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The Time Domain Wave Packet (TDWP) method has the advantage of obtaining ra-
diated sound by a given duct mode at all frequencies in one computation. It also makes
possible the separation of the acoustic and shear flow instability waves. In this paper, the
TDWP method will be applied to the adjoint duct acoustics problem. As a microphone
records the sound radiated by all duct modes combined, the adjoint approach by TDWP
method has the advantage of obtaining the relative mode strengths of all the propagating
modes at all frequencies in one computation. The theoretical formulation of open duct
adjoint problem and derivation of reciprocal relations are presented. The adjoint equations
for the linearized Euler equations are formulated in the time domain for the Cartesian
and cylindrical coordinates. The dispersion relations of the linear waves supported by the
adjoint system are also discussed. It is shown that in a uniform mean flow, the dispersion
relations for linear acoustic waves of the adjoint system are identical to that of the Euler
equations under similar boundary conditions and the eigenfunctions (mode shapes) of the
Euler and adjoint systems corresponding to different eigenvalues are orthogonal. These
properties, particularly the orthogonality condition, lead to a reciprocal relation between
the duct mode amplitudes and far field point sources in the presence of the exhaust shear
flow. The adjoint equations are then solved numerically in reversed time by the TDWP
method, in which a point source in the far field is enforced with a Broadband Acoustic Test
Pulse time function. Application of the adjoint problem to NASA/GE Fan Noise Source
Diagnostic Test (SDT) exhaust radiation problem is also presented.

I. Introduction

Recently, a Time Domain Wave Packet (TDWP) method has been developed for linear aeroacoustic compu-
tations.13 It differs from the more conventional approach in that the modeling of the source time function
is deliberately made to be a broadband temporal pulse. In the Time Domain Wave Packet method, the
acoustic source is modeled as a wave packet by introducing a broadband and temporally compact time func-
tion. As the propagation properties of linear waves of all frequencies will be embedded in the propagation
of the packet, the time domain simulation produces the results for all the frequencies within the numerical
resolution. The numerical simulation needs to last only until the wave packet has exited the computational
domain, making it more efficient than the conventional time domain approach where a time periodic state
is required. In the TDWP method, solutions at all frequencies can be obtained by FFT of the time domain
solution in a single time domain simulation.
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In this paper, the Time Domain Wave Packet (TDWP) method is applied to the open duct adjoint problem.
The adjoint system for the linearized Euler equations with a general non-uniform mean flow is formulated
in the time domain. There are many advantages afforded by the adjoint problem. In a forward radiation
problem, usually the engine duct propagating modes are specified as the acoustic source inside the duct and
far-field directivity of radiated sound is computed. In the adjoint problem, instead, a source can be placed
at the far-field, representing the receiver/microphone, and the waves propagated into the duct from the
far-field source is computed using the adjoint system. A reciprocity between the duct propagating mode and
far-field sound is derived in the paper which produces the relative radiation strengths of all duct propagating
(cut-on) modes to the particular microphone, after a modal decomposition of the waves inside the duct.
This is potentially more efficient than computing the far field directivity from each duct mode separately
when the number of observation points is smaller than the number of possible propagating duct modes.
Combined with the Time Domain Wave Packet (TDWP) technique, relative strengths of all duct modes of
all frequencies to the acoustic pressure at a particular far-field location can be determined in a single time
domain computation. As a microphone records the radiated sound from all cut-on duct modes combined,
solution of adjoint system can beneficial. Due to reciprocity, solutions of the adjoint problem can also serve
to validate those of the forward problem.

Previously, adjoint systems for the linearized Navier-Stokes equations for incompressible flows have been
studies (see for example [6,17,8] and the references cited within). Adjoint solutions have also been used
in flow and noise controls.5 In [19], the adjoint equations for linearized Euler equations has been given in
the frequency domain for an investigation of jet noise radiations. Point-to-point reciprocal relations were
established in [19] for use in the prediction of jet noise. Reciprocal relation between duct radiating modes
and the far-field sound was first studied in [1] without flow, in which case the governing equation for the
acoustic pressure is self-adjoint. Reciprocal relations in acoustical fields in general flows have also been
studied in [3,4,14,15] and many others, in particular in connection with the study in acoustics energy fields.
However, as far we are aware of, the adjoint problem for open duct with flow in time domain has not been
investigated in the literature.

The rest of the paper is organized as follows. In the next section, the adjoint system for the linearized
Euler equations with a general mean flow is defined and formulated in the time domain. For convenience
of its applications to duct acoustics, the adjoint system of equations for both the Cartesian and cylindrical
coordinates are given. The special case of a uniform mean flow is considered in section 3. Orthogonality of
eigenfunctions and some reciprocal relations are studied in section 4 and 5. Section 6 discusses issues related
to the numerical implementation in solving the adjoint Green’s function using the Time Domain Wave Packet
method. Numerical results are presented in section 7 and concluding remarks are given in section 8.

