AIAA Aviation
16-20 June 2014, Atlanta, GA

20th AIAA/CEAS Aeroacoustics Conference

Integral Equation Method for Aeroacoustic Scattering

Downloaded by Fang Hu on December 21, 2014 | http://arc.aiaa.org | DOI: 10.2514/6.2014-3194

In assessing noise shielding effects of an aircraft body or its components, there is a need to effectively and
accurately calculate sound scattering by an acoustically large body at mid to high frequencies. While it is
well-known that acoustic scattering problem can be formulated as boundary integral equations, both in the
time domain and in the frequency domain, a vast majority of research and computational solvers, however,
have been done in the frequency domain. As noted in many studies on time domain solutions, there are several
distinct advantages that are afforded by the time domain formulation.'® For instances, scattering solutions
at all frequencies can be obtained within one single time domain computation. Furthermore, broadband
sources and time dependent transient signals can be simulated and studied directly, and it is more natural to
couple a nonlinear CFD simulation with time domain solver than one in the frequency domain where many
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Recently, a stable time domain boundary integral equation for the acoustic convective
wave equation has been formulated and an efficient numerical solution has been proposed.
The time domain boundary integral equation solver has several distinct advantages. For
instances, scattering solutions at all frequencies can be obtained within one single time
domain computation. Furthermore, broadband sources and time dependent transient sig-
nals can be simulated and studied directly, and it can be readily coupled with a nonlinear
CFD simulation where many frequencies are generated. In the present paper, further de-
velopments of the time domain boundary integral equation solver are reported. A Fourier
analysis for the general interpolation problem is formulated. In the literature, the tempo-
ral basis functions used in March-On-in-Time (MOT) schemes have been largely limited to
low-order shifted Lagrange basis functions. The current work seeks an improvement on the
temporal basis function. Based on the Fourier analysis, the resolutions of various temporal
basis functions are quantified. Then, optimized basis functions that have significantly ex-
tended resolution in the Fourier frequency space are proposed. Substantial improvements
in accuracy and efficiency of the proposed optimal high-resolution temporal basis functions
for time domain integral equations are demonstrated by numerical examples. The use of
optimized basis functions keeps the error low for a larger range in the frequency space.
Conversely, for a given range of frequency of interest, a larger time step can used with
the optimized temporal basis functions, resulting in a significant increase in computational
efficiency and, at the same time, reduction in memory requirement. The time domain
boundary integral equation solver is further applied to the problem of scattering by a flat
plate. Computed results are compared with the experimental measurements.

I. Introduction

frequencies are generated.
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In the past the development of time domain approach has been hindered by two major difficulties. The
first was the intrinsic instability in the early time domain formulations due to the presence of resonant
frequencies which are bound to exist in time domain calculations. The second was the formidably high
computational costs in solving the time domain integral equation. Significant progresses have been made
in recent years in resolving these two major difficulties. Stability can now be achieved by using a Burton-
Miller type formulation or Convolution Quadratures.”10:17:18:24:25.31  Apq there are recent developments
where computational complexity can be reduced from O(N;N?) to O(N,N log? N) where N is the total
number of unknowns, and N; is the total number of time steps.!!'1?:26  For instance, for March-On-in-
Time (MOT) schemes, the recently developed Plane Wave Time Domain (PWTD) algorithm can be used
to accelerate the far interactions,'! akin to the Fast Multipole Methods in the frequency domain.'? 1> With
these breakthroughs, as well as the advances in computational power and new computing architectures, it is
easy to foresee an increase in the application of time domain integral equations in the future.

Recently, a formulation of stable time domain boundary integral equation for the acoustic convective wave
equation has been given in [19] based on a Burton-Miller type reformulation of the well-known Kirchhoff
integral relation. An efficient Time Domain Propagation and Distribution (TDPD) algorithm has been de-
veloped, based on the delay- and amplitude-compensated acoustic field and a simplified multi-level Cartesian
Non-uniform Grid Time Domain Algorithm (CNGTDA).'%26 In [19], the computation is further accelerated
by General Purpose GPU computing, making it feasible for practical applications to scattering solutions
with several millions of unknowns.

