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Acoustic liners are an effective tool for noise reduction and are characterized by a frequency-dependent impedance

value. In this paper, a time-domain boundary element method for acoustic scattering coupled with a broadband

impedance boundary condition is studied for the case of no mean flow. A Burton-Miller reformulation of the time

domain boundary elementmethod for acoustic scattering is carried out with both the pressure and its surface normal

derivative terms retained. Amultipole impedancemodel is converted into the time domain and used for enforcing an

impedance boundary condition over a wide range of frequencies. Discretization of the coupled system is described.

In particular, the time-domain impedance boundary condition is discretized by the third-order implicit backward

difference scheme. Stability of the coupling is assessed by an eigenvalue analysis. Scattering solutions that

demonstrate the validity and stability of the numerical method are presented.

I. Introduction

M ETHODS for deriving an integral equation for the prediction

of acoustic scattering have been studied extensively in both

the frequency and time domains (e.g., see Refs. [1–4]). Frequency-

domain solvers are themost used and researchedwithin the literature;

they have a reduced computational cost, allow for modeling time-

harmonic fields at a single frequency, avoid the growth of Kelvin–

Helmholtz instability waves, and allow for an impedance boundary

condition to be imposed directly. Despite these benefits, there are

several distinct advantages to using a time-domain solver [5]. Time-

domain solvers allow for the simulation and study of broadband

sources and time-dependent transient signals. Time-domain solvers

also allow for the scattering solution at all frequencies to be obtained

within a single computation and avoid needing to invert a large dense

linear system as is required in the frequency domain. Moreover, a

time-domain solution is more naturally coupled with a nonlinear

computational fluid dynamics simulation of noise sources.

Although time-domain boundary integral equations (TD-BIEs) are

known to have an intrinsic numerical instability as a result of “the

existence of internal modes of resonance of the body, which corre-

spond to time harmonic solutions of the integral equation” [6], recent

works have shown that a Burton–Miller reformulation of the TD-

BIE can effectively eliminate the numerical instability [5,7–9]. In

Ref. [5], a Burton–Miller reformulated TD-BIE was presented

for acoustic scattering by rigid bodies under a uniform mean-flow

assumption. In this paper, Burton–Miller reformulation is carried out

for scattering by lined bodies in the case of no mean flow. Both the

pressure and its surface normal derivative terms are retained in the
derivation for application of a liner impedance boundary condition.
This study is an extension of previous work by the authors [10]; the

objective was to investigate feasibility for modeling acoustic wave
scattering using a Burton–Miller reformulated TD-BIE when coupled
with an impedance boundary condition applied on the scattering sur-
face. Typically composed of an array of Helmholtz resonators arranged
in a honeycomb structure for support and covered with a perforate face
sheet, acoustic liners dissipate the incident acoustic wave and are very
effective at absorbing sound [11]. The acoustic property of a liner is
characterized by impedance in the frequencydomain. Transformed into
the time domain using Fourier transforms, an impedance boundary
conditionmaybecoupledwith theTD-BIE tomodel acoustic scattering
by lined surfaces. In Ref. [12], Li et al. developed a model to represent
liner impedance along awide range of frequencies,where the linearized
Euler equations were solved by a finite difference scheme. The model
was derived from the multipole impedance model in Ref. [13] and was
further studied in the works of Dragna et al. [14] and Troian et al. [15].
This broadbandmodel, satisfying the requirements of causality, reality,
and passivity [16,17], will be used in the present study.
The remainder of this paper is outlined as follows. In Sec. II, the

governing TD-BIE with no mean flow and its Burton–Miller refor-
mulationwith liner impedance boundary condition is provided. Next,
Sec. III discusses the time-domain multipole impedance boundary
condition model to be coupled with the boundary integral equation.
Numerical discretization methodology for the boundary integral
equation and impedance boundary condition is then provided in
Sec. IV. In Sec. V, numerical stability is assessed by an eigenvalue
analysis, and numerical examples of a point-source reflection by a
lined sphere and by a lined flat plate are presented in Sec. VI.
Concluding remarks are discussed in Sec. VII.

II. TD-BIE and Its Burton–Miller Reformulation

The focus of the current study is the time-domain boundary element
method for acoustic scattering when coupled with an impedance
boundary condition and to assess numerical stability of the coupling.
Herein, a derivation of the time-domain boundary integral is provided,
where both the pressure and its surface normal derivative terms are
retained. Only the simple case of no mean flow is considered.
Acoustic disturbances, assumed to be of small amplitude, are gov-

erned by the linear wave equation. With no mean flow, the governing
equation is given to be
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∂2p
∂t2

�r; t� − c2∇2p�r; t� � q�r; t� (1)

where r � �x; y; z� is an arbitrary point in three-dimensional space,

∇ � �∂∕∂x; ∂∕∂y; ∂∕∂z� and ∇2 � ∇ ⋅ ∇, p�r; t� is the acoustic
pressure, q�r; t� is the known acoustic source, and c is the speed
of sound; homogeneous initial conditions are assumed, p�r; 0� �
∂p∕∂t�r; 0� � 0. The solution of Eq. (1) is dependent on the boun-
dary conditions applied on the scattering surface S.
The derivation of the TD-BIE from Eq. (1) is facilitated by

introducing a free-space adjoint Green’s function ~G�r; t; r 0; t 0� de-
fined as follows:

∂2 ~G

∂t2
�r; t; r 0; t 0� − c2∇2 ~G�r; t; r 0; t 0� � δ�r − r 0�δ�t − t 0� (2)

where δ is the Dirac delta function; homogeneous initial conditions

are assumed, ~G�r; t; r 0; t 0� � ∂ ~G∕∂t�r; t; r 0; t 0� � 0 for all t > t 0.
The solution to Eq. (2) is well known [3] and is given to be

~G�r; t; r 0; t 0� � G0

4πc2
δ

�
t 0 − t −

R

c

�
(3)

where R�r; r 0� � jr − r 0j and G0 � 1∕R�r; r 0�. The resulting TD-
BIE is [5]