II. Definition and formulation of adjoint systems

In this section, the adjoint system for the linearized Euler equations in the Cartesian and cylindrical coor-
dinates will be discussed.

II.A. Cartesian Coordinates

Consider linearized Euler equations written in matrix form as

∂w

∂t
+A

∂w

∂x
+B

∂w

∂y
+C

∂w

∂z
+Dw = 0 (1)

where

w =















ρ′

u′

x

u′

y

u′

z

p′















, A =

















ūx ρ̄ 0 0 0

0 ūx 0 0 1
ρ̄

0 0 ūx 0 0

0 0 0 ūx 0

0 γp̄ 0 0 ūx

















, B =

















ūy 0 ρ̄ 0 0

0 ūy 0 0 0

0 0 ūy 0 1
ρ̄

0 0 0 ūy 0

0 0 γp̄ 0 ūy

















,
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C =

















ūz 0 0 ρ̄ 0

0 ūz 0 0 0

0 0 ūz 0 0

0 0 0 ūz
1
ρ̄

0 0 0 γp̄ ūz

















, D =

















∇ · ū ∂ρ̄
∂x

∂ρ̄
∂y

∂ρ̄
∂z 0

0 ∂ūx

∂x
∂ūx

∂y
∂ūx

∂z − 1
γρ̄p̄

∂p̄
∂x

0
∂ūy

∂x
∂ūy

∂y
∂ūy

∂z − 1
γρ̄p̄

∂p̄
∂y

0 ∂ūz

∂x
∂ūz

∂y
∂ūz

∂z − 1
γρ̄p̄

∂p̄
∂z

0 ∂p̄
∂x

∂p̄
∂y

∂p̄
∂z γ(∇ · ū)

















Here ρ is the density, ux, uy, uz are the velocity components and p is the pressure. An over bar indicates
the background mean flow and a prime indicates the small disturbances in the linearization.

For convenience of discussion, we denote (1) using a spatial operator L as

∂w

∂t
+L(w) = 0 (2)

The Euler equation will also be referred to as the forward problem in this paper. The system of partial
differential equations is supplemented with initial and boundary conditions.

Let the adjoint system for (1) be written as

∂w̃

∂t
+ Ã

∂w̃

∂x
+ B̃

∂w̃

∂y
+ C̃

∂w̃

∂z
+ D̃w̃ = 0 (3)

and denoted as

∂w̃

∂t
+ L̃(w̃) = 0 (4)

The variables associated with an adjoint system will be indicated by a tilde. The adjoint system is defined
such that the following operation becomes valid:

w̃T

[

∂w

∂t
+L(w)

]

+wT

[

∂w̃

∂t
+ L̃(w̃)

]

=
∂E

∂t
+

∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

=
∂E

∂t
+∇ · J (5)

where a superscript T denotes vector transpose, and E(w, w̃) and J(w, w̃) = (Jx, Jy, Jz) are bi-linear
functions of w and w̃. For (5) to be valid, it is straightforward to find that the adjoint system is obtained
when

Ã = AT , B̃ = BT , C̃ = CT , D̃ =
∂AT

∂x
+

∂BT

∂y
+

∂CT

∂z
−DT (6)

with

E(w, w̃) = w̃Tw (7)

and
J(w, w̃) = (w̃TAw, w̃TBw, w̃TCw) (8)

It is also easy to find that the flux vector J is of the form

J = (Jx, Jy, Jz) = (w̃T ·w)ū + (ρ̄ρ̃+ γp̄p̃)u′ +
1

ρ̄
p′ũ (9)

It is to be noted that the adjoint system as defined in (3) is assumed to be non-zero for t < t′ where t′ is
a bound for the time of interest in the Euler forward problem. As we will see later, the numerical solution
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of the adjoint system may be computed in a time marching fashion in a reversed time variable τ = t′ − t,
leading to

∂w̃

∂τ
− L̃(w̃) = 0 (10)

The adjoint system will also be referred to as the backward problem in the this paper.

II.B. Cylindrical Coordinates

The linearized Euler equations in cylindrical coordinates can be written as

∂w

∂t
+A

∂w

∂x
+B

∂w

∂r
+

1

r
C

∂w

∂θ
+

1

r
Dw +Ew = 0 (11)

which we denote as

∂w

∂t
+Lc(w) = 0 (12)

