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Acoustic liners are an effective tool for noise reduction and are characterized by a frequency-dependent impedance
value. In this paper, a time-domain boundary element method for acoustic scattering coupled with a broadband
impedance boundary condition is studied for the case of no mean flow. A Burton-Miller reformulation of the time
domain boundary element method for acoustic scattering is carried out with both the pressure and its surface normal
derivative terms retained. A multipole impedance model is converted into the time domain and used for enforcing an
impedance boundary condition over a wide range of frequencies. Discretization of the coupled system is described.
In particular, the time-domain impedance boundary condition is discretized by the third-order implicit backward
difference scheme. Stability of the coupling is assessed by an eigenvalue analysis. Scattering solutions that
demonstrate the validity and stability of the numerical method are presented.

I. Introduction

ETHODS for deriving an integral equation for the prediction
of acoustic scattering have been studied extensively in both
the frequency and time domains (e.g., see Refs. [1-4]). Frequency-
domain solvers are the most used and researched within the literature;
they have a reduced computational cost, allow for modeling time-
harmonic fields at a single frequency, avoid the growth of Kelvin—
Helmholtz instability waves, and allow for an impedance boundary
condition to be imposed directly. Despite these benefits, there are
several distinct advantages to using a time-domain solver [5]. Time-
domain solvers allow for the simulation and study of broadband
sources and time-dependent transient signals. Time-domain solvers
also allow for the scattering solution at all frequencies to be obtained
within a single computation and avoid needing to invert a large dense
linear system as is required in the frequency domain. Moreover, a
time-domain solution is more naturally coupled with a nonlinear
computational fluid dynamics simulation of noise sources.
Although time-domain boundary integral equations (TD-BIEs) are
known to have an intrinsic numerical instability as a result of “the
existence of internal modes of resonance of the body, which corre-
spond to time harmonic solutions of the integral equation” [6], recent
works have shown that a Burton—Miller reformulation of the TD-
BIE can effectively eliminate the numerical instability [5,7-9]. In
Ref. [5], a Burton—-Miller reformulated TD-BIE was presented
for acoustic scattering by rigid bodies under a uniform mean-flow
assumption. In this paper, Burton—Miller reformulation is carried out
for scattering by lined bodies in the case of no mean flow. Both the
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pressure and its surface normal derivative terms are retained in the
derivation for application of a liner impedance boundary condition.

This study is an extension of previous work by the authors [10]; the
objective was to investigate feasibility for modeling acoustic wave
scattering using a Burton—Miller reformulated TD-BIE when coupled
with an impedance boundary condition applied on the scattering sur-
face. Typically composed of an array of Helmholtz resonators arranged
in a honeycomb structure for support and covered with a perforate face
sheet, acoustic liners dissipate the incident acoustic wave and are very
effective at absorbing sound [11]. The acoustic property of a liner is
characterized by impedance in the frequency domain. Transformed into
the time domain using Fourier transforms, an impedance boundary
condition may be coupled with the TD-BIE to model acoustic scattering
by lined surfaces. In Ref. [12], Li et al. developed a model to represent
liner impedance along a wide range of frequencies, where the linearized
Euler equations were solved by a finite difference scheme. The model
was derived from the multipole impedance model in Ref. [13] and was
further studied in the works of Dragna et al. [14] and Troian et al. [15].
This broadband model, satisfying the requirements of causality, reality,
and passivity [16,17], will be used in the present study.

The remainder of this paper is outlined as follows. In Sec. II, the
governing TD-BIE with no mean flow and its Burton—-Miller refor-
mulation with liner impedance boundary condition is provided. Next,
Sec. II discusses the time-domain multipole impedance boundary
condition model to be coupled with the boundary integral equation.
Numerical discretization methodology for the boundary integral
equation and impedance boundary condition is then provided in
Sec. IV. In Sec. V, numerical stability is assessed by an eigenvalue
analysis, and numerical examples of a point-source reflection by a
lined sphere and by a lined flat plate are presented in Sec. VI.
Concluding remarks are discussed in Sec. VII.

II. TD-BIE and Its Burton—Miller Reformulation

The focus of the current study is the time-domain boundary element
method for acoustic scattering when coupled with an impedance
boundary condition and to assess numerical stability of the coupling.
Herein, a derivation of the time-domain boundary integral is provided,
where both the pressure and its surface normal derivative terms are
retained. Only the simple case of no mean flow is considered.

Acoustic disturbances, assumed to be of small amplitude, are gov-
ered by the linear wave equation. With no mean flow, the governing
equation is given to be
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where r = (x,y, z) is an arbitrary point in three-dimensional space,
= (0/0x,0/dy,0/dz) and V> =V -V, p(r,t) is the acoustic
pressure q(r, 1) is the known acoustic source, and c is the speed
of sound; homogeneous initial conditions are assumed, p(r,0) =
dp/ot(r,0) = 0. The solution of Eq. (1) is dependent on the boun-
dary conditions applied on the scattering surface S.
The derivation of the TD-BIE from Eq. (1) is facilitated by
introducing a free-space adjoint Green’s function G(r, t;r’, t) de-
fined as follows:

*G =
W(r, tr' ") = AV2G(r, e ) = 8(r—r)é(t—1t)  (2)
where 6 is the Dirac delta function; homogeneous initial conditions
are assumed, G(r,t;r',t") = oG /ot(r,t;r',t') = 0 for all + > ¢'.
The solution to Eq. (2) is well known [3] and is given to be

(t’ —1—5) 3)
c

where R(r,r’) = |r —r'| and Gy = 1/R(r,r’). The resulting TD-
BIE is [5]

~ G
G(r,t;r',t') = 47[22

0 0G,
Cop(r'. 1) = / Golryr) 2L vy 1) = 290 (o P e 1)
on on

de

1
o s tR))} dr, + / Go(rs.r')q(rs, 15) dry
c? 4

(C)

where C; = 47 when r’ is an off-surface observer point, and C, =
2z when r’ = r{ is a smooth point on surface S. Further, V denotes
the region of the acoustic source, and f; =t — R/c is a retarded
time value.

Equation (4) is an integral equation for p(r;,t’) that is related to
the direct contribution of the source noise ¢ as well as the surface
contribution involving the retarded values of p and its normal deriva-
tive dp/on. When the pressure and its normal derivatives are calcu-
lated on the surface S, Eq. (4) also predicts the pressure at an arbitrary
observer point r’ exterior to the surface. In this paper, surface normal
direction is defined to be the one that points into the scattering body.

Time domain boundary integral equations, such as Eq. (4) have an
nontrivial solutions in the 1nter10r domam at resonant frequencies.
Resonant frequencies can be eliminated by using a Burton/Miller-
type reformulation of Eq. (4) [5,7-9]. To deal with the impedance
boundary condition, unlike the derivation in Ref. [5], both p and
dp/on will be included in the derivation process. The Burton—-Miller
reformulation results by taking the derivative of Eq. (4) at surface
points r; in the form of

0 0
4 be
o TG

(&)

that is, a linear combination of time and normal derivatives, where a
and b are arbitrary parameters that must satisfy the stability condition,
a/b <0, asimple choice being thata = 1 and b = —1[5,8,9]. Here,
t' is the observer time, and d/dn’ is the normal derivative at the
surface observer point r; as given in Eq. (4).

The scattering surface S is decomposed into rigid and soft surfaces,
Sy and §,, respectively, such that § = S, U S;. On rigid surfaces, a
solid wall boundary condition is imposed, dp/dn = 0. On soft
surfaces, an impedance boundary condition is imposed, herein rep-
resented by the multipole impedance model and further discussed in
Sec. HI. Applying Eq. (5) to Eq. (4) and the solid wall boundary
condition only on rigid surfaces S, and taking the limit as r’ — r/,
yields

ap d (dp ,
G[Z”E(rs/»t/) —/;, GO(rsvrs/)E(a(rrlR)) dr

G, N ,
+\/;E rg,ry (E \7tR)+7 z(r.rvtR))dr.r]

wbelar gl = [ Gutrr) ety an,
afl/ 3Gy (r;,r’)(p(r fR)+* t(r“t’/())drs],/_,,(
= %2 ) ©
where
0.t =% [ Gorsratr i) ar, )

Note that the pressure normal derivative term appears only in the
integrals over lined surfaces §,;. Because of the normal derivative
operation in the Burton—Miller reformulation, the order of integral
singularity is increased compared to Eq. (4). The limit for the integral
on the full surface S in the second bracketed term on the left-hand side
of Eq. (6) can be simplified as in Ref. [5] [Eq. (33) therein]. The limit
for the integral on soft surfaces S, involving dp /on can be simplified
by first noting that

d ap
2 ()= )

d dp , G ~Op
W/SIGO(rs’r/)a(rs’zR)drs=/_U(rs’r)a

an/ _n(r57t1,€)drs
+/ G()(r\vr) ( ( \atR)) tR drs (8)
S

Noting that the first integral in Eq. (8) involving dG,/dn’ is
singular, its limit as »” — r; can be found as follows:

0G
/ n ,(S, )—(rs,tR)dr = hm [6 (,)(rs,r’)
s, r'>

oG op oG )
+a_0 rvr)]a(rmtk)dr rh—r}r}s s, 6110 T ) (rsvtR)dr

©))
Further note that, for the first integral presented earlier

aGo

G,
/)+7 S,r’) n/~V’G0+n-VG0

—(n' —n) - VG,

having used the fact that VG, = —(r—r')/R? and V'G, =
—(r' —r)/R?® = —VG,. With a weakened singularity, the first inte-
gral in the right-hand side of Eq. (9) is continuous, that is, the limit
and integration can be interchanged:

"+ 20, ')]—(rs,zR)dr

lim [‘)G‘)
r'—r] s on
- [ [Geard + S| a0

The second integral in Eq. (9) is the well-known double-layer sin-
gular integral, thus giving the following limit [5] [Eq. (18) therein]:
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Equation (12) follows by combining Eqs. (10) and (11):
li /
_ / 0G0 )

S; al’l, TsoTs

Hence, by carrying out the limitr" — r; in Eq. (6) using Eq. (12), the
resulting Burton—Miller reformation of Eq. (4) is given in Eq. (13):

7] d (o
o[ 2xPwt)= [ Gotrr) 5 (Firriy)ar
[y (B + £ 2t o,

14 P
+bc-2”$(r;’t/)_Al#(rs’r;)(a(r,y’tk)
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S

/)—(rs,tR) dr
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P
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5
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Note that, as expected, Eq. (13) reduces to the TD-BIE given in
Ref. [5] forrigid-body scattering when the terms involving dp /dn are
set to be zero. On the surfaces where an acoustic liner is applied, p
and dp/on are related through the impedance condition, as described
in the next section.