Csp�r 0; t 0� �
Z
S

�
G0�rs; r 0�

∂p
∂n

�rs; t 0R� −
∂G0

∂n
�rs; r 0��p�rs; t 0R�

� R

c

∂p
∂t

�rs; t 0R��
�
drs �

1

c2

Z
V
G0�rs; r 0�q�rs; t 0R� drs

(4)

where Cs � 4π when r 0 is an off-surface observer point, and Cs �
2π when r 0 � r 0s is a smooth point on surface S. Further, V denotes
the region of the acoustic source, and t 0R � t 0 − R∕c is a retarded
time value.
Equation (4) is an integral equation for p�r 0s; t 0� that is related to

the direct contribution of the source noise q as well as the surface
contribution involving the retarded values ofp and its normal deriva-
tive ∂p∕∂n. When the pressure and its normal derivatives are calcu-
lated on the surface S, Eq. (4) also predicts the pressure at an arbitrary
observer point r 0 exterior to the surface. In this paper, surface normal
direction is defined to be the one that points into the scattering body.
Time-domain boundary integral equations, such as Eq. (4), have an

intrinsic numerical instability [5,6,8,9,18,19] due to the existence of
nontrivial solutions in the interior domain at resonant frequencies.
Resonant frequencies can be eliminated by using a Burton/Miller-
type reformulation of Eq. (4) [5,7–9]. To deal with the impedance
boundary condition, unlike the derivation in Ref. [5], both p and
∂p∕∂nwill be included in the derivation process. The Burton–Miller
reformulation results by taking the derivative of Eq. (4) at surface
points r 0s in the form of

a
∂
∂t 0

� bc
∂
∂n 0 (5)

that is, a linear combination of time and normal derivatives, where a
andb are arbitrary parameters thatmust satisfy the stability condition,
a∕b < 0, a simple choice being that a � 1 and b � −1 [5,8,9]. Here,
t 0 is the observer time, and ∂∕∂n 0 is the normal derivative at the
surface observer point r 0s as given in Eq. (4).
The scattering surfaceS is decomposed into rigid and soft surfaces,

S0 and Sl, respectively, such that S � S0 ∪ Sl. On rigid surfaces, a
solid wall boundary condition is imposed, ∂p∕∂n � 0. On soft
surfaces, an impedance boundary condition is imposed, herein rep-
resented by the multipole impedance model and further discussed in
Sec. III. Applying Eq. (5) to Eq. (4) and the solid wall boundary
condition only on rigid surfaces S0, and taking the limit as r 0 → r 0s,
yields

a

�
2π

∂p
∂t

�r 0s; t 0� −
Z
Sl

G0�rs; r 0s�
∂
∂t

�
∂p
∂n

�rs; t 0R�
�
drs

�
Z
S

∂G0

∂n
�rs; r 0s�

�
∂p
∂t

�rs; t 0R� �
R

c

∂p
∂t2

�rs; t 0R�
�
drs

�

� bc

�
4π

∂p
∂n 0 �r 0; t 0� −

∂
∂n 0

Z
Sl

G0�rs; r 0�
∂p
∂n

�rs; t 0R� drs

� ∂
∂n 0

Z
S

∂G0

∂n
�rs; r 0��p�rs; t 0R� �

R

c

∂p
∂t

�rs; t 0R�� drs
�
r 0→r 0s

� a
∂Q
∂t 0

�r 0s; t 0� � bc
∂Q
∂n 0 �r 0s; t 0� (6)

where

Q�r 0s; t 0� �
1

c2

Z
V
G0�rs; r 0�q�rs; t 0R� drs (7)

Note that the pressure normal derivative term appears only in the

integrals over lined surfaces Sl. Because of the normal derivative

operation in the Burton–Miller reformulation, the order of integral

singularity is increased compared to Eq. (4). The limit for the integral

on the full surfaceS in the second bracketed term on the left-hand side

of Eq. (6) can be simplified as in Ref. [5] [Eq. (33) therein]. The limit

for the integral on soft surfaces Sl involving ∂p∕∂n can be simplified

by first noting that

∂
∂n 0

�
∂p
∂n

�rs; t 0R�
�
� ∂

∂t

�
∂p
∂n

�rs; t 0R�
�
∂t 0R
∂n 0

∂
∂n 0

Z
Sl

G0�rs; r 0�
∂p
∂n

�rs; t 0R� drs �
Z
Sl

∂G0

∂n 0 �rs; r 0�
∂p
∂n

�rs; t 0R� drs

�
Z
Sl

G0�rs; r 0�
∂
∂t

�
∂p
∂n

�rs; t 0R�
�
∂t 0R
∂n 0 drs (8)

Noting that the first integral in Eq. (8) involving ∂G0∕∂n 0 is
singular, its limit as r 0 → r 0s can be found as follows:

lim
r 0→r 0s

Z
Sl

∂G0

∂n 0 �rs;r 0�
∂p
∂n

�rs; t 0R�drs � lim
r 0→r 0s

Z
Sl

�
∂G0

∂n 0 �rs;r 0�

� ∂G0

∂n
�rs;r 0�

�
∂p
∂n

�rs; t 0R�drs − lim
r 0→r 0s

Z
Sl

∂G0

∂n
�rs;r 0�

∂p
∂n

�rs; t 0R�drs

(9)

Further note that, for the first integral presented earlier

∂G0

∂n 0 �rs; r 0� �
∂G0

∂n
�rs; r 0� � n 0 ⋅ ∇ 0G0 � n ⋅ ∇G0

� −�n 0 − n� ⋅ ∇G0

having used the fact that ∇G0 � −�r − r 0�∕R3 and ∇ 0G0 �
−�r 0 − r�∕R3 � −∇G0. With a weakened singularity, the first inte-

gral in the right-hand side of Eq. (9) is continuous, that is, the limit

and integration can be interchanged:

lim
r 0→r 0s

Z
Sl

�
∂G0

∂n 0 �rs; r 0� �
∂G0

∂n
�rs; r 0�

�
∂p
∂n

�rs; t 0R� drs

�
Z
Sl

�
∂G0

∂n 0 �rs; r 0s� �
∂G0

∂n
�rs; r 0s�

�
∂p
∂n

�rs; t 0R� drs (10)