where

w =















ρ′

u′

x

u′

r

u′

θ

p′















, A =

















ūx ρ̄ 0 0 0

0 ūx 0 0 1
ρ̄

0 0 ūx 0 0

0 0 0 ūx 0

0 γp̄ 0 0 ūx

















, B =

















ūr 0 ρ̄ 0 0

0 ūr 0 0 0

0 0 ūr 0 1
ρ̄

0 0 0 ūr 0

0 0 γp̄ 0 ūr

















,

C =

















ūθ 0 0 ρ̄ 0

0 ūθ 0 0 0

0 0 ūθ 0 0

0 0 0 ūθ
1
ρ̄

0 0 0 γp̄ ūθ

















, D =

















ūr +
∂ūθ

∂θ 0 ρ̄ ∂ρ̄
∂θ 0

0 0 0 ∂ūx

∂θ 0

0 0 0 −2ūθ +
∂ūr

∂θ 0

0 0 ūθ ūr − 1
γρ̄p̄

∂p̄
∂θ

0 0 γp̄ ∂p̄
∂θ γūr +

∂ūθ

∂θ

















E =

















∂ūx

∂x + ∂ūr

∂r
∂ρ̄
∂x

∂ρ̄
∂r 0 0

0 ∂ūx

∂x
∂ūx

∂r 0 − 1
γρ̄p̄

∂p̄
∂x

0 ∂ūr

∂x
∂ūr

∂r 0 − 1
γρ̄p̄

∂p̄
∂r

0 ∂ūθ

∂x
∂ūθ

∂r 0 0

0 ∂p̄
∂x

∂p̄
∂r 0 γ

(

∂ūx

∂x + ∂ūr

∂r

)

















Now let the adjoint system for (11) be written as

∂w̃

∂t
+ Ã

∂w̃

∂x
+ B̃

∂w̃

∂r
+

1

r
C̃

∂w̃

∂θ
+

1

r
D̃w̃ + Ẽw̃ = 0 (13)

and be denoted as

∂w̃

∂t
+ L̃c(w̃) = 0 (14)

In the cylindrical coordinates, the adjoint system is determined such that the following is valid:
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w̃T

[

∂w

∂t
+Lc(w)

]

+wT

[

∂w̃

∂t
+ L̃c(w̃)

]

=
∂E

∂t
+

∂Jx
∂x

+
∂Jr
∂r

+
1

r

∂Jθ
∂θ

+
Jr
r

=
∂E

∂t
+∇ · J (15)

This leads to

Ã = AT , B̃ = BT , C̃ = CT , D̃ =
∂CT

∂θ
+BT −DT , Ẽ =

∂AT

∂x
+

∂BT

∂r
−ET (16)

with

E(w, w̃) = w̃Tw (17)

and
J(w, w̃) = (Jx, Jr, Jθ) = (w̃TAw, w̃TBw, w̃TCw) (18)

III. Eigenvalues and eigenfunctions of the adjoint system with a uniform

mean flow

We first study the eigenvalues and eigenfunctions associated with the adjoint system and the dispersion
relations of the linear waves when the mean flow is uniform. With a uniform mean flow, the adjoint system
as given by (6) is considerably simplified. The complete adjoint equations are

∂ρ̃

∂t
+ ūx

∂ρ̃

∂x
+ ūy

∂ρ̃

∂y
+ ūz

∂ρ̃

∂z
= 0 (19)

∂ũx

∂t
+ ūx

∂ũx

∂x
+ ūy

∂ũx

∂y
+ ūz

∂ũx

∂z
+ ρ̄

∂ρ̃

∂x
+ γp̄

∂p̃

∂x
= 0 (20)

∂ũy

∂t
+ ūx

∂ũy

∂x
+ ūy

∂ũy

∂y
+ ūz

∂ũy

∂z
+ ρ̄

∂ρ̃

∂y
+ γp̄

∂p̃

∂y
= 0 (21)

∂ũz

∂t
+ ūx

∂ũz

∂x
+ ūy

∂ũz

∂y
+ ūz

∂ũz

∂z
+ ρ̄

∂ρ̃

∂z
+ γp̄

∂p̃

∂z
= 0 (22)

∂p̃

∂t
+ ūx

∂p̃

∂x
+ ūy

∂p̃

∂y
+ ūz

∂p̃

∂z
+

1

ρ̄

(

∂ũx

∂x
+

∂ũy

∂y
+

∂ũz

∂z

)

= 0 (23)

While this system is not exactly the same as the linearized Euler equations, the solutions of the two formu-
lations can be closely related. If we let

ρ̃′ = ρ̄p̃+ ρ̃, ũ′

x =
1

ρ̄
ũx, ũ

′

y =
1

ρ̄
ũy, ũ

′

z =
1

ρ̄
ũz, p̃

′ = γp̄p̃+ ρ̄ρ̃ (24)

then, it is easy to see that ρ̃′, ũ′

x, ũ
′

y, ũ
′

z and p̃′ will satisfy the Euler equations. In particular, there is a
simple relation for the acoustic solutions. If ua,va,wa and pa represent an acoustic solution of the Euler
system, then the corresponding adjoint solution is given by

(ρ̃, ũx, ũy, ũz, p̃) = (0, ρ̄ua, ρ̄va, ρ̄wa,
1

γp̄
pa) (25)
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This solution will be referred to as the adjoint acoustic wave. Substitution of this solution into (5) yields an
acoustic energy equation in a uniform mean flow. Furthermore, for the adjoint acoustic waves, with ρ̃ = 0,
the equations for p̃ by (19)-(23) is

(

∂

∂t
+ ūx

∂

∂x
+ ūy

∂

∂y
+ ūz

∂

∂z

)2

p̃− ā2
(

∂2p̃

∂x2
+

∂2p̃

∂y2
+

∂2p̃

∂z2

)

= 0 (26)

where

ā2 =
γp̄

ρ̄

Equation (26) is the usual acoustic wave equation with a uniform mean flow. This implies that the dispersion
relations for linear acoustic waves of the adjoint system in a uniform mean flow will be identical to that of
the Euler equations under similar boundary conditions.