III. Time-Domain Broadband Impedance
Boundary Condition

The impedance boundary condition to be imposed on soft surfaces
is defined in the frequency domain as follows:

p(rs. o)
0(ry. )

= Z(w) (14)

where Z(w) is the impedance, p(r,, ) is the acoustic pressure

1 op
P .,
iwpg on

(ry, ) = )

is the acoustic Velocity, and p, is a constant for the average fluid
density. Here, a caret * denotes the frequency-domain variables,
assuming a time dependence of e~™’, in which i is the imaginary
unit (> = —1). In this work, impedance Z(w) is modeled after the
multipole impedance model introduced in Refs. [12,14,15]:

Z(w) = —iwhy + Ry + Z -

7 . .
: B, + iC B, - iC
22[ et iCr ¢~ 1Cs ] (15)

ay + ify—iw  ay—ify—iw

where J| is the number of simple poles at w = —iy,, J, is the number
of paired polesatw = —ia, *+ f,, and h and R, are real coefficients.
Causality, passivity, and stability lead to hg, Ry >0, y, >0 for

=1,...,J;, and a, >0 for £ =1, ...,J,. Causality further
requires that Z(w) is both analytical and nonzero, while Im(w) > 0
[17]. Combining Egs. (14) and (15), and simplifying, yields Eq. (16):

0
(ry, @) + Ry 22 (ry, @)
on

Ji [ 1 op
+;A,f i S,w)]

Lo a-iw 0p
L o)

J:
: g op
2 ioy  Bom

R op
iwpyp(ry, w) = —ia}hoa—p
n

P, w)] (16)

To facilitate the conversion of Eq. (16) from the frequency domain
to the time domain, as in Ref. [14], the following auxiliary variables
are defined:

PO, ) = (rs,co) for£=1,....J, a7
’ lwdn
POy =— 20O )
2 K (af—iw)z +ﬂ§a s> ’
() Be
Py (rs,a)) ma (rs,a)) forf—] J2 (18)

such that p(01 (ry, w) is the Fourier transform of p(o YD 1),

Substituting Egs. (17) and (18) into Eq. (16), and simplifying, yields
the following frequency-domain broadband impedance relationship
between pressure p and its normal derivative dp /on:

. ~ op
iwpyp(rs, ®) = —lwho ("s’w)+Roa (ry, )

+2Afp (rs,w)+ZBf V(. o)

+ Z CopY (ry. ) (19)
=1

Taking the inverse Fourier transform of Eq. (19) yields the time-
domain impedance boundary condition:

ap a (dp op Ji
B4 i (Srn) + R + Y A0

=1

J, J,
+ Y Bp )+ Y Copd(ry ) =0 (20)
=1 =1

Manipulating and taking the inverse Fourier transforms of Eqs. (17)
and (18) yield Eq. (21),forZ =1, ..., J;:

0
()p(/

0
(ree 1)+ 700l ) = L (1) @
and Eq. 22),forZ =1, ..., J,

1
0pi,)

9p
(rw t) + (lfpf (rm t) +ﬁfp(2)(rw t) = %(rsa l)s

2
019(/» :

(rw t) _/}fp(fl)(rs’ t) + (xfp(fZ)(rm t) =0 (22)

Equations (20-22) are the constitutive forms of the time-domain
broadband impedance boundary condition.
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IV. Numerical Discretization

In this section, the discretization of the TD-BIE, Eq. (13),
coupled with the time-domain broadband multipole impedance
boundary condition, Egs. (20-22), by the time-domain boundary
element method is described. Let the surface S be divided into a set
of N, boundary elements {E;,j =1, ..., N,}, where the colloca-
tion point r; is located at the centr01d of element E;. The time
domain is d1V1ded into N, uniform time steps, where 7, = kAt, k =
1,....N,.

All terms p(ry,t) and op/on(r,,t) are approximated by using
surface-element basis functions ¢;(r,) and temporal basis functions
y (1) as follows:

N, N,
(rw 13 Z uj ¢ '(rx)l//k(t) and
k=0 j=1
ap N, N,
7(rr7 t = Z v; (ﬁ/(";)l[/k(l) (23)
k=0 j=1

In Eq. (23), uf and vj? denote the values of the solution of p(r,, f) and
op/on(rg, t), respectively, of the jth node at time #,. On any rigid
element, it is assumed that v’j =0 as a result of the solid wall
boundary condition [i.e., dp/dn(r,, t) = 0] on rigid surfaces Sy. In
the spatial domain, zeroth-order basis functions are considered,
¢j(ry) = 1, if rg is on element E; containing node r; and ¢;(r,) =
0 otherwise. In the temporal domain, the third-order Lagrange basis
functions are considered:

1+1—11+12+%T3 -1<7<0
1+ic-2-17, 0<r<1

Y@= l-37-7 437, 1<r=2 @9
1_%7+72_éf3’ 2<7<L3
0. other

such that y, (1) = ¥((t — t;)/Atr). All surface integrations are com-
puted by high-order Gauss quadrature on a 6 X 6 grid for each
element.

