˆf − f̄)

∂x
= 0 (36)

(−iω)q̂2 + σy q̂2 + B
∂( ˆf − f̄ )

∂y
= 0 (37)

(−iω)q̂3 = −
1

λ

(

ˆf − f eq
)

(38)

Changing the above back to the original time domain gives

∂q1

∂t
+ σxq1 + σxβA(f − f̄ ) + A

∂(f − f̄ )

∂x
= 0 (39)

∂q2

∂t
+ σyq2 + B

∂(f − f̄ )

∂y
= 0 (40)

∂q3

∂t
= −

1

λ
(f − f eq) (41)

By adding Eqs. (39), (40), and(41) we obtain the equation for f and a second, split, PML set of equations

∂f

∂t
+ A

∂f

∂x
+ B

∂f

∂y
+ σxq1 + σyq2 + σxβA(f − f̄ ) = −

1

λ
(f − f eq) (42)

∂q1

∂t
+ σxq1 + σxβA(f − f̄ ) + A

∂(f − f̄ )

∂x
= 0 (43)

∂q2

∂t
+ σyq2 + B

∂(f − f̄ )

∂y
= 0 (44)
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In component form we have

∂fi

∂t
+ ui

∂fi

∂x
+ vi

∂fi

∂y
+ σxq1i + σyq2i + σxβui(fi − f̄i) = −

1

λ
(fi − feq

i ) (45)

∂q1i

∂t
+ σxq1i + σxβui(fi − f̄i) + ui

∂(fi − f̄i)

∂x
= 0 (46)

∂q2i

∂t
+ σyq2i + vi

∂(fi − f̄i)

∂y
= 0 (47)

We note that the split formulation does not require additional spatial derivatives. On the other hand,
the unsplit formulation ensures that f = f̄ when ∂q

∂t = 0.

V. Linear Analysis of DVBE PML

In this section, we study the linear stability of the PML absorbing equations proposed in the previous
section. A linear analysis of the split PML Eqs. (42)-(44) gives the following eigenvalue problem:

ωf̂ = M1f̂ − iσxq̂1 − iσyq̂2 (48)

ωq̂1 = [kx − iσxβ] Af̂ − iσxq̂1 (49)

ωq̂2 = kyBf̂ − iσyq̂2 (50)

where M1 := kxA + kyB − i
λ (I − J) − iσxβA. The eigen solutions of the unsplit formulation are

equivalent to those of the split formulation.
The occurrence of any eigenvalue ω with a positive imaginary part ωi will indicate instability. On the

other hand, if all the eigenvalues have nonpositive imaginary parts, then the system is stable. In Figure 3,
we plot the contours of maximum ωi of all eigenvalues for 0 ≤ M = U0/cs ≤ 0.7, −3.15 ≤ kx, ky ≤ 3.15,
and 0 ≤ σx, σy ≤ 10, using again the D2Q9 as an example. The imaginary part of ω is negative for the σx

layer and small enough to be considered zero for the other two layers. This indicates that the proposed PML
equations are stable for the range of values considered for M, σx, σy , kx and ky .

VI. Numerical Methods

VI.A. Finite Difference Solution

The discreet velocity Boltzmann-BGK Eq. (10) and the PML absorbing Eqs. (42)-(44) will be solved by a
finite difference scheme. The spatial derivative terms will be discretized by the DRP scheme23 and Runge-
Kutta (RK) schemes are used for the time integration. Due to the stiffness of the collision term, explicit RK
schemes resulted in an exceedingly small time step ∆t. To increase the efficiency of time integration, we use
additive implicit-explicit (IMEX) RK schemes.12–14

If we write the DVBE as

∂f

∂t
= h(f) +

1

λ
g(f)

where h(f) denotes symbolically all the non-collision terms and g(f) denotes the part in the collision term,
the IMEX numerical scheme for solution fn at time tn to advance to fn+1 at time tn + ∆t is

fn+1 = fn + ∆t

ν
∑

i=1

w̃ih(f (i)) +
∆t

λ

ν
∑

i=1

wig(f (i)) (51)

where the stage values f (i) are given by

f (1) = fn +
∆t

λ
a11g(f (1)), (52)
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f (i) = fn + ∆t

i−1
∑

j=1

ãijh(f (j)) +
∆t

λ

i
∑

j=1

aijg(f (j)), i = 2, 3, ..., ν. (53)