IV. Orthogonality of eigenfunctions

In this section, we show that the eigenfunctions of the Euler and adjoint systems are orthogonal. This
orthogonality will be useful in deriving the reciprocal relations in the next section. Start with the Lagrange
identity, obtained by (5), namely,

∂E(w, w̃)

∂t
+∇ · J(w, w̃) = 0 (27)

where E(w, w̃) and J(w, w̃) are given in (7)-(8) or (17)-(18) and consider a region with uniform mean flow
and constant cross section D as shown in Figure 1. Integrate (27) over a volume V = [x, x+∆]×D formed
between two cross sections at x and x+∆,

∂

∂t

ˆ

V

E(w, w̃)dV +

ˆ

V

∇ · J(w, w̃)dV = 0

∆

∆

x x+

x

D

Figure 1. A duct with uniform cross section.

By divergence theorem, the above becomes

∂

∂t

ˆ

V

E(w, w̃)dV +

ˆ

∂V

J(w, w̃) · ndS = 0

where ∂V is the surface enclosing V and n is the normal vector outward from V . Since the boundary of V
consists of the cross sections at x and x+∆ and duct side wall S, we have
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∂

∂t

ˆ

V

E(w, w̃)dV +

ˆ

S

J(w, w̃) · ndS −

ˆ

Dx

Jx(w, w̃)dS +

ˆ

Dx+∆

Jx(w, w̃)dS = 0

where Jx is the x-component of the J vector given in (8) and (18), and Dx and Dx+∆ denote the cross
sections located at x and x+∆ respectively.

If we have, on duct side walls, that

ˆ

S

J(w, w̃) · ndS = 0 (28)

which is true on solid walls according to the normal flux expression given in (9), then,

∂

∂t

ˆ

V

E(w, w̃)dV −

ˆ

Dx

Jx(w, w̃)dS +

ˆ

Dx+∆

Jx(w, w̃)dS = 0 (29)

By a limit of ∆ → 0, we get a conservation statement

∂

∂t

[
ˆ

D

E(w, w̃)dS

]

+
∂

∂x

[
ˆ

D

Jx(w, w̃)dS

]

= 0 (30)

Now consider eigenfunctions of the Euler equations and adjoint system of the form

w(x, y, z, t) = φ(k, y, z, ω)eikx−iωt (31)

w̃(x, y, z, t) = φ̃(k̃, y, z, ω̃)eik̃x−iω̃t (32)

in which ω is the frequency and k is the wave number in x direction, where a dispersion relation of k = k(ω)
is assumed. φ(k, r, θ, ω) and φ̃(k̃, r, θ, ω̃) are the mode shape functions. Both of the above, as well as their
complex conjugates satisfy the homogeneous system of equations (1) and (3). Substituting w and w̃∗ given
by (31) and (32) into (30), we get

∂

∂t

ˆ

D

E(φ, φ̃
∗

)ei(k−k̃∗)x−i(ω−ω̃∗)tdS +
∂

∂x

ˆ

D

Jx(φ, φ̃
∗

)ei(k−k̃∗)x−i(ω−ω̃∗)tdS = 0

which is

−i(ω − ω̃∗)

ˆ

D

E(φ, φ̃
∗

)dS + i(k − k̃∗)

ˆ

D

Jx(φ, φ̃
∗

)dS = 0 (33)

If we choose ω̃ = ω = real, then the above is

[

k(ω)− k̃∗(ω)
]

ˆ

D

Jx(φ, φ̃
∗

)dS = 0

It follows that

ˆ

D

Jx(φ, φ̃
∗

)dS = 0, if k(ω) 6= k̃∗(ω) (34)

To express this condition using the expression for Jx given in (8), we have
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ˆ

D

φ̃
∗T

AφdS = 0, if k(ω) 6= k̃∗(ω) (35)

That is, the eigenfunctions (mode shapes) of the Euler and adjoint systems corresponding to different eigen-
values are orthogonal in the sense of (34).

The orthogonality condition given explicitly is

ˆ

D

φ̃
∗T

AφdS =

ˆ

D

[

ūx

(

φ̃∗

uφu + φ̃∗

vφv + φ̃∗

wφw + φ̃∗

pφp

)

+ γp̄φ̃∗

pφu +
1

ρ̄
φ̃∗

uφp

]

dS = 0, if k(ω) 6= k̃∗(ω)

(36)

where the subscript in φ indicates the corresponding components of the eigenfunction φ and φ̃.