In the present paper, further developments of the time domain boundary integral equation solver are reported.
Specifically, advances in two areas are presented. In the first area, Sections 2-5, a systematic analysis of the
temporal basis functions used in MOT schemes is carried out. In the literature, with a few exceptions(e.g.,
[12, 32, 33]), the temporal basis functions used in MOT schemes have been largely limited to low-order
shifted Lagrange basis functions. The current work seeks an improvement on the temporal basis function.
A Fourier analysis for the general interpolation problem is formulated. Based on the Fourier analysis, the
resolutions of various temporal basis functions are quantified. Then, optimized basis functions that have
significantly extended resolution in the Fourier frequency space are proposed. Substantial improvements in
accuracy and efficiency of the proposed optimal high-resolution temporal basis functions for time domain
integral equations are demonstrated by numerical examples.

In the second area, Section 6, the time domain boundary integral equation solver is applied to the problem of
scattering by a flat plate. The computed results are compared with the experimental measurements carried
out in a NASA report.! Concluding remarks are given in section 7.

II. Temporal basis functions

A. Time domain integral equation

As shown in [19], the time domain boundary integral equation for acoustic scattering is

/gy — l/ 1 / e P _9Go
2mp(rtot) = 5 [ gatrtmdr + [ (1= 32) Go 5L ) = G000 tn)
1 OR 9 Op
_MnGO (MT . Vp(rs7t3)) + EGO (aﬁ, — Mn> at(’r’s,tR):| d'l"s (1)

where ¢(r,t) represents the source term and tg is the retarded time defined as

tr=t+8-(r. —r,) — R/ca? (2)

and the parameters appeared in (1) are

s U U M
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1 _
Go =z, and R =/(, = o))’ + (. — )7 + 02(z, — %) )
Further details on (1) are referred to [19].

To discretize the integral equation (1), the integral surface S is divided into boundary elements and the
numerical solution on the surface is expressed as

N.
p(rs,t) = Z pi(t)di(rs) (4)

in which N, is the total number of surface nodes and ¢;(rs) is the surface basis function for the i-th node
on the surface. In (4), p;(t) denotes the nodal value as a function of ¢ for the i-th node. This temporal
dependence is often constructed through a use of temporal basis function ;(¢) as

Ni
t) ="y uly;(t) ()
j=0

where N, is the total number of time steps and u? is the value of solution of the i-th node at time #;. That
is, we have

pilty) =] (6)

Here, we assume that the temporal grid is created with a uniform time step At and

tj =to+ jA (7)
where ty is an arbitrary time for j = 0.

In the collocation March-On-in-Time (MOT) approach, the integral equation (1) is enforced progressively
at each time step. By substituting (4) into (1), assuming for the moment % =0 and M = 0 for simplicity,
and evaluating at a collocation time t,, we get

2mp(r / R Té,tR /

8G OR d o
il sz tR ¢z(rs) 7G0 < > Z dijjf tR (bz rs)] drg

=1

or
0Gy 1 OR\ dp;
27Tp = C2/ R 7's7tR Z/ |: on Pi tR _EGO (aﬁ) i (tR)] (bz(rS)drS (8)
where S; denotes the element for which the surface basis function ¢;(rs) is non-zero and
th =t,+B8-(r, —r,) — R/ca? (9)

Using the discretization stipulated in (4) and (5), equation (8) can be cast into an algebraic iteration scheme
of the form

Bou" =q" - Z B,,u"* (10)

where u™ denotes the vector of all coefficients u;* at time level ¢,,, and kj; denotes the limit for index k.
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As illustrated in equation (8), to solve the integral equation, there is a need to compute p;(t;) and ddpti (t) at

a time determined by t; in (9), the retarded time between rs and r/,. Furthermore, when equation (8) is cast

2
into a Burton-Miller type formulation, there is also a need to compute the second time derivative ddt;' (tr)-
In what follows, we discuss in detail the computational method for these values under the framework given
in expression (5).