By evaluating the discretized Burton—Miller reformulation at col-
location points r; on the center of elements E;, j = 1,..., N, and at
time step #, using basis functions ¢;(r,) and y(¢), Eq. (13) is cast
into a system of equations of the form:

Boun + Covn = qn - Blu”_l - Cl 'Un_l - Bzun_z - szn_z
- ... =B -Cu’ (25)

where u* and v* denote the vector that contains all unknowns
{uf,j=1,...,N,;} and {vh,j=1,...,N,}, respectively, at
time level 7;. Because of the limited temporal stencil width of
Eq. (24), the B and C matrices are sparse. Additionally, the
index J denotes the maximum time history of the solution
required for Eq. (25) and is dependent on the dimensions of
the scattering surface [5].

Equation (25) is a march-on-in-time scheme, in which a sparse
matrix is solved iteratively using retarded time values for the right-
hand side. For rigid-body scattering only, all terms v* in Eq (25)
are equivalently zero and a solution can be obtained for u*. With
soft surfaces, a second system is needed to couple with Eq. (25)
for obtaining solutions of both u* and v*. This system results by
direct application of the impedance boundary condition defined in
Eqgs. (20-22) as detailed next.

The constitutive form of the time-domain broadband impedance
boundary condltlon Eqgs. (20-22), is discretized by approxi-
mating pf (rs, 1), m =0, 1,2, using the same surface-element
basis functions ¢;(r;) and temporal basis functions y(#) as in
Egs. (23) and (24):

N, N,
{0 =
k=0

(P ) s owtn. m=0.1.2- 26)

=1

~.

where (p{"” )% denotes the value of p('") (r,, 1) at the jth node and
time ¢#,. Substituting Eq. (26) into Eqgs. (20-22) and evaluating
at collocation points ri, j=1,...,N, and time step t,, and
simplifying by the temporal basis function given in Eq. (24),
yield the following discretized broadband impedance boundary
condition:

w

> T pou_ () + Vi oy (1) + Rowu—i(1))]
k=0

+ Z(p“’))w + Z(p‘”)”Bf + Z(p“))"cf =0 @)

’i

n—k
S (P0) Wik + s =v e=1,
k=0

(28)

Z(p‘”)" Gyrpi(t) + @ ()] + fo (P21 = o,
=1,...,J, (29)

- Z(p@’)" () + @i (0)] + B (pl)): =
t=1,...,J, (30)

for j=1,...,N,, where a prime denotes derivative. This is
equivalent to the results of discretizing Eqs. (20-22) by the
third-order im thn backward difference scheme [20].

Denoting p,”, ¢ =1,...,J;, and p;“), =1,...,J,, as the
vectors that contam the aux1hary variables from all points where the
impedance boundary condition is applied, the following vectors are
additionally defined by Eq. (31):

) (0 0 (1 1 1
Po =[p"pY - b1 Puy=[p"p - p})]". and
Py =[pPpy - P 31

Using Eq. (31), along with #* and v, the discretized solutions of
Eqgs. (27-30) can be expressed succinctly as the following system of
equations:

Dou" + Eov” + FOP:IO) =+ GOP?[) =+ HOPE’Z)

3
= - D" + B (32)
k=1
Tov" + KoPly, = Z[ick%)k (33)

3
Lgv" + MoPly + NPy == > IMPL] (34
k=1

3
PoPl, + QP = — ;[Qk%)k (39)

The nonzero entries of Eqs. (32-35) are given by
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D =pow,_ (t) Iy xn,
E; = (hoy,_(t,)) + Row i (t,) Iy xn,, k=0,1,2,3

FO :[AIIchNE AJIINP><NP]N€><J,N,,7
Go=[BiInxn, - Bi,INxn,INxin,
Hy=[CiIyxn, =+ Cr,Inxn,IN.xinN,
Iy, xn, Iy xn,
INRXNF INeXNc
Jo= . . Lo= . ’
INL,xNﬂ TN XN, INeXNﬁ J,N XN,
ﬁlINngl,
’P() = _NO =
BrZnxn, JaN,xJ>N,
U/chNl,xNe
’Ck =
;7"'1'
k =NexNe | g N s\ N,
where 71{ = _(l//;l_k([n) + yfl//nfk(tn))v k= O’ 1’2’3
/"]I(INL,XN‘,
Mk = Qk =
J
1 I, JoN,xJ,N,

wherey,f = _(Wy,l—k(ln) +(xfy/n—k(zn))ﬁ k=0,1,2,3

where Iy yy, is the identity matrix of size N, X N,.

Coupling Egs. (32-35) with Eq. (25) allows for the application
of the broadband impedance boundary condition, modeled by
Eq. (15). This coupled system has a dimension up to N,(2 + J; +
2J,) X N,(2 4+ J; + 2J,) when the impedance boundary condition
is applied to all surface elements. When solved iteratively, it
provides solutions for u* and v* on all soft surfaces.