V. Reciprocity

In this section, we derive two reciprocal relations between the solutions of the Euler and adjoint systems.

V.A. Reciprocity between a point source and duct modes

Consider the Greens function of the adjoint system defined by

∂w̃

∂t
+ L̃(w̃) = −δ(r − r̃′)δ(t− t′)ep (37)

with initial condition

w̃ = 0, t > t′

In the above, ep = (0, 0, 0, 0, 1). It is chosen for the convenience of establishing the reciprocal relations in
pressure. Other choices are possible of course.

We study the case where the solution to the Euler equations, a forward problem, will be the one formed by
an incoming wave mode inside the duct as shown in Figure 3. Specifically, let the solutions inside the duct
be written in the frequency domain as

w(r, t) = f (x, r, θ, ω)e−iωt (38)

w̃(r, t) = f̃ (x, r, θ, ω)e−iωt (39)

where, with a local uniform duct assumption, we have

f(x, r, θ, ω) = Amono
φmono

(r, θ)eik
+
mono

(ω)x +
∑

m′,n′

Rm′,n′φm′n′(r, θ)eik
−

m′n′
(ω)x (40)

f̃(x, r, θ, ω) =
∑

m,n

Ãmnφ̃mn(r, θ)e
ik+

mn(ω)x (41)

in which we have used the fact that eigenvalues of the adjoint system and the Euler equations are identical.
Mode (mo, no) is the incoming wave with amplitude Amono

, and Rm′n′ are the reflected wave amplitude
of modes (m′, n′). The solution to the adjoint system inside the duct is also decomposed into duct modes

8 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 F

an
g 

H
u 

on
 D

ec
em

be
r 

21
, 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
22

47
 



nm  ω

nmA

p    (r’,  ) ~p(r’,t)

Amn
~

S

 ωp    (r’,  )nm

nmA

Figure 2. Schematic diagrams showing the forward and adjoint problems.

(m,n) with amplitudes denoted by Ãmn. Since it is generated by a point source at the far field, the adjoint
solution inside the duct near the inlet region should consist of only left traveling modes. By the results in
section 2, these left traveling waves, when solved in the reversed time τ , have the same dispersion relations
as the right traveling acoustic waves, as indicated by k+mn(ω) in (41).

In the frequency domain, we have

−iωf +L(f) = 0 (42)

and

−iωf̃ + L̃(f̃) = −δ(r − r̃′)ep (43)

By an operation f̃
∗T

(42)+fT (43)∗, we get

f̃
∗T

L(u) + fT L̃(f̃
∗

) = −δ(r − r̃′)fTep

where a star indicates complex conjugate. Using the properties of the adjoint system discussed in the previous
sections, the left hand side becomes a complete divergence and by the integration over a volume V in space,
outlined in Figure 3, we get

ˆ

V

∇ · J(f , f̃
∗

)dr = −p(r̃′, ω)

Using again the divergence theorem and by letting the boundary of V in open space to go to infinite and
applying the wall boundary conditions, we have

−

ˆ

D

Jx(f , f̃
∗

)dS = −p(r̃′, ω)
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where D is area of cross section at the duct inlet region and Jx is the x component of the flux vector J in
the Lagrange identity.

By substituting (40) and (41) into the above, due to orthogonality condition for the eigenfunctions (35), we
get

Ã∗

mono
Amono

ˆ

D

φ̃∗
T

mono
Aφmono

dS = p(r̃′, ω) (44)

In other words, the adjoint solution can act as a filter for the modal contributions at the far field as noted
in [7].

Finally, (44) can be written as

p(r̃′, ω)

Amono

= αmono
Ãmono

(45)

where the proportional constant

αmn =

ˆ

D

φ̃∗
T

mnAφmndS

Equation (45) is the reciprocal relation between the acoustic pressure p(r̃, ω) at r̃′ produced by duct mode
(no,mo) and the amplitude Ãnomo

of that mode inside the duct due to a point source at r̃′ of the adjoint
system.

Furthermore, if the duct cross section is independent of θ, let the eigenfunctions of the duct modes be
expressed as

φmn(r, θ) =















φρ

φu

φv

φw

φp















=

















Ψmn(r)
kmn

ω−ūxkmn
Ψmn(r)

− i
ω−ūxkmn

Ψ′

mn(r)
m

ω−ūxkmn

Ψmn(r)
r

Ψmn(r)

















eimθ, φ̃mn(r, θ) =















φ̃ρ

φ̃u

φ̃v

φ̃w

φ̃p















=

















0

ρ̄ kmn

ω−ūxkmn
Ψmn(r)

−ρ̄ i
ω−ūxkmn

Ψ′

mn(r)

ρ̄ m
ω−ūxkmn

Ψmn(r)
r

1
γp̄Ψmn(r)

















eimθ

(46)
where Ψmn(r) is the pressure eigenfunction of mode (m,n). It is straightforward to verify, by using the
expressions in (36), that we have the proportional constant αmn in (45) as

αmn =

ˆ

D

φ̃∗
T

mnAφmndS = 4π

(

ūx +
γp̄

ρ̄

kmn

ω − ūxkmn

)
ˆ R

h

Ψ2
mn(r)rdr = 4π

(

dω

dk

)

mn

ˆ R

h

Ψ2
mn(r)rdr (47)

where h and R are the lower and upper limits of duct cross section in r and
(

dω
dk

)

mn
is the group velocity of

mode (m,n).