The second integral in Eq. (9) is the well-known double-layer sin-

gular integral, thus giving the following limit [5] [Eq. (18) therein]:
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lim
r 0→r 0s

Z
Sl

∂G0

∂n
�rs; r 0�

∂p
∂n

�rs; t 0R� drs

�
Z
Sl

∂G0

∂n
�rs; r 0s�

∂p
∂n

�rs; t 0R� drs − 2π
∂p
∂n

�r 0s; t 0� (11)

Equation (12) follows by combining Eqs. (10) and (11):

lim
r 0→r 0s

Z
Sl

∂G0

∂n 0 �rs; r 0�
∂p
∂n

�rs; t 0R� drs

�
Z
Sl

∂G0

∂n 0 �rs; r 0s�
∂p
∂n

�rs; t 0R� drs � 2π
∂p
∂n

�r 0s; t 0� (12)

Hence, by carrying out the limit r 0 → r 0s in Eq. (6) using Eq. (12), the
resulting Burton–Miller reformation of Eq. (4) is given in Eq. (13):

a

�
2π

∂p
∂t

�r 0s; t 0�−
Z
Sl

G0�rs;r 0s�
∂
∂t

�
∂p
∂n

�rs; t 0R�
�
drs

�
Z
S

∂G0

∂n
�rs;r 0s�

�
∂p
∂t

�rs; t 0R��
R

c

∂p
∂t2

�rs; t 0R�
�
drs

�

� bc

�
2π

∂p
∂n

�r 0s; t 0�−
Z
Sl

∂G0

∂n 0 �rs;r 0s�
�
∂p
∂n

�rs; t 0R�

�R

c

∂
∂t

�
∂p
∂n

�rs; t 0R�
��

drs

�

� bc

�Z
S

∂2G0

∂n 0∂n
�rs;r 0s�

�
p�rs; t 0R�−p�r 0s; t 0� �

R

c

∂p
∂t

�rs; t 0R�
�
drs

�

−
b

c

Z
S
R3

∂G0

∂n 0
∂G0

∂n
∂2p
∂t2

�rs; t 0R�drs � a
∂Q
∂t 0

�r 0s; t 0� � bc
∂Q
∂n 0 �r 0s; t 0�

(13)

Note that, as expected, Eq. (13) reduces to the TD-BIE given in
Ref. [5] for rigid-body scatteringwhen the terms involving ∂p∕∂n are
set to be zero. On the surfaces where an acoustic liner is applied, p
and ∂p∕∂n are related through the impedance condition, as described
in the next section.

III. Time-Domain Broadband Impedance
Boundary Condition

The impedance boundary condition to be imposed on soft surfaces
is defined in the frequency domain as follows:

p̂�rs;ω�
v̂�rs;ω�

� Z�ω� (14)

where Z�ω� is the impedance, p̂�rs;ω� is the acoustic pressure

v̂�rs;ω� �
1

iωρ0

∂p̂
∂n

�rs;ω�

is the acoustic velocity, and ρ0 is a constant for the average fluid
density. Here, a caret ⋅̂ denotes the frequency-domain variables,

assuming a time dependence of e−iωt, in which i is the imaginary

unit �i2 � −1�. In this work, impedance Z�ω� is modeled after the
multipole impedance model introduced in Refs. [12,14,15]:

Z�ω� � −iωh0 � R0 �
XJ1
l�1

Al

γl − iω

� 1

2

XJ2
l�1

�
Bl � iCl

αl � iβl − iω
� Bl − iCl

αl − iβl − iω

�
(15)

where J1 is the number of simple poles atω � −iγl, J2 is the number
of paired poles atω � −iαl � βl, andh0 andR0 are real coefficients.
Causality, passivity, and stability lead to h0, R0 ≥ 0, γl ≥ 0 for

l � 1; : : : ; J1, and αl ≥ 0 for l � 1; : : : ; J2. Causality further

requires that Z�ω� is both analytical and nonzero, while Im�ω� > 0
[17]. Combining Eqs. (14) and (15), and simplifying, yields Eq. (16):

iωρ0p̂�rs;ω� � −iωh0
∂p̂
∂n

�rs;ω� � R0

∂p̂
∂n

�rs;ω�

�
XJ1
l�1

Al

�
1

γl − iω

∂p̂
∂n

�rs;ω�
�

�
XJ2
l�1

Bl

�
αl − iω

�αl − iω�2 � β2l

∂p̂
∂n

�rs;ω�
�

�
XJ2
l�1

Cl

�
βl

�αl − iω�2 � β2l

∂p̂
∂n

�rs;ω�
�

(16)

To facilitate the conversion of Eq. (16) from the frequency domain

to the time domain, as in Ref. [14], the following auxiliary variables

are defined:

p̂�0�
l �rs;ω� �

1

γl − iω

∂p̂
∂n

�rs;ω� for l � 1; : : : ; J1 (17)

p̂�1�
l �rs;ω� �

αl − iω

�αl − iω�2 � β2l

∂p̂
∂n

�rs;ω�;

p̂�2�
l �rs;ω� �

βl
�αl − iω�2 � β2l

∂p̂
∂n

�rs;ω� for l� 1;: : : ; J2 (18)

such that p̂�0;1;2�
l �rs;ω� is the Fourier transform of p�0;1;2�

l �rs; t�.
Substituting Eqs. (17) and (18) into Eq. (16), and simplifying, yields

the following frequency-domain broadband impedance relationship

between pressure p̂ and its normal derivative ∂p̂∕∂n:

iωρ0p̂�rs;ω� � −iωh0
∂p̂
∂n

�rs;ω� � R0

∂p̂
∂n

�rs;ω�

�
XJ1
l�1

Alp̂
�0�
l �rs;ω� �

XJ2
l�1

Blp̂
�1�
l �rs;ω�

�
XJ2
l�1

Clp̂
�2�
l �rs;ω� (19)