V. Numerical Eigenvalue Study and Stability Analysis

The solution of the coupled march-on-in-time scheme, Eqs. (25)
and (32-35), provides the acoustic scattering by a body with lined
surfaces from a given noise source. Examples of numerical solutions
will be presented in Sec. VI. To assess the stability for this coupled
system, a numerical eigenvalue study is conducted. For convenience
of discussion, the coupled system of Egs. (25) and (32-35) is denoted
formally by

Aow” = qg - Alwrhl - Azll)"72 - A3w"’3 - ... = A]w"’J
(36)
where w¥ is a vector that contains u*, v¥, P’(‘O), P’(‘l), and P’(‘z) at time

step t;. For the stability study, eigenvalue analysis is concerned only
with the homogeneous system. The homogeneous system is repre-
sentative of when the source, or incident wave, has traveled far
beyond the scattering body, and it is often when numerical instability
occurs.

Equation (36), without the source term, can be written equivalently
as a standard iteration operation:

W = AW"-! (37)

where

T—AglA] —AJ'A, - —AG'A L, —AJ'A;_ —AF'A;T
1 0 0 0 0
0 1 0 0 0
A=
0 0 1 0 0
L 0 0 0 1 0
- w}l -
n—1
wn—Z
and W' =
wnf./+2
_wn—./+l_

The matrix power iteration method [21] is then used to find the largest
eigenvalue of A in Eq. (37). Herein, the power iteration method
proceeds as follows:

1) Define an arbitrary unit vector to be £,

2)Fork = 1,2, ..., calculate e® = AE*=D) K = ¢®) /|| e®],,
and A0 = [§(k)]TA§(") = [E(k)]Te("“).

3) Calculate the difference between consecutive eigenval-
ues, |40 — A=D1,

4) Repeat until the iterative scheme has converged to the largest
eigenvalue, |A|y.y (i.e., when [A®) — 1¢=D|/|A®0| < § for a given
tolerance 6). In the current study, the tolerance is chosen to be
5=10"°.

The stability of Eq. (36) [i.e., the coupled march-on-in-time system
of Egs. (25) and (32) through (35)] is investigated by considering the
scattering by a flat plate with dimension [—0.5,0.5] x [-0.5,0.5]x
[<0.1,0.1]. The surface of the flat plate is discretized in the x, y, and
z directions with N, N, and N, elements, respectively, giving a total
number of N, = 2(N,N, + NyN, + NN_) surface elements. The
following four problem sizes of N, X N, X N are considered: 5 X 5 X
1 (N, = 70 elements), 10 X 10 X 2 (N, = 280 elements), 20 X 20 x 4
(N, = 1120 elements), and 30 x 30 X 6 (N, = 2520 elements). Fur-
ther, the following two different time steps are considered: At = 1/12
and At = 1/24. This combination of grid size and time step ensures
that the scattering problem provides solutions over a wide range of
frequencies.

The liner impedance boundary condition is modeled using exper-
imental data. Two acoustic liners, named CT57 and GEO3, will be
considered. These two liners were tested in the Grazing Flow Imped-
ance Tube at the NASA Langley Research Center Liner Technology
Facility. During the tests [22], impedance values were educed over a
wide range of frequencies. Using the measured data, broadband
multipole impedance models of the form in Eq. (15) were generated
using a least-squares regression process. The values for the param-
eters, which define the surface impedance model in Eq. (15), are
shown in Table 1. Because multipole expansion fitting to measured
data is not unique, depending on the choices for the number of poles
and whether or not to include % and R, terms, etc., various possibil-
ities are considered in Table 1.

In each of the liner models shown in Table 1, cases 1 through
4, the parameters yielded Re(Z) > 0, thus preserving passivity.
The CT57 liner is depicted in Fig. la for cases 1 and 2, colored
in black and orange, respectively; the GEO3 liner is depicted in
Fig. 1b for cases 3 and 4, colored in black and orange, respec-
tively. The experimental data are plotted using markers; resis-
tance, Re(Z), is denoted by circles, and reactance, Im(Z), is
denoted by squares. The multipole fitted models are graphed
with a dotted line. All values of impedance are nondimension-
alized by pyc. Frequency is nondimensionalized by c¢/L, where
c=340m/sand L = 1 m.

For the stability assessment, two configurations of acoustic liner
application are considered. First, it is assumed that the acoustic liner
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Table1 Constants used for the broadband impedance model
A, Ye B, Cy % Be
Case hgy Ry Jy £=1,...,J; Jy ’=1,...,J,
43.919202 -0.571804  4.887694  37.631479
1 (CT: .01 .1 1 18.467174 0.9852 2
(CT57)  0.010873  0.177655 8467174 0.985273 23.611034 -8.511097 7.670216 —66.460858
99.855347 -9.968384  7.952528  82.203159
2 (CT57 0 0.068743 1 18.421975 1.075243 2
( ) 44.089363 —0.709128 4.879110  37.451098
0.001101 =9.910991 22.599229  16.476064
3(GE03) 0.011775 0.001514 1 32573728 1.896347 2
¢ ) 75.213211 -9.915633  7.374808 82.791519
100 -9.866975  9.578137 93.987180
4 (GE03) 0 0 1 32762971 1.992922 3  0.023790 -9.993868 20.530002 18.832024
100 —9.905435  4.032688 99.876360
5 5
4 4
3 3
s [}
2 LY 2
£ 1 g . e g1 ‘u e,

- L TP, g T ° R e . "
] o . ';’ , ] o P " PP
g ..‘...' " &) '--..-..,.....'....