The coefficients ãij , w̃i, aij , and wi are given in a double Butcher’s tableau as follows

c̃ Ã

w̃T

c A

w

Some second-, third- and fourth-order IMEX Runge-Kutta schemes are:
IMEX2 Second-order scheme:12

0 0 0 0

0 0 0 0

1 0 1 0

0 1
2

1
2

1
2

1
2 0 0

0 − 1
2

1
2 0

1 0 1
2

1
2

0 1
2

1
2

IMEX3 Third-order scheme:12

0 0 0 0 0

0 0 0 0 0

1 0 1 0 0
1
2 0 1

4
1
4 0

0 1
6

1
6

2
3

α α 0 0 0

0 −α α 0 0

1 0 1 − α α 0
1
2 β η 1

2 − β − η − α α

0 1
6

1
6

2
3

where α = 0.24169426078821, β = 0.06042356519705, and η = 0.1291528696059.

IMEX4 Fourth-order scheme:24

ARK4(3)6L[2]SA-ERK (Explicit)

0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 0

83
250

13861
62500

6889
62500 0 0 0 0

31
50

−116923316275
2393684061468

−2731218467317
15368042101831

9408046702089
11113171139209 0 0 0

17
20

−451086348788
2902428689909

−2682348792572
7519795681897

12662868775082
11960479115383

3355817975965
11060851509271 0 0

1 647845179188
3216320057751

73281519250
8382639484533

552539513391
3454668386233

3354512671639
8306763924573

4040
17871 0

82889
524892 0 15625

83664
69875
102672

−2260
8211

1
4

ARK4(3)6L[2]SA-ESDIRK (Implicit)

0 0 0 0 0 0 0
1
2

1
4

1
4 0 0 0 0

83
250

8611
62500

−1743
31250

1
4 0 0 0

31
50

5012029
34652500

−654441
2922500

174375
388108

1
4 0 0

17
20

15267082809
155376265600

−71443401
120774400

730878875
902184768

2285395
8070912

1
4 0

1 82889
524892 0 15625

83664
69875
102672

−2260
8211

1
4

82889
524892 0 15625

83664
69875
102672

−2260
8211

1
4
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Figure 4. IMEX Footprints for IMEX 2, IMEX3 and IMEX 4.

Figure 4 shows the footprints of the three IMEX schemes. With each additional order, the IMEX schemes
enlarge their stability region so that IMEX 4 has the largest stability region of the three.

Although the IMEX RK scheme has implicit steps, due to the special structure of the BGK collision
operator, the implicit step can be solved explicitly. To solve the implicit step for f (i), we follow the method
used by Pieraccini and Puppo in Ref. 12 and first compute ρ and u by taking the moments of Eq. (53). This

reduces to taking the moments of fn + ∆t
∑i−1

j=1 ãijh(f (j)) as the collisional invariants make the other terms

drop out. Then f (i)eq is given by Eq. (4), and f (i) can be calculated explicitly from Eq. (53).

VI.B. LBM Solution

The lattice discretization of the Boltzmann-BGK Eq. (7) can be written as

fi(x + ξi∆t, t + ∆t) − fi(x, t) = −
∆t

λ + ∆t
2

(fi(x, t) − feq
i (x, t)) (54)

and the lattice discretization of the PML Eqs. (42), (43), and (44) is

fi(x + ξi∆t, t + ∆t) − fi(x, t) = −
∆t

λ + ∆t
2

(fi(x, t) − feq
i (x, t)) − ∆tσxq1i(x, t) − ∆tσyq2i(x, t) (55)

− ∆tσxβui(fi(x, t) − f̄eq
i (x, t))

q1i(x, t + ∆t) − q1i(x, t) = −∆tσxq1i(x, t) − ∆tui
∂(fi(x, t) − f̄eq

i (x, t))

∂x
− ∆tσxβui(fi(x, t) − f̄eq

i (x, t))

(56)

q2i(x, t + ∆t) − q2i(x, t) = −∆tσyq2i(x, t) − ∆tvi
∂(fi(x, t) − f̄eq

i (x, t))

∂y
(57)

The spatial derivative terms in the above will be discretized by the DRP scheme and the Euler forward
method is used for the time integration.