B. Conventional one-sided shifted Lagrange basis function

In most MOT formulations, the temporal basis function 1;(¢) is assumed to be of the same form for all time
nodes and expressed as in the following,

o () —At<t—1t;<0
Uy (7) 0<t—t; <At
U_o(T At <t—t; <2At
bi(t) = wit— ) = 720 i< (11)
U (7) (m—1)At <t—t; <mAt
0 other

in which m is the chosen order of basis function and W,(7), 7 = (t —t;)/At, is a shifted Lagrange polynomial
formed as follows:

[T = +G-0)

— i=—m,i#£L

\I/g(T) =
[T G-

i=—m,i#£L

., l=-m,..,0 (12)

For convenience of discussion, ¥,(7) will be referred to as T7-normalized basis functions. Equation (12) yields
a temporal basis function that is a piecewise m-th order polynomial. For instances, the popular second-,
third- and fouth-order shifted Lagrange basis functions are

Second order:

1—|—%7’—|—%72 —1<7<0
_ — 72 <1
B(r) = 13 T 1 O0<7t< (13)
1—57'—1—572 1<7<2
0 other
Third order:
1+%T+T2+%TS —1<7<0
1+%T—72—%73 0<7r<1
U(r) = 1—37—72+ 78 l<r<2 (14)
1—%7’—&—72—%73 2<17<3
0 other
Fourth order:
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1+%T+ 72+5 3+ﬁ74 —1<7<0
5 5 3 1.4
1+67757’ 87" — &7 0<7t<1
@(7_)_ 1—77'2—&—174 1<7<2 (15)
1—77'—77 +5T3 %7’4 2<1<3
—%T—I—SZT2 273—&—%74 3<1<4
0 other

Because the temporal basis function (11) has a finite support in time, the contribution from any node ¢ to
the solution at location r/ and at collocation time t,, as appeared in (8), reduces to a summation of m + 1
terms, namely,

Zuﬂwj ) = wl Wt — t5) + u W — troa) +ul PU(E — tya) £l (e — o) (16)

or, in terms of the 7-normalized basis functions,

_ t, —t _ t, —ty_ _ t/ —t - th, —ty_
pi(th) = U-;J‘I’O ( R J) +u571q/71 (Ri‘”) +u572W,2 (#) +---+u;]7m\11_m (u) (17)

At At At At
where v
ty =ty + JAL, cheiling(RAt 0>,andtJ1<t;%§tJ (18)
Gome oo 4o Gy t,
f f & & & & © & f f 4 f 4 -

Figure 1. A schematic showing the grid in time and the temporal interpolation stencils resulted from one-sided
basis functions shown in (11). t, is the current time step and t/; is the time at which interpolation is required.

Equation (16) shows that a use of the basis function of the form (11) results in an interpolation for p;(t;)
from the values on nodal points tj_,,, t7—m+1,- - ,ts—1,ts. In other words, using the basis functions of the
type shown in (11) results in an interpolation that is completely one-sided. While, due to causality, this
one-sidedness is necessary when t;, determined by (18) is the same as the current collocation time step ¢,.
It is, however, un-necessary when t; is a time that is a few time steps earlier than ¢,,, as illustrated in Figure
1. In such cases, an interpolation that uses more points to the right of ¢; is possible, as will be discussed
next. The benefits of using two-sided interpolations will be further analyzed in Section 3.

C. General two-sided Lagrange temporal basis functions

A general interpolation problem is to find an approximation at any given location based on the values known
on a specified grid. As discussed in the previous section, it is possible to use two-sided interpolation for
computing p; (), d;;l (tr), or dtQ £(t%z), when t; is a few time steps earlier than the current collocation time
t,. We consider a general interpolation problem for the value at a point located at t' =t; —nA¢, 0 <n < 1,

using a stencil from ¢;_ps to £ N

N
= Z Sg(n)ujM (19)
l=—M
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as show in Figure 2. For brevity, the subscript 4, indication for the i-th node, will be dropped in the following
discussion. Here, u/ denotes the values known on the grid formed by ¢; and S;(n) are the coefficients of
interpolation scheme for the value at a point ' located between t;_1 and ¢;. If the Lagrange interpolation
polynomials are used, we have simply

N N
="M E’;éz(t/ ~hie) v I—J[VI e'#(ﬁ/ )
Se(n) = ——~ =—= (20)
(tj+e — tiver) II (-
O=—M. 00 ="M, 0

Figure 2. A schematic diagram for a general interpolation stencil along the time grid.