Taking the inverse Fourier transform of Eq. (19) yields the time-

domain impedance boundary condition:

ρ0
∂p
∂t

�rs; t� � h0
∂
∂t

�
∂p
∂n

�rs; t�
�
� R0

∂p
∂n

�rs; t� �
XJ1
l�1

Alp
�0�
l �rs; t�

�
XJ2
l�1

Blp
�1�
l �rs; t� �

XJ2
l�1

Clp
�2�
l �rs; t� � 0 (20)

Manipulating and taking the inverse Fourier transforms of Eqs. (17)

and (18) yield Eq. (21), for l � 1; : : : ; J1:

∂p�0�
l

∂t
�rs; t� � γlp

�0�
l �rs; t� �

∂p
∂n

�rs; t� (21)

and Eq. (22), for l � 1; : : : ; J2

∂p�1�
l

∂t
�rs; t� � αlp

�1�
l �rs; t� � βlp

�2�
l �rs; t� �

∂p
∂n

�rs; t�;

∂p�2�
l

∂t
�rs; t� − βlp

�1�
l �rs; t� � αlp

�2�
l �rs; t� � 0 (22)

Equations (20–22) are the constitutive forms of the time-domain

broadband impedance boundary condition.
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IV. Numerical Discretization

In this section, the discretization of the TD-BIE, Eq. (13),
coupled with the time-domain broadband multipole impedance
boundary condition, Eqs. (20–22), by the time-domain boundary
element method is described. Let the surface S be divided into a set
of Ne boundary elements fEj; j � 1; : : : ; Neg, where the colloca-

tion point rj is located at the centroid of element Ej. The time

domain is divided into Nt uniform time steps, where tk � kΔt, k �
1; : : : ; Nt.
All terms p�rs; t� and ∂p∕∂n�rs; t� are approximated by using

surface-element basis functions ϕj�rs� and temporal basis functions

ψk�t� as follows:

p�rs; t� �
XNt

k�0

XNe

j�1

ukjϕj�rs�ψk�t� and

∂p
∂n

�rs; t� �
XNt

k�0

XNe

j�1

vkjϕj�rs�ψk�t� (23)

In Eq. (23), ukj and v
k
j denote the values of the solution of p�rs; t� and

∂p∕∂n�rs; t�, respectively, of the jth node at time tk. On any rigid

element, it is assumed that vkj � 0 as a result of the solid wall

boundary condition [i.e., ∂p∕∂n�rs; t� � 0] on rigid surfaces S0. In
the spatial domain, zeroth-order basis functions are considered,
ϕj�rs� � 1, if rs is on element Ej containing node rj and ϕj�rs� �
0 otherwise. In the temporal domain, the third-order Lagrange basis
functions are considered:

Ψ�τ� �

8>>>>>>>><
>>>>>>>>:

1� 11
6
τ� τ2 � 1

6
τ3; −1 < τ ≤ 0

1� 1
2
τ − τ2 − 1

2
τ3; 0 < τ ≤ 1

1 − 1
2
τ − τ2 � 1

2
τ3; 1 < τ ≤ 2

1 − 11
6
τ� τ2 − 1

6
τ3; 2 < τ ≤ 3

0; other

(24)

such that ψk�t� � Ψ��t − tk�∕Δt�. All surface integrations are com-
puted by high-order Gauss quadrature on a 6 × 6 grid for each
element.
By evaluating the discretized Burton–Miller reformulation at col-

location points rj on the center of elements Ej, j � 1; : : : ; Ne and at
time step tn using basis functions ϕj�rs� and ψk�t�, Eq. (13) is cast
into a system of equations of the form:

B0u
n � C0v

n � qn −B1u
n−1 − C1v

n−1 −B2u
n−2 − C2v

n−2

− : : : −BJu
n−J − CJv

n−J (25)

where uk and vk denote the vector that contains all unknowns

fukj ; j � 1; : : : ; Neg and fvkj ; j � 1; : : : ; Neg, respectively, at

time level tk. Because of the limited temporal stencil width of
Eq. (24), the B and C matrices are sparse. Additionally, the
index J denotes the maximum time history of the solution
required for Eq. (25) and is dependent on the dimensions of
the scattering surface [5].
Equation (25) is a march-on-in-time scheme, in which a sparse

matrix is solved iteratively using retarded time values for the right-
hand side. For rigid-body scattering only, all terms vk in Eq. (25)

are equivalently zero and a solution can be obtained for uk. With
soft surfaces, a second system is needed to couple with Eq. (25)

for obtaining solutions of both uk and vk. This system results by
direct application of the impedance boundary condition defined in
Eqs. (20–22) as detailed next.
The constitutive form of the time-domain broadband impedance

boundary condition, Eqs. (20–22), is discretized by approxi-
mating p�m�

l �rs; t�, m � 0; 1; 2, using the same surface-element
basis functions ϕj�rs� and temporal basis functions ψk�t� as in

Eqs. (23) and (24):

p�m�
l �rs; t� �

XNt

k�0

XNe

j�1

�
p�m�
l

�
k

j
ϕj�rs�ψk�t�; m � 0; 1; 2 (26)

where �p�m�
l �kj denotes the value of p�m�

l �rs; t� at the jth node and

time tk. Substituting Eq. (26) into Eqs. (20–22) and evaluating

at collocation points rj, j � 1; : : : ; Ne and time step tn, and

simplifying by the temporal basis function given in Eq. (24),

yield the following discretized broadband impedance boundary

condition:

X3
k�0

�un−kj ρ0ψ
0
n−k�tn� � vn−kj �h0ψ 0

n−k�tn� � R0ψn−k�tn���

�
XJ1
l�1

�p�0�
l �nj Al �

XJ2
l�1

�p�1�
l �nj Bl �

XJ2
l�1

�p�2�
l �njCl � 0 (27)

X3
k�0

�
p�0�
l

�
n−k

j
�ψ 0

n−k�tn� � γlψn−k�tn�� � vn; l � 1; : : : ; J1

(28)

X3
k�0

�p�1�
l �n−kj �ψ 0

n−k�tn� � αlψn−k�tn�� � βl�p�2�
l �nj � vn;

l � 1; : : : ; J2 (29)

−
X3
k�0

�p�2�
l �n−kj �ψ 0

n−k�tn� � αlψn−k�tn�� � βl�p�1�
l �nj � 0;

l � 1; : : : ; J2 (30)

for j � 1; : : : ; Ne, where a prime denotes derivative. This is

equivalent to the results of discretizing Eqs. (20–22) by the

third-order implicit backward difference scheme [20].
Denoting p�0�

l , l � 1; : : : ; J1, and p�1;2�
l , l � 1; : : : ; J2, as the

vectors that contain the auxiliary variables from all points where the

impedance boundary condition is applied, the following vectors are

additionally defined by Eq. (31):

P�0� �
�
p�0�
1 p�0�

2 · · · p�0�
J1

	
T; P�1� �

�
p�1�
1 p�1�

2 · · · p�1�
J2

	
T; and

P�2� �
�
p�2�
1 p�2�

2 · · · p�2�
J2

	
T (31)

Using Eq. (31), along with uk and vk, the discretized solutions of

Eqs. (27–30) can be expressed succinctly as the following system of

equations:

D0u
n �E0v

n � F0P
n
�0� �G0P

n
�1� �H0P

n
�2�

� −
X3
k�1

�Dku
n−k �Ekv

n−k� (32)

J 0v
n �K0P

n
�0� � −

X3
k�1

�KkP
n−k
�0� � (33)

L0v
n �M0P

n
�1� �N 0P

n
�2� � −

X3
k�1

�MkP
n−k
�1� � (34)

P0P
n
�1� �Q0P

n
�2� � −

X3
k�1

�QkP
n−k
�2� � (35)

The nonzero entries of Eqs. (32–35) are given by
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Dk�ρ0ψ
0
n−k�tn�INe×Ne

;

Ek��h0ψ 0
n−k�tn��R0ψn−k�tn��INe×Ne

; k�0;1;2;3

F0��A1INe×Ne
··· AJ1INe×Ne

�Ne×J1Ne
;

G0��B1INe×Ne
··· BJ2INe×Ne

�Ne×J2Ne

H0��C1INe×Ne
··· CJ2INe×Ne

�Ne×J2Ne

J 0�

2
6666664

INe×Ne

INe×Ne

..

.

INe×Ne

3
7777775

J1Ne×Ne

; L0�

2
6666664

INe×Ne

INe×Ne

..

.

INe×Ne

3
7777775

J2Ne×Ne

;

P0�−N 0�

2
6664
β1INe×Ne

. .
.

βJ2INe×Ne

3
7775

J2Ne×J2Ne

Kk�

2
6664
η1kINe×Ne

. .
.

ηJ1k INe×Ne

3
7775

J1Ne×J1Ne

whereηlk �−�ψ 0
n−k�tn��γlψn−k�tn��; k�0;1;2;3

Mk�Qk�

2
6664
μ1kINe×Ne

. .
.

μJ2k INe×Ne

3
7775

J2Ne×J2Ne

whereμlk �−�ψ 0
n−k�tn��αlψn−k�tn��; k�0;1;2;3

where INe×Ne
is the identity matrix of size Ne × Ne.

Coupling Eqs. (32–35) with Eq. (25) allows for the application

of the broadband impedance boundary condition, modeled by

Eq. (15). This coupled system has a dimension up to Ne�2� J1 �
2J2� × Ne�2� J1 � 2J2� when the impedance boundary condition

is applied to all surface elements. When solved iteratively, it

provides solutions for uk and vk on all soft surfaces.

V. Numerical Eigenvalue Study and Stability Analysis

The solution of the coupled march-on-in-time scheme, Eqs. (25)

and (32–35), provides the acoustic scattering by a body with lined

surfaces from a given noise source. Examples of numerical solutions

will be presented in Sec. VI. To assess the stability for this coupled

system, a numerical eigenvalue study is conducted. For convenience

of discussion, the coupled system of Eqs. (25) and (32–35) is denoted

formally by

A0w
n � qn0 −A1w

n−1 −A2w
n−2 −A3w

n−3 − : : : −AJw
n−J

(36)

where wk is a vector that contains uk, vk, Pk
�0�, P

k
�1�, and P

k
�2� at time

step tk. For the stability study, eigenvalue analysis is concerned only
with the homogeneous system. The homogeneous system is repre-

sentative of when the source, or incident wave, has traveled far

beyond the scattering body, and it is often when numerical instability

occurs.
Equation (36), without the source term, can bewritten equivalently

as a standard iteration operation:

Wn � AWn−1 (37)

where

A�

2
66666666664

−A−1
0 A1 −A−1

0 A2 ··· −A−1
0 AJ−2 −A−1

0 AJ−1 −A−1
0 AJ

I 0 ··· 0 0 0

0 I ··· 0 0 0

..

. . .
. ..

. ..
.

0 0 ··· I 0 0

0 0 ··· 0 I 0

3
77777777775

and Wn�

2
66666666664

wn

wn−1

wn−2

..