A linear analysis of the above lattice PML equations gives the following eigenvalue problem:
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f̂e−iω∆t = C

[

I −
∆t

λ + ∆t
2

(I − J) − ∆tσxβA

]

f̂ − ∆tσxCq̂1 − ∆tσyCq̂2 (58)

q̂1e−iω∆t = [−ikx∆t − ∆tσxβ] Af̂ + [1 − ∆tσx]q̂1 (59)

q̂2e−iω∆t = −iky∆tBf̂ + [1 − ∆tσy ]q̂2 (60)

where C is the diagonal matrix defined as Cjj = e−ik·ξj∆t and the matrices I, A, B and J are as previously
defined.

Solutions of the PML equations in a lattice scheme will be presented in a future work.

VII. Numerical Examples

VII..1. Acoustic Wave

0 100 200 300 400 500 600 700 800 900 1000
0.999

0.9995
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t

‖
ρ
‖
/
‖
ρ
0
‖

 

 
IMEX 4 dt/dx=0.8
IMEX 4 dt/dx=0.9
IMEX 3 dt/dx=0.9
IMEX 3 dt/dx=1
IMEX 2 dt/dx=0.1
IMEX 2 dt/dx=0.2
IMEX 4 β=0 dt/dx=0.5
IMEX 3 β=0 dt/dx=0.5
IMEX 2 β=0 dt/dx=0.1

Figure 5. IMEX stability for ǫ = 0.1, r = 8∆x, M = 0.5, σx∆x = σy∆y = 1 and D = 20∆x.
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Figure 6. IMEX 3 density contours for ǫ = 0.01, r = 8∆x, M = 0.25, σx∆x = σy∆y = 1 and D = 10∆x.
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Figure 7. Comparison of IMEX numerical solutions with exact solution for ǫ = 0.01, r = 8∆x, M = 0.25, σx∆x = σy∆y = 1
and D = 10∆x.
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Figure 8. Acoustic reflection coefficient for ǫ = 0.01, r = 8∆x, M = 0.25, and σx∆x = σy∆y = 1. A0 = 0.0015.

We test the PML equations by simulating a Gaussian acoustic pulse in a mean flow with Mach number
M. The initial conditions for density ρ and velocity components u and v are:

ρ = 1 + ǫ exp

[

−(ln2)
x2 + y2

r2

]

(61)

u = Mcs

v = 0

For the finite difference solution of the PML Eqs. (42)-(44), we use a computational domain of [-5,5] x
[-5,5] and a uniform grid with ∆x = ∆y = 0.1. The PML domains extend further by a width D to absorb
the outgoing waves as shown in Figure 2.

The use of absorption coefficients σx and σy in the PML layers is illustrated in Figure 2. The rate of
absorption varies with space as

σx = σm

∣

∣

∣

∣

x − x0

D

∣

∣

∣

∣

2

, σy = σm

∣

∣

∣

∣

y − y0

D

∣

∣

∣

∣

2

(62)

where x0 and y0 are the locations of the DVBE/PML interfaces and σm is chosen so that 1 ≤ σm∆x ≤ 2.
The distribution functions fi are initialized using the equilibrium values obtained from the above macro-

scopic variables ρ and u. The relaxation time λ = 0.00011 for all the simulations.
Numerical testing is first done to find the limiting value of ∆t for stability. For ǫ = 0.1, r = 8∆x,

M = 0.5, σx∆x = σx∆y = 1 and D = 20∆x, the results, displayed in Figure 5, confirm that IMEX 3 has a
larger stability region than IMEX 2, but for yet unknown reasons IMEX 4 does not have a larger time step
than IMEX 3. Stable solutions are obtained for ∆t = 0.1∆x using IMEX2, ∆t = 0.9∆x using IMEX3, and
∆t = 0.8∆x using IMEX4.