It is straightforward to see that when Sy(n) in (19) are converted to temporal basis functions and are
expressed similarly to that in (11), we have the equivalent 7-normalized basis functions as

\I/g(T) :Sg(—T—E), = —M,...,N (21)
where 7 and 7 are related as
' —tjte
— =_n—/ 22
T At U (22)
Conversely, we have
Se(n) = We(—n — L) (23)

The explicit forms for the 7-normalized basis functions derived from the two-sided Lagrange interpolation
polynomials (20) are given in Appendix A, tables 1-3.

In the formulations of time domain integral equations, interpolations for the derivatives with respect to
time (up to second-oder when the Burton-Miller type formulation is used) are also required. They can be
computed as

Wiy LS gyt (24)
dt At ¢
=M
d*p 1 )
ﬁ(tl) A2 Z Sy (mu?** (25)
{=—M

where Sj(n) and S}/ (n) are respectively the first and second derivatives with respect to 7.
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ITII. Fourier analysis of temporal basis functions

Obviously, the accuracy of a particular interpolation scheme can be assessed in many different ways. In
this section, we analyze the error of temporal interpolation scheme (19) in the Fourier frequency space. For
spatial interpolation schemes, wave number analysis has been conducted earlier in [29. 30]. In the current
work, the analysis is carried out in the temporal dimension.

For a grid function u/, defined on a uniform grid of ¢; = to + jAt, it has a discrete Fourier transform,

a(w) = At Z ul e (26)
Jj=—00
and the inverse as
, 1 m/At
w = — e 4 (w)dw 27)
27 —m/At ( (

Equations (26) and (27) indicate that the spectrum for u?, when the grid is infinitely wide, would be one
that is continuous but limited to X3, the Nyquist limit. We are interested in an interpolation scheme that

will preserve the spectrum 4 (w) as much as possible.

It is well-known that a special interpolation function called cardinal interpolation, denoted as u’(t), that

recovers the full spectrum @(w) as defined in (26) and (27) can be constructed as follows,?
1 w/At _ 1 /At ) 0o _ .
ul(t) = —/ e i(w)dw = — e | At Z uwle” "% | dw
2m —m/At 2m —m /At j=—o0

At o - pm/At ) At o - pm/At
_ 27 Z u]/ eztwe—ztjwdw _ 27 Z u]/ ez(t—tj)wdw
T ™

—m /At i——o00 —m/At

= i ujsw = i u’sinc <tAttj7r> (28)

Clearly, by (28), we have

and its Fourier transform

w /At o /At o ] ,
= / (/ et e_“"tdt) (w")dw' = / (/ eilw—w ]tdt> (w)dw’
— /At —o0 —m /At —o0

/”/At L w(w), |wAtl <7
0

—m /At

While the interpolation function u!(¢) by (28) preserves the full spectrum of u/, its stencil is unfortunately
infinitely wide.
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We now consider the Fourier frequency space for the interpolation defined in (19). Following the definition
of discrete Fourier transform in (26), the spectrum of the interpolated function p(t') computed on the grid
t =1t;, — nAt is

7 J

> o0 N
p(n,w) = At Z p(t; — nAt)etmnAbe — Ay Z Z Sy(myud+t | emilti—nane
j=—o0 j=—o00 \j=—M
N oo N .
= Z Se(n) | At Z Wtle—itiw | ginwAt _ inwAt Z Sg(n)eiz“’m At Z W H = itisew
t=—M = —o0 ' P

znwAt ( Z S MwAt) (w) (29)

The result in (29) shows that an interpolation scheme of the form given in (19) would modify the spectrum
of the original data u’ by a factor of

Fo(n, &) = ™ ( Z Se(n “ff> (30)
where £ is the non-dimensional frequency,
€ = wAt (31)