-1 ’l. -1 e W
2| o o Data, Re(2), CT57 liner 2| o o Data, Re(2), GEO3 liner
_3| ™ ® Data, Im(Z), CT57 liner _3| ®™ ® Data, Im(Z), GEO3 liner
----- Fitted, J,=1, J,=2 - Fitted, J,=1, J,=2, h,=0 - Fitted, J, =1, J,=2 - Fitted, J,=1, J,=3, hy=0, R,=0
4 2 4 6 8 10 % 2 4 6 8 10

w/2w
a) CT57 liner, case 1 (black) and case 2 (orange)

w27
b) GEO3 liner, case 3 (black) and case 4 (orange)

Fig. 1 Illustration of the generated broadband impedance curves using least-squares regression.

z-Axis

a) Soft body

z-Axis

b) Mixed body

Fig.2 Comparison between a fully lined and a partially lined scattering body for a flat plate.

is installed on all scattering surfaces, herein referred to as all-soft.
This configuration is illustrated in Fig. 2a. In the second configura-
tion, it is assumed that the acoustic liner is installed on the top surface
of the flat plate, and the rest of the surfaces are treated as solid
surfaces, herein referred to as mixed. This configuration is illustrated
in Fig. 2b. Both all-soft and mixed-body liner applications are
assessed for their stability in solving the system. The rigid-body case
is used as a baseline, where the stability of the numerical algorithm
is tested assuming no liner boundary condition on any scattering

surface. For the baseline assessment, all vectors associated with the
liner impedance condition are set equal to zero.

The maximum eigenvalues for both all-soft and mixed bodies are
listed in Table 2. Any eigenvalues greater than unity are indicated by
bold text. The rigid-body results are not listed in the table because, as
expected, all baseline cases yield a maximum eigenvalue of unity for
all discretizations, time steps, and temporal basis functions confirm-
ing that the Burton—Miller reformulation of the TD-BIE provides
numerical stability for rigid-body scattering [5].

Table2 Maximum eigenvalues calculated for the broadband impedance model

Liner Broadband Ar=1/12 Ar=1/24

application model caseno. 5X5x1 10x10x2 20x20x4 30x30x6 5x5x1 10x10x2 20x20x4 30x30x6

All-soft body 1 1.000000  1.000000 1.000000 1.000000  1.000000  1.000000 1.000000 1.000000
2 1.000000  1.000000 1.000000 1.000000  1.000000  1.000000 1.000000 1.000000
3 0.999976  1.000231 1.000116 1.000029  1.000017  0.999965 0.999967 0.999994
4 1.000000 _ 1.000000 1.000000 1.000000  1.000000  1.000000 1.000000 1.000000

Mixed body 1 1.000000  1.000000 1.000000 1.000000  1.000000  1.000000 1.000000 1.000000
2 1.000000  1.000000 1.000000 1.000000  1.000000  1.000000 1.000000 1.000000
3 1.000148  1.000173 1.000073 1.000027  0.999999  0.999981 0.999991 0.999995
4 1.000000  1.000000 1.000000 1.000000  1.000000  1.000000 1.000000 1.000000
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As shown in Table 2, for both all-soft and mixed-body scattering,
apart from case 3, all analyses yield a maximum eigenvalue no greater
than unity, rendering their stability for the eigenvalues of the iteration
matrix A. For case 3, maximum eigenvalues slightly greater than
unity are seen but become less than unity as the spatial and temporal
resolutions are increased. Note that when the length of elements
(assuming a square element) Ax < 2cAt, the matrix By in Eq. (25),
which represents the elementwise interactions within the same time
step, becomes a banded matrix, leading to an implicit scheme for

CT57 Liner
Table 1, Case 1

Pressure

a) CT57 liner, case 1, contour plot

o-s wry/c = 4m, Analytic
0.04 — Numerical
== wry/c = 8m, Analytic
— Numerical

=
o
)

p(r, ), Real part
=}
=
=)

—0.02

—0.04

-2 -1 0 1 2
X
¢) CT57 liner, case 1, comparisons (sphere)

e--e wry/c = 4m, Analytic
0.04 Numerical
=% wry/c = 8m, Analytic
— Numerical
.02
g 0.0
="
3
= 0.00
~
3
E
= —0.02
—0.04
=2 -1 0 1 2

X
e) GEO3 liner, case 3, comparisons (sphere)

solving u", where implicitness generally improves numerical stabil-
ity [23]. These results are consistent with previous work by the
authors [24,25].