The significance of the parameter β, defined in Eq. (23), in the PML formulation is also illustrated in
Figure 5. If β = 0, then the three IMEX schemes are all unstable for values of ∆t that were shown to be
stable for β as defined in Eq. (23).

Figure 6 shows the density contours at t=10,12 and 16 for ǫ = 0.01, r = 8∆x, M = 0.25, σx∆x =
σx∆y = 1 and D = 10∆x. The absorption of waves inside the PML domain can be observed in the contour
plots. Figure 7 confirms the accuracy of the numerical solutions by comparing them to the exact solution at
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t=6 and 12. We can see that solutions of all IMEX schemes are in good agreement with the exact solution
in the physical domain on the scale of the graph.

To evaluate the reflection error quantitatively, Figure 8 shows the maximum difference between the
numerical solution and a reference solution obtained by using a larger computational domain along the line
segment defined by the points (45,5) and (45,45). The plotted maximum difference of density is relative to
the amplitude of the out-going wave at the exit boundary A0 (defined as the difference between the peak
amplitude at the DVBE and PML interface and the mean flow density) and is plotted as a function of time
for different values of PML width D. As the width of the PML layer increases, the reflection error reduces.
We can see that a reflection error of less than 0.1% is obtained with a PML width of only 6 grid points with
D = 6∆x.

VII..2. Vorticity Wave

t=5

x

y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6
t=30

x

y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6
t=50

x

y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 9. IMEX 3 v−velocity contours for ǫ = 0.001, r = 14∆x, σx∆x = σy∆y = 1 and D = 10∆x.

We also simulate a vorticity wave with the following initial conditions for density ρ and velocity compo-
nents u and v:

ρ = 1

u = U0 + ǫy exp

[

−(ln2)
x2 + y2

r2

]

v = V0 − ǫx exp

[

−(ln2)
x2 + y2

r2

]

(63)

U0 = Mcs

V0 = 0

In Figure 9 we plot the contours of the v−velocity at t=5, 30 and 50 for ǫ = 0.001, r = 14∆x, σx∆x =
σy∆y = 1 and D = 10∆x. We can see from the contour plots that the vorticity wave is effectively absorbed
by the PML layer. This is confirmed in Figure 10 as we compare the v−velocity profile to the exact solution
at t=5 and 50. The finite difference solution compares well with the exact solution at both times.

To quantify the reflection error, we plot the maximum difference between numerical and reference
v−velocity along the line segment defined by the points (45,5) and (45,45) as a function of time for dif-
ferent values of D. For all three IMEX solutions, a reflection error of less than 0.2% is obtained with a PML
width D = 10∆x.

VIII. Conclusions

PML absorbing boundary conditions have been derived for the discreet velocity Boltzmann-BGK equa-
tion. Both the split and unsplit formulations are given. Linear analysis of the absorbing equations show
that they are stable for numerical simulations. The performance of the absorbing equations as a nonre-
flecting boundary condition has been assessed by numerical examples using a finite difference method with
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Figure 10. IMEX 3 v−velocity profile for ǫ = 0.001, r = 14∆x, σx∆x = σy∆y = 1 and D = 10∆x.
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Figure 11. Vorticity reflection coefficient for ǫ = 0.001, r = 14∆x, M = 0.25, and σx∆x = σy∆y = 1. B0 = 0.0007.

implicit-explicit Runke-Kutta schemes. In the examples we considered, the PML equations we proposed
performed well. A lattice model for the proposed PML equations will be presented in a future work. The
effectiveness of PML equations to absorb outgoing waves that exit the domain is an important step toward
using Boltzmann-BGK models to solve aeroacoustic problems.
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