In general, according to (33), we also have

αmn =

ˆ

D

φ̃∗
T

mnAφmndS =
∂ω

∂k

ˆ

D

φ̃∗
T

mnφmndS (48)

which is the same as (47).
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V.B. Reciprocity between duct modes

Consider a non-uniform duct as shown in Figure 3, with a region of varying duct area between x = X1 and
x = X2. Assume that an incoming duct mode is present at the left side of the duct. Due to the non-uniform
duct body, the incident wave will be reflected as well as transmitted to the other side of the non-uniform
region. The incoming mode will also be scattered into other modes. Let’s assume the solution in the two
uniform regions be as follows:

for x < X1 (incoming and reflected waves):

f(x, r, θ, ω) = Amono
φmono

(r, θ)eik
+
mono

(ω)x +
∑

m′,n′

Rm′,n′φm′n′(r, θ)eik
−

m′n′
(ω)x (49)

for x > X2 (transmitted waves):

f(x, r, θ, ω) =
∑

m′,n′

Tm′,n′φm′n′(r, θ)eik
+

m′n′
(ω)x (50)

where An0m0 is the amplitude of the incoming mode, and Rn′m′ and Tn′m′ are the amplitudes of the reflected
and transmitted wave modes respectively.

D
AT

rA

A in

1 2D

2

A

A

A T

in

r

~
~

~

DD1

Figure 3. Schematic diagram showing a non-uniform duct and incident, reflected and transmitted waves.

For the adjoint problem, we consider an incoming wave mode at the other side and express the solution as
follows:

for x < X1 (transmitted waves):

f̃(x, r, θ, ω) =
∑

m̃′,ñ′

T̃m̃′,ñ′φm̃′ñ′(r, θ)eik
+

m̃′ñ′
(ω)x (51)

for x > X2 (incoming and reflected waves):

f̃(x, r, θ, ω) = Ãm̃oño
φm̃oño

(r, θ)eik
+
m̃oño

(ω)x +
∑

m̃′,ñ′

R̃m̃′,n′φm̃′ñ′(r, θ)eik
−

m̃′ñ′
(ω)x (52)

By using the Lagrange identity (27) and an integral over a volume outlined in Figure 3, we have
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ˆ

D1

Jx(f , f̃
∗

)dS −

ˆ

D2

Jx(f , f̃
∗

)dS = 0

Then, by substituting (49)-(52) into the above, due to orthogonality of the eigenfunctions, we get

Anomo
T̃mono

ˆ

D1

φ̃
∗T

mono
Aφmono

dS = Tm̃oño
Ãm̃oño

ˆ

D2

φ̃
∗T

m̃oño
Aφm̃oño

dS (53)

Equation (53) is the reciprocal relation between duct modes of the Euler and adjoint systems. Using the
proportional constant derived earlier, (53) can also be written more succinctly as

αmono

T̃mono

Ãm̃oño

= αm̃oño

Tm̃oño

Amono

(54)

The above establishes the direct relationship between any transmitted mode (m̃o, ño) due to the incident
mode (mo, no) of the Euler equations and those of the adjoint system due to an incident (m̃o, ño) mode.

VI. Numerical solution of the adjoint system

VI.A. Time Domain Wave Packet method

In [13], a Time Domain Wave Packet (TDWP) method has been proposed for linear aeroacoustics compu-
tations. Some of its advantages have been mentioned in the introduction. A key element in TDWP is the
modeling of the source term so that a wave packet is generated. Application of the TDWP method to the
adjoint equations will be discussed in this section.

We first show an example of modeling the duct incoming waves in the TDWP method. To generate the duct
modes, the pressure equation is modified with a source term as

∂p

∂t
+ ū0

∂p

∂x
+ γp̄0

(

∂u

∂x
+

∂u

∂y
+

∂u

∂z

)

= φmn(y, z)Ψ(t)e−σ(x−x0)
2

(55)
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0.005
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t

p(
t)

 

 
numerical
exact

Figure 4. Left: Duct modes generated by the source term given in (55) in a uniform duct. (0,2) mode is introduced at
x0 = 0. Right: Time history of pressure at a fixed point and comparison with the exact solution.