VI. Numerical Examples

To demonstrate the validity and stability of the time-domain boundary
element method coupled with the broadband multipole impedance
boundary condition, numerical examples of scattering by soft surfaces
are presented. The following two geometries are considered: a sphere

CT57 Liner
Table 1, Case 2

b) CT57 liner, case 2, contour plot

o+ wLo/c = 6m, Analytic

Numerical

== @ly/c = 12m, Analytic
Numerical

0.2

0.0

-0.1

p(r, ), Real part

-0.2

-0.3

—-0.4
-1.5 -1.0 -05 0.0 0.5 1.0 1.5

x
d) CT57 liner, case 2, comparisons (flat plate)

0.4

os wLg/c = 6m, Analytic
0.3 Numerical

== @ly/c = 12m, Analytic
0.2 Numerical

o
[

p(r, ), Real part
L oo
= o

—0.2

-0.3

—-0.4
-1.5 -1.0 —-0.5 0.0 0.5 1.0 1.5

X

f) GEO3 liner, case 4, comparisons (flat plate)

Fig. 3 Numerical examples of scattering by soft surfaces.
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and a flat plate. For the sphere, the numerical solution is compared with
the known analytical solution (Appendix A). For the flat plate, an
analytical solution (Appendix B) of a point-source reflection by an
infinite flat surface is used to approximately compare with the computa-
tional result.

For the first example, scattering of a point source by a lined sphere
of radius ry = 0.5, centered at r = (0,0,0), is considered. The
sphere is discretized by a total of N, = 15,360 quadrilateral ele-
ments. A point source is located at r, = (0,0, 1), and the source
function as it appears in Eq. (1) is of the form

q(r.t) = e 8(r—r,) (38)

where ¢ = 1.42/(6Af)%, and At is the time step for the time-
domain march-on-in-time scheme. For the results shown, the non-
dimensional time step is cAf/ry = 0.01. The march-on-in-time
scheme, Eq. (25), coupled with the liner impedance boundary
condition, Eqgs. (32-35), is solved for the time-domain solution,
which is then converted to the frequency domain by the Fourier
transform. For a limited number of selected frequencies, as noted
in Ref. [5], the frequency-domain solution can be computed
concurrently with the time-domain simulation as the following
summation:

pr.@) = Ap(r.1)e + p(r.2)e et - +p(r. iy, )]
(39

Both the CT57 and GEO3 liners discussed in previous sections
have been applied for this example, and numerical stability has
been observed for the four models shown in Table 1. Figure 3a
shows a pressure contour plot of the solution at nondimensional
frequency wry/c = 8z when the CT57 liner impedance boun-
dary condition (Table 1; case 1) is applied on all surface ele-
ments of the sphere. Comparisons with the analytical solution
along a field line defined by —2.5 <x <2.5,y =0,z = —1.5 are
shown in Fig. 3c for nondimensional frequencies wry/c = 4z
and wry/c = 8z, and excellent agreement between the two
solutions is observed. The numerical solution for this example,
when the GEO3 liner (Table 1; case 3) is applied, is shown in
Fig. 3e. Again, excellent agreement between the numerical and
analytical solutions is observed. The computational run time for
this example is approximately 1.5 s per time step on a cluster of
eight graphic processing units (GPUs; NVIDIA V100 model) for
a total of 4000 time steps (about 1.7 h). The total number of
steps is determined so that all scattered waves have essentially
exited the computational domain.

In the second example, scattering by a lined flat plate defined by
[=Lg, Lo] X [-Lg, Lo] X [-0.02L, 0] in the x, y, and z directions,
respectively, is considered. Here, Ly = 1. The surfaces are discre-
tized by quadrilateral elements with the number of elements per
dimension being N, = N, = 201, N, = 4, as described in Sec. ¥,
giving a total of N, = 84,018 elements. As in the first example, the
multipole liner impedance boundary condition is applied to all ele-
ments on the surface of the plate. A point source of the form Eq. (38)
is applied atr,, = (0, 0, 0.5), and a time-domain solution is obtained
by solving the march-on-in-time scheme Eq. (25) coupled with
Eqgs. (32-35). The nondimensional time step is cAt/Ly = 0.005,
or cAt/Ax = 0.5, where Ax is the length of each element for the top
and bottom surfaces of the plate. Again, numerical stability is
observed for the four models in Table 1. Figure 3b shows the con-
verted frequency-domain solution at nondimensional frequency
wLy/c = 12z when the CT57 liner impedance boundary condition
(Table 1; case 2) is applied on all surface elements of the plate.
The computed solution along a field line defined by —1.5 <x
<15, y=0, z=0.25 is compared with the analytical solution
of a point-source reflection by an infinite flat surface, given in
Appendix B, for nondimensional frequencies wL,/c = 6z and
wLy/c = 12z. The comparisons are shown in Figs. 3d and 3f for
the solutions by the CT57 and GEO3 liner models (Table 1; cases 2
and 4, respectively). The numerical solution agrees very well with the

analytical solution, except near the edge of the domain where the
numerical solution included the diffraction effects due to the finite
extent of the plate in the computation, whereas the analytical solution
assumed an infinitely large surface. The computational time for this
example is approximately 10.5 h for 4000 time steps on a cluster of
eight GPUs.