.

wn−J�2

wn−J�1

3
77777777775

Thematrix power iterationmethod [21] is then used to find the largest
eigenvalue of A in Eq. (37). Herein, the power iteration method
proceeds as follows:
1) Define an arbitrary unit vector to be ξ�0�.
2) For k � 1; 2; : : : , calculate e�k� � Aξ�k−1�, ξ�k� � e�k�∕ke�k�k2,

and λ�k� � �ξ�k��TAξ�k� � �ξ�k��Te�k�1�.
3) Calculate the difference between consecutive eigenval-

ues, jλ�k� − λ�k−1�j.
4) Repeat until the iterative scheme has converged to the largest

eigenvalue, jλjmax (i.e., when jλ�k� − λ�k−1�j∕jλ�k�j < δ for a given
tolerance δ). In the current study, the tolerance is chosen to be

δ � 10−9.
The stability of Eq. (36) [i.e., the coupled march-on-in-time system

of Eqs. (25) and (32) through (35)] is investigated by considering the
scattering by a flat plate with dimension �−0.5; 0.5� × �−0.5; 0.5�×
�−0.1; 0.1�. The surface of the flat plate is discretized in the x, y, and
z directions with Nx, Ny, and Nz elements, respectively, giving a total

number of Ne � 2�NxNy � NyNz � NxNz� surface elements. The

following four problem sizes ofNx × Ny × Nz are considered: 5 × 5 ×
1 (Ne � 70 elements), 10 × 10 × 2 (Ne � 280 elements), 20 × 20 × 4
(Ne � 1120 elements), and 30 × 30 × 6 (Ne � 2520 elements). Fur-
ther, the following two different time steps are considered: Δt � 1∕12
and Δt � 1∕24. This combination of grid size and time step ensures
that the scattering problem provides solutions over a wide range of
frequencies.
The liner impedance boundary condition is modeled using exper-

imental data. Two acoustic liners, named CT57 and GE03, will be
considered. These two liners were tested in the Grazing Flow Imped-
ance Tube at the NASA Langley Research Center Liner Technology
Facility. During the tests [22], impedance values were educed over a
wide range of frequencies. Using the measured data, broadband
multipole impedance models of the form in Eq. (15) were generated
using a least-squares regression process. The values for the param-
eters, which define the surface impedance model in Eq. (15), are
shown in Table 1. Because multipole expansion fitting to measured
data is not unique, depending on the choices for the number of poles
and whether or not to include h0 and R0 terms, etc., various possibil-
ities are considered in Table 1.
In each of the liner models shown in Table 1, cases 1 through

4, the parameters yielded Re�Z� > 0, thus preserving passivity.
The CT57 liner is depicted in Fig. 1a for cases 1 and 2, colored
in black and orange, respectively; the GE03 liner is depicted in
Fig. 1b for cases 3 and 4, colored in black and orange, respec-
tively. The experimental data are plotted using markers; resis-
tance, Re�Z�, is denoted by circles, and reactance, Im�Z�, is
denoted by squares. The multipole fitted models are graphed
with a dotted line. All values of impedance are nondimension-
alized by ρ0c. Frequency is nondimensionalized by c∕L, where
c � 340 m∕s and L � 1 m.
For the stability assessment, two configurations of acoustic liner

application are considered. First, it is assumed that the acoustic liner
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is installed on all scattering surfaces, herein referred to as all-soft.
This configuration is illustrated in Fig. 2a. In the second configura-
tion, it is assumed that the acoustic liner is installed on the top surface
of the flat plate, and the rest of the surfaces are treated as solid
surfaces, herein referred to asmixed. This configuration is illustrated
in Fig. 2b. Both all-soft and mixed-body liner applications are
assessed for their stability in solving the system. The rigid-body case
is used as a baseline, where the stability of the numerical algorithm
is tested assuming no liner boundary condition on any scattering

surface. For the baseline assessment, all vectors associated with the
liner impedance condition are set equal to zero.
The maximum eigenvalues for both all-soft and mixed bodies are

listed in Table 2. Any eigenvalues greater than unity are indicated by
bold text. The rigid-body results are not listed in the table because, as
expected, all baseline cases yield a maximum eigenvalue of unity for
all discretizations, time steps, and temporal basis functions confirm-
ing that the Burton–Miller reformulation of the TD-BIE provides
numerical stability for rigid-body scattering [5].

Table 1 Constants used for the broadband impedance model

Case h0 R0 J1

Al γl

J2

Bl Cl αl βl

l � 1; : : : ; J1 l � 1; : : : ; J2

1 (CT57) 0.010873 0.177655 1 18.467174 0.985273 2
43.919202 −0.571804 4.887694 37.631479

23.611034 −8.511097 7.670216 −66.460858

2 (CT57) 0 0.068743 1 18.421975 1.075243 2
99.855347 −9.968384 7.952528 82.203159

44.089363 −0.709128 4.879110 37.451098

3 (GE03) 0.011775 0.001514 1 32.573728 1.896347 2
0.001101 −9.910991 22.599229 16.476064

75.213211 −9.915633 7.374808 82.791519

100 −9.866975 9.578137 93.987180

4 (GE03) 0 0 1 32.762971 1.992922 3 0.023790 −9.993868 20.530002 18.832024

100 −9.905435 4.032688 99.876360

Fig. 1 Illustration of the generated broadband impedance curves using least-squares regression.

Fig. 2 Comparison between a fully lined and a partially lined scattering body for a flat plate.

Table 2 Maximum eigenvalues calculated for the broadband impedance model

Liner
application

Broadband
model case no.