where φmn(y, z) is the mode eigenfunction and Ψ(t) is a broadband time pulse function that will be given
later. The source term generates the specified wave mode of all the frequencies, as can be predicted by an
analytic solution that will be shown elsewhere. In Figure 4, we show an example of two-dimension uniform
duct with the forcing term applied. The source plane is placed at x0 = 0 and the right and left going waves
are generated correctly. A comparison in pressure history at a fixed point with the exact solution is also
shown with good agreement.
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VI.B. Initial condition for adjoint system

For reciprocal condition (45), a point source is placed at the far-field and we solve

∂ũ

∂t
+ L̃c(ũ) = −Ψ(t− t′)δ(r − r̃′)ep (56)

where r̃′ is a far field observation point, t′ is a time of interest, and Ψ(t) is the broadband time function used
in the Time Domain Wave Packet (TDWP) method. Function Ψ(t) is non-zero for a finite time duration
−T < t < T .

The time function Ψ(t) used in this computation is as follows:13

Ψ(t) =
∆t sin(ω0t)

πt
e(ln 0.01)(t/M∆t)2 , |t| ≤ M∆t

where ω0∆t = π/5, M = 50.

Note that the time domain for which the solution of the adjoint system is nonzero is t < t′ +M∆t. To solve
(56) numerically in a time marching fashion, we introduce τ as

τ = t′ − t (57)

This leads to the equation for numerical solution as

∂ũ

∂τ
− L̃c(ũ) = Ψ(−τ)δ(r − r̃′)ep (58)

To deal with the delta function in the source term in (56), we use the exact acoustic solution in a uniform
stream and recast (56) as an initial value problem. The details are described below.

At the far-field where the mean flow is assumed to be uniform, the exact solution to (58) can be found as
the adjoint acoustic waves. Let

P̃ (e)(r, τ) =
Ψ(−τ + β(x− x̃′) + R̄(r, r̃′)/cα)

4πcαR̄(r, r̃′)

where

α =
√

1− ū2
x/c

2 =
√

1−M2
x , β =

ūx

c2 − ū2
x

=
Mx

cα2
, R̄(r, r̃′) =

√

(x− x̃′)2/α2 + (y − ỹ′)2 + (z − z̃′)2

Then, the exact solution w̃(e)(r, τ) to (58) for the density, pressure and velocity components of the adjoint
solution is

ρ̃(e)(x, r, θ, τ) = 0, p̃(e)(x, r, θ, τ) =

[

∂

∂τ
− ūx

∂

∂x

]

P̃ (e)(r, τ), (59)

ũ(e)
x (x, r, θ, τ) = γp̄

∂P̃ (e)

∂x
, ũ(e)

y (x, r, θ, τ) = γp̄
∂P̃ (e)

∂y
, ũ(e)

z (x, r, θ, τ) = γp̄
∂P̃ (e)

∂z
(60)

and

ũ(e)
r (x, r, θ, τ) = ũ(e)

y cos θ + ũ(e)
z sin θ, ũ

(e)
θ (x, r, θτ) = −ũ(e)

y sin θ + ũ(e)
z cos θ (61)
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Since the source term in (58) becomes zero for τ > T , equation (58) can be solved as an initial boundary
value problem without the source term, with an initial condition as

w̃(r, τ)|τ=τ0
= w̃(e)(r, τ)

∣

∣

∣

τ=τ0
(62)

where τ0 is any time greater than T .

Additionally, the exact solution given in (59)-(61) can also be utilized to recast (58) into a scattering problem
with a homogeneous source term.

VI.C. Reduction in θ

The equations to be solved can be further reduced by decomposing the solution in the azimuthal angle θ
when the geometry is independent of θ. In such cases,

w̃(x, r, θ, t) =

Lm/2−1
∑

m=−Lm/2

w̃m(x, r, t)eimθ (63)

where Lm is the number of terms kept in the expansion.

Then, the adjoint system (13) reduces to the following system in real variables,

∂ŵm

∂τ
− Ã

∂ŵm

∂x
− B̃

∂ŵm

∂r
−

m

r
Ĉŵm −

1

r
D̃ŵm − Ẽŵm = 0 (64)

where

ŵm =















ρ̃

ũx

ũr

iũθ

p̃















m

, Ĉ =

















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−ρ̄ 0 0 0 −γp̄

0 0 0 1
ρ̄ 0

















The initial condition for (64) is

ŵm(x, r, τ0) = ŵ
(e)
m (x, r, τ0)

where

ŵ
(e)
m (x, r, τ) =

1

2π

ˆ 2π

0

w̃(e)(x, r, θ, τ)e−imθdθ (65)

For the given broadband function Ψ(t), equation (65) may be evaluated numerically by FFT. The complete
solution of the adjoint system can then be constructed using (63).