VII. Conclusions

The objective of this study was to investigate the feasibility and
stability for modeling acoustic wave scattering using a Burton—
Miller TD-BIE with impedance boundary condition for the case of
no mean flow. Derivation of the TD-BIE with impedance boundary
condition, stabilized through a Burton—Miller reformulation, was
presented. The impedance boundary condition was implemented
using a multipole broadband impedance model. The numerical
stability was assessed by an eigenvalue analysis conducted for the
coupled march-on-in-time scheme assuming both fully and parti-
ally lined bodies. Stability of the coupled system has been observed
in numerical simulations. Furthermore, numerical examples with
favorable comparisons with known analytical solutions demon-
strated the validity of the numerical method presented in this

paper.

Appendix A: Reflection of a Point Source
by a Lined Sphere

The analytical solution for the first numerical example of a point-
source reflection by a sphere with an impedance boundary condition
in the frequency domain is given as follows for completeness [26].
Let the incident wave with point source centered at ry = (ry, 0y, @g)
be expressed in spherical coordinates as

eik"_’u\

Pinc = m

B {isz_o St Jelkr)hS (k)Y (00.00)Y rn (0. 0) 7> ro}
kY% 030 j k)R (ko) Y, (B0, 00)Y e (B.00) <1

where k = w/c. Here, the spherical harmonics function is

2641 (& —m)! n im
Yin(0,0) = in m[’f (cos Q)e'™?

and the spherical Bessel functions are

) T
Je(x) = ‘lafma/z)(x)

and

7 ,
hy? = \ i erap @) £ iNerap (W]

Then, the reflected wave can be expressed as
o0 4 .
Pt =Y Y Conhl (kr)Y 1,0, 0)
=0 m=-¢
where

_ pockje(ka) — ikZ(w) jy(ka)

m = - h(l)(kr )Y*m(é? L@ )
‘ ipoch(;)(ka) + Z(a))h(f” (ka) ¢ o)L emPos $o

in which a prime denotes a spatial derivative.
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Appendix B: Reflection of a Point Source by a Lined Plane

In this appendix, an analytical solution for a point-source reflec-
tion by an infinite flat surface with impedance boundary condition
in the frequency domain is derived following a time-domain
analytical solution found in Ref. [27]. Assume that the scattering
surface is located at z = 0 and the point source is located at
ro = (X9, ¥0,20)> 2o > 0. By the Weyl identity [28], the fre-
quency-domain solution for the wave equation by a point source
is expressed in plane waves as follows:

. eik|r—r0|
pinc_m
:L/m /°° explitk(x—xo) + K,y —yo) +rlz—20D] | 00
877 )0 )0 Y R
where y = (/k? — k2 — k2.

The time dependency is assumed to be e~*’, and a dispersion
relation @ = ck is assumed for the case without mean flow. Let the
plane wave incident on the lined surface, denoted by a tilde

Pinc = Ainc expli(k,(x — xo) + ky(y —yo) —7(z —20))] (BI)
Further, the plane wave reflected by the surface at z = 0is expressed as
ﬁref = Aref exp[i(kx(x - xO) + ky(y - yO) + Y(Z + Z0))] (BZ)

Adding Egs. (B1) and (B2) results in a total field such that p = p;,. +
ﬁref in Eq (B_3)

P = Ajne explilk, (x — xo) + ky (¥ — yo) — 7(z — 20))]
+ Arep expliky(x — xo) + ky(y = yo) +7(z +20))]  (B3)

The impedance boundary condition of Eq. (14) is applied at
z=0:

_ipock(Aine + Arer) explilk,(x = xp) + &, (y — yo) + 7(20))]
© iy(Aine — Aver) explilk, (x — x0) + k(v = yo) + 7(20))]
_ pock(Ain + Aver)

B Y(Aine = Arer)

By letting A = Apt/Aine, it is straightforward to show that
A = (yZ — pock)/(yZ + pock). Hence, the reflected wave of the
point source is given by pis:

oo ffoo Aexpli(k,(x—xo) +ky(y—y0) +7(z+20))]
A y

Pret =

dk, dk,

For convenience of numerical evaluation, as in Ref. [27], a change
of variables from (k,,k,) to (u, v) is introduced such that
ky = ucosvand k, = usinv. This change of variables gives

where y = ,/k* — k2 —k} = vk* —u?. Further simplifications
yield

21
/ expliu(cos v(x — xy) + sinv(y — yo))] dv
0
21
= / expliur’ cos(v — 0")|dv = 2xJy(ur’)
0

such that x — xy = r'cos@’, y —yo, = r’sinf’, and J, is a Bessel
function of the first kind. Hence, the equation for p,. is shown as
follows:

. i [ Aexpliy(z + z¢)]
pref = -

Jo(ur"yu du
4z Jo 4

Furthermore, by considering a change of variables for 0 < u < k
(& = (y/k), u = k+/1 — £2) and a change of variables for k < u < co

(& = =(iy/k), u = k+/1 + &), the following analytical expression
is obtained for the reflected wave:

Pret = Tik [ 1 A(&) expliké(z + zo)Jo(kr' V1 = &) d&
7 Jo
+ —4k / " A(8) expl—ke(z + z)Wo(kr' 1+ &) dé
T Jo

in which A(&) = (6Z - pyc)/(EZ + poc) and A(i€) = (iZ - pyc)/
(zsz + po(,‘).
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