Δt � 1∕12 Δt � 1∕24

5 × 5 × 1 10 × 10 × 2 20 × 20 × 4 30 × 30 × 6 5 × 5 × 1 10 × 10 × 2 20 × 20 × 4 30 × 30 × 6

All-soft body 1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

3 0.999976 1.000231 1.000116 1.000029 1.000017 0.999965 0.999967 0.999994

4 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Mixed body 1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

3 1.000148 1.000173 1.000073 1.000027 0.999999 0.999981 0.999991 0.999995

4 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
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As shown in Table 2, for both all-soft and mixed-body scattering,

apart from case 3, all analyses yield amaximumeigenvalue no greater

than unity, rendering their stability for the eigenvalues of the iteration

matrix A. For case 3, maximum eigenvalues slightly greater than

unity are seen but become less than unity as the spatial and temporal

resolutions are increased. Note that when the length of elements

(assuming a square element) Δx < 2cΔt, the matrix B0 in Eq. (25),

which represents the elementwise interactions within the same time

step, becomes a banded matrix, leading to an implicit scheme for

solving un, where implicitness generally improves numerical stabil-
ity [23]. These results are consistent with previous work by the
authors [24,25].

VI. Numerical Examples

Todemonstrate thevalidity and stability of the time-domainboundary
element method coupled with the broadband multipole impedance
boundary condition, numerical examples of scattering by soft surfaces
are presented. The following two geometries are considered: a sphere

Fig. 3 Numerical examples of scattering by soft surfaces.
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and a flat plate. For the sphere, the numerical solution is compared with
the known analytical solution (Appendix A). For the flat plate, an
analytical solution (Appendix B) of a point-source reflection by an
infinite flat surface is used to approximately comparewith the computa-
tional result.
For the first example, scattering of a point source by a lined sphere

of radius r0 � 0.5, centered at r � �0; 0; 0�, is considered. The
sphere is discretized by a total of Ne � 15; 360 quadrilateral ele-
ments. A point source is located at rp � �0; 0; 1�, and the source

function as it appears in Eq. (1) is of the form

q�r; t� � e−σt
2

δ�r − rp� (38)

where σ � 1.42∕�6Δt�2, and Δt is the time step for the time-
domain march-on-in-time scheme. For the results shown, the non-
dimensional time step is cΔt∕r0 � 0.01. The march-on-in-time
scheme, Eq. (25), coupled with the liner impedance boundary
condition, Eqs. (32–35), is solved for the time-domain solution,
which is then converted to the frequency domain by the Fourier
transform. For a limited number of selected frequencies, as noted
in Ref. [5], the frequency-domain solution can be computed
concurrently with the time-domain simulation as the following
summation:

p̂�r;ω� � Δt�p�r; t1�eiωt1 � p�r; t2�eiωt2� · · · �p�r; tNt
�eiωtNt �

(39)

Both the CT57 and GE03 liners discussed in previous sections
have been applied for this example, and numerical stability has
been observed for the four models shown in Table 1. Figure 3a
shows a pressure contour plot of the solution at nondimensional
frequency ωr0∕c � 8π when the CT57 liner impedance boun-
dary condition (Table 1; case 1) is applied on all surface ele-
ments of the sphere. Comparisons with the analytical solution
along a field line defined by −2.5 ≤ x ≤ 2.5, y � 0, z � −1.5 are
shown in Fig. 3c for nondimensional frequencies ωr0∕c � 4π
and ωr0∕c � 8π, and excellent agreement between the two
solutions is observed. The numerical solution for this example,
when the GE03 liner (Table 1; case 3) is applied, is shown in
Fig. 3e. Again, excellent agreement between the numerical and
analytical solutions is observed. The computational run time for
this example is approximately 1.5 s per time step on a cluster of
eight graphic processing units (GPUs; NVIDIAV100 model) for
a total of 4000 time steps (about 1.7 h). The total number of
steps is determined so that all scattered waves have essentially
exited the computational domain.
In the second example, scattering by a lined flat plate defined by

�−L0; L0� × �−L0; L0� × �−0.02L0; 0� in the x, y, and z directions,
respectively, is considered. Here, L0 � 1. The surfaces are discre-
tized by quadrilateral elements with the number of elements per
dimension being Nx � Ny � 201, Nz � 4, as described in Sec. V,

giving a total of Ne � 84;018 elements. As in the first example, the
multipole liner impedance boundary condition is applied to all ele-
ments on the surface of the plate. A point source of the form Eq. (38)
is applied at rp � �0; 0; 0.5�, and a time-domain solution is obtained

by solving the march-on-in-time scheme Eq. (25) coupled with
Eqs. (32–35). The nondimensional time step is cΔt∕L0 � 0.005,
or cΔt∕Δx ≈ 0.5, where Δx is the length of each element for the top
and bottom surfaces of the plate. Again, numerical stability is
observed for the four models in Table 1. Figure 3b shows the con-
verted frequency-domain solution at nondimensional frequency
ωL0∕c � 12π when the CT57 liner impedance boundary condition
(Table 1; case 2) is applied on all surface elements of the plate.
The computed solution along a field line defined by −1.5 ≤ x
≤ 1.5, y � 0, z � 0.25 is compared with the analytical solution
of a point-source reflection by an infinite flat surface, given in
Appendix B, for nondimensional frequencies ωL0∕c � 6π and
ωL0∕c � 12π. The comparisons are shown in Figs. 3d and 3f for
the solutions by the CT57 and GE03 liner models (Table 1; cases 2
and 4, respectively). The numerical solution agrees verywell with the

analytical solution, except near the edge of the domain where the

numerical solution included the diffraction effects due to the finite

extent of the plate in the computation, whereas the analytical solution

assumed an infinitely large surface. The computational time for this

example is approximately 10.5 h for 4000 time steps on a cluster of

eight GPUs.

VII. Conclusions

The objective of this study was to investigate the feasibility and

stability for modeling acoustic wave scattering using a Burton–

Miller TD-BIE with impedance boundary condition for the case of

no mean flow. Derivation of the TD-BIE with impedance boundary

condition, stabilized through a Burton–Miller reformulation, was

presented. The impedance boundary condition was implemented

using a multipole broadband impedance model. The numerical

stability was assessed by an eigenvalue analysis conducted for the

coupled march-on-in-time scheme assuming both fully and parti-

ally lined bodies. Stability of the coupled system has been observed

in numerical simulations. Furthermore, numerical examples with

favorable comparisons with known analytical solutions demon-

strated the validity of the numerical method presented in this

paper.