VII. Numerical results

In this section, we present numerical results of the adjoint system for the NASA/GE Fan Noise Source
Diagnostic Test (SDT) exhaust radiation problem. In Figure 5, the computational domain is sketched. Two
finite difference domains are used to cover (1) the region inside the duct starting at the vane trailing edges
and (2) the exterior region that is extended to include the far field observation points. A time domain
finite difference scheme is used. The spatial derivatives are approximated by a 7-point stencil as in the
Dispersion Relation Preserving (DRP) scheme.18 Time integration is carried using the Low Dissipation
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Figure 5. Computational domain for the adjoint system, showing the engine nacelle and far-field observation locations.

and Low Dispersion Runge-Kutta scheme (LDDRK 56).12 Perfectly Matched Layer absorbing boundary
condition is applied at all non-reflecting boundaries, including the one at the duct inlet.9–11 More details on
the forward problem can be found in [13].

Computations are presented for an approach condition (61.7% of design speed) for the case of 22 blades and
54 vanes . At this condition, the Tyler-Sofrin interaction mode (m = −10 ) is by far the most dominant duct
mode according to experimental modal studies.2, 7, 16, 20 For this reason, the azimuthally reduced equation
(64) is used in the computation. The initial condition in the computation is that given by (65). The
broadband pulse generated by a point source for the adjoint system as a function of θ is shown in Figure 6
for the pressure component. Its decomposition in azimuthal modes is shown in Figure 7.

Computation starts at a non-dimensional time t = 8. In Figure 8, the numerical solution at a later time
t = 11.5 is compared with the exact pulse solution given in (59)-(61). The external flow has a Mach number
0.1. The good agreement between the computed and theoretical solutions indicates that the initial state
given in (62) has been implemented correctly.

A time sequence of pressure contours is shown in Figure 9. The time domain wave packet is reflected by the
nacelle and the center-body, as well as propagated into the duct. The frequency domain solution, obtained
by an FFT of the time domain solution shown in Figure 9, is plotted in Figure 10 at 2BPF. As noted earlier,
the solution at other frequencies are also available in the same computation.

To compare with far field experimental results, and to demonstrate the reciprocal relations between the
Euler and adjoint solutions, we show in Figure 11(top) the far field pressure amplitudes at the observation
points corresponding to each propagating radial mode of the duct. The pressure amplitudes are plotted as
a function of observation angle (geometric), measured from the forward axis. It shows the most effective
radiation angle of each mode and the relative strengths of these modes when the incoming modal amplitude
is unity. In Figure 11(bottom), we show the modal decomposition of the adjoint system where the far
field source location is as indicated. The relative strengths of each radial mode are clearly similar to those
predicted by the reciprocal condition (45). The comparison is very favorable. Although there are still some
slight discrepancies in certain modal amplitudes, that may be due to the fact that, for simplicity of generating
the mean flow, a one-dimensional mean flow has been used inside the duct which does not satisfy the wall
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Figure 6. p̃(e) as a function of θ at a fixed (x, r) location close to the source.

Figure 7. Modal decomposition of the exact solution shown in Figure 6 in azimuthal modes.
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Figure 8. Pressure (top) and u-velocity (bottom) at time t = 11.5 of the adjoint solution. Computation is started at
t = 8 with initial condition given by (59)-(61). Line: numerical; Symbol: exact solution.
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Figure 9. Contours of pressure at four chosen moments of the adjoint solution for a broadband point source placed at
the indicated observation location.
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Figure 10. Frequency domain pressure contours at 2BPF by FFT of the time domain solution given in Figure 9.
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51
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Forward Radiation

Adjoint Solution

~

   

(−10,1)

(−10,2)

(−10,3)

(−10,4)

(−10,0)    

   

Figure 11. demonstration of reciprocity (45). Top: Far field pressure amplitude, p(r̃′, ω)/Amn, produced by indicated
duct mode normalized by the mode incoming amplitude. The duct input mode is indicated by the color and observation
points as defined in Figure 5 are indicated by the numbers. Bottom: Modal amplitudes, αmnÃmn, of the adjoint problem
when a point source is placed at the corresponding far field observation point.

20 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 F

an
g 

H
u 

on
 D

ec
em

be
r 

21
, 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
22

47
 



boundary condition exactly. Further investigation will be presented in future work.

VIII. Conclusions

Adjoint systems for the linearized Euler equations in the Cartesian and Cylindrical coordinates have been
studied in the time domain. A relation between the acoustics solutions of the Euler and adjoint equations in
a uniform mean flow is given and it is further shown, under a local uniform flow assumption, that the linear
waves in the two systems have the same dispersion relations and their the eigenfunctions are orthogonal in
the sense of (36). A reciprocal relation between the in-duct propagating modes and the far-field pressure
field has been derived in the presence of mean flow. A reciprocal relation for transmitted waves inside the
duct is also derived. The reciprocity can be a useful tool in validating numerical solutions.

Furthermore, techniques for computing the adjoint Green’s function by the Time Domain Wave Packet
(TDWP) method are presented. Numerical results for the SDT aft radiation problem are shown where the
reciprocal relation has been demonstrated. Good numerical accuracy has been observed in the validation of
reciprocal relation derived in the paper.
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