Appendix A: Reflection of a Point Source
by a Lined Sphere

The analytical solution for the first numerical example of a point-

source reflection by a sphere with an impedance boundary condition

in the frequency domain is given as follows for completeness [26].

Let the incident wave with point source centered at r0 � �r0; θ0;φ0�
be expressed in spherical coordinates as

p̂inc�
eikjr−r0j

4πjr−r0j

�
(
ik
P∞

l�0

Pl
m�−l jl�kr0�h�1�l �kr�Y	

lm�θ0;φ0�Ylm�θ;φ� r>r0

ik
P∞

l�0

Pl
m�−l jl�kr�h�1�l �kr0�Y	

lm�θ0;φ0�Ylm�θ;φ� r< r0

)

where k � ω∕c. Here, the spherical harmonics function is

Ylm�θ;φ� �




































2l� 1

4π

�l −m�!
�l�m�!

s
Pm
l �cos θ�eimφ

and the spherical Bessel functions are

jl�x� �







π

2x

r
Jl��1∕2��x�

and

h�1;2�l �







π

2x

r
�Jl��1∕2��x� � iNl��1∕2��x��

Then, the reflected wave can be expressed as

p̂ref �
X∞
l�0

Xl
m�−l

Clmh
�1�
l �kr�Ylm�θ;φ�

where

Clm � ρ0ckjl�ka� − ikZ�ω�j 0l�ka�
iρ0ch

�1�
l �ka� � Z�ω�h�1� 0l �ka�

h�1�l �kr0�Y	
lm�θ0;φ0�

in which a prime denotes a spatial derivative.
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Appendix B: Reflection of a Point Source by a Lined Plane

In this appendix, an analytical solution for a point-source reflec-

tion by an infinite flat surface with impedance boundary condition

in the frequency domain is derived following a time-domain

analytical solution found in Ref. [27]. Assume that the scattering

surface is located at z � 0 and the point source is located at

r0 � �x0; y0; z0�, z0 > 0. By the Weyl identity [28], the fre-

quency-domain solution for the wave equation by a point source

is expressed in plane waves as follows:

p̂inc�
eikjr−r0j

4πjr−r0j

� i

8π2

Z
∞

−∞

Z
∞

−∞

exp�i�kx�x−x0��ky�y−y0��γjz−z0j��
γ

dkxdky

where γ �


























k2 − k2x − k2y

q
.

The time dependency is assumed to be e−iωt, and a dispersion

relation ω � ck is assumed for the case without mean flow. Let the

plane wave incident on the lined surface, denoted by a tilde

~pinc � Ainc exp�i�kx�x − x0� � ky�y − y0� − γ�z − z0��� (B1)

Further, the planewave reflected by the surface at z � 0 is expressed as

~pref � Aref exp�i�kx�x − x0� � ky�y − y0� � γ�z� z0��� (B2)

Adding Eqs. (B1) and (B2) results in a total field such that ~p � ~pinc �
~pref in Eq. (B3):

~p � Ainc exp�i�kx�x − x0� � ky�y − y0� − γ�z − z0���
� Aref exp�i�kx�x − x0� � ky�y − y0� � γ�z� z0��� (B3)

The impedance boundary condition of Eq. (14) is applied at

z � 0:

Z � iρ0ck�Ainc � Aref� exp�i�kx�x − x0� � ky�y − y0� � γ�z0���
iγ�Ainc − Aref� exp�i�kx�x − x0� � ky�y − y0� � γ�z0���

� ρ0ck�Ainc � Aref�
γ�Ainc − Aref�

By letting A � Aref∕Ainc, it is straightforward to show that

A � �γZ − ρ0ck�∕�γZ� ρ0ck�. Hence, the reflected wave of the

point source is given by p̂ref :

p̂ref �
i

8π2

×
Z

∞

−∞

Z
∞

−∞

Aexp�i�kx�x−x0��ky�y−y0��γ�z�z0���
γ

dkx dky

For convenience of numerical evaluation, as in Ref. [27], a change

of variables from �kx; ky� to (u, v) is introduced such that

kx � u cos v and ky � u sin v. This change of variables gives

p̂ref �
i

8π2

Z
2π

0

Z
∞

0

A exp�i�kx�x − x0� � ky�y − y0� � γ�z� z0���
γ

u du dv

� i

8π2

Z
2π

0

Z
∞

0

A exp�i�u cos v�x − x0� � u sin v�y − y0� �

















k2 − u2

p
�z� z0���

γ
u du dv

where γ �


























k2 − k2x − k2y

q
�


















k2 − u2

p
. Further simplifications

yield Z
2π

0

exp�iu�cos v�x − x0� � sin v�y − y0��� dv

�
Z

2π

0

exp�iur 0 cos�v − θ 0�� dv � 2πJ0�ur 0�

such that x − x0 � r 0 cos θ 0, y − y0 � r 0 sin θ 0, and J0 is a Bessel
function of the first kind. Hence, the equation for p̂ref is shown as
follows:

p̂ref �
i

4π

Z
∞

0

A exp�iγ�z� z0��
γ

J0�ur 0�u du

Furthermore, by considering a change of variables for 0 < u < k

(ξ � �γ∕k�, u � k














1 − ξ2

p
) and a change of variables for k < u < ∞

(ξ � −�iγ∕k�, u � k















1� ξ2

p
), the following analytical expression

is obtained for the reflected wave:

p̂ref �
ik

4π

Z
1

0

A�ξ� exp�ikξ�z� z0��J0�kr 0














1 − ξ2

p
� dξ

� k

4π

Z
∞

0

A�iξ� exp�−kξ�z� z0��J0�kr 0















1� ξ2

p
� dξ

in which A�ξ� � �ξZ − ρ0c�∕�ξZ� ρ0c� and A�iξ� � �iξZ − ρ0c�∕
�iξZ� ρ0c�.
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