The ideal value for Fy(n,&) is of course unity for all n and £, and any deviation of Fy(n,£) from unity
represents the error of interpolation measured in the Fourier frequency space. To facilitate the ensuing
discussions, we introduce

N
= Z Sy(n)ets — e~s (32)
b=—M

as a measure for the error of interpolation in the frequency space. Clearly, we have the relation

EO(nv g) = (FO(TL g) - 1) e*inﬁ (33)

Furthermore, interpolation errors for the first and second time derivatives will be conveniently assessed by
E1(n, &) and Es(n, &) respectively:

dEO al / 143 3
Ei(n,§) = a —= () = Y Sim)et +ige™™ (34)
l=—M
d2E0 S 7 13 2 —ing
By(n,§) = =5 (&) = > S/(n)e" + & (35)
{=—M

Using the third order basis function (14) as an example, the interpolation error functions Ey(n, &), E1(n,§)
and Fs(n, &) are shown as contour plots in Figure 3. The magnitude of the errors obviously would depend
on the values of n and &.
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Figure 3. Contours of interpolation error functions Ey(n,£), E1(n,§) and E2(n,§). Plotted are the errors for the
third-order shifted Lagrange basis functions (14).

0.010 ‘ ‘
— E,, M=2, N=0
— El
—0.008 == B
= — FE;, M=3,N=0
N — B
3 0-006 --- K
— — E,, M=4, N=0
—= — L
X 0.004 B
-
o
—_
-
W 0.002
0.0083 0.2 0.4 0.6 0.8 1.0 1.2 1.4

wAt

Figure 4. Interpolation error in Fourier frequency space for selected one-sided shifted Lagrange basis functions.
Plotted are the maximum errors for 0 <7 < 1.
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In Figure 4, the interpolation error in the Fourier space as a function of the non-dimensional frequency wAt
is plotted for the second, third and fourth order one-sided shifted Lagrange basis functions. Plotted are the
maximum values of |Ey(n,&)|, |E1(n,&)| and |Ez(n,&)| for all n, 0 < n < 1, as a function of . As expected,
it is observed that the error is smaller when the order of basis functions is higher and, for the same order of
basis functions, the error of interpolation for the second derivatives is larger than that for the first derivatives
which is still larger than that for the value of function itself.

More important, Figure 4 yields an accuracy limit of the respective interpolation scheme in the frequency
space. Using, for instances, 0.005 as a criterion on the maximum allowable error, the interpolation would
be accurate for approximately wAt < 0.15, 0.25, 0.35 and 0.45 for the second-, third-, fourth-order and
fifth-order one-sided basis functions respectively. The accuracy limit defines the resolution associated with
the temporal basis function. In other words, if T = 1/f = 27 /w is the wave period, the approximation up to
the second time derivative will be considered accurate when the sampling in time is such that T/At > 42, 25,
18 and 14 respectively for the second-, third-, fourth- and fifth-order one-sided basis functions. This implies
that, given a fixed time step size, a wider range of frequency is covered when higher order basis functions
are used, or, equivalently, given a freqeuncy of interest, a larger time step can be used. This clearly shows
that, given sufficiently fine resolution in space, it is more efficient to use higher order basis functions.

0.010, 0.010,
—0.008 —o0.008| -

= =
=2 =2
=0.006 Ly, M=2, N=1 =0.006|| -
= B =
) - B —

= 2 =
X 0.004 E,, M=3, N=1 X 0.004}| ---
5 i s |-
t - B t
W 0.002) — F,, M=3,N=2 W 0.002} ---

Ly
00087 0.2 0.4 0.6 0.8 10 T2 12 00087 0.2 0.4 0.6 08 10 T2 12
wAt wAt

Figure 5. Interpolation errors in Fourier frequency space for selected two-sides Lagrange basis functions.
Plotted are the maximum errors for 0 <7 < 1.

In Figure 5, interpolation errors for two-sided interpolation schemes are plotted. It is seen that the errors
are reduced as the interpolation stencil widens and as the order of basis function increases. However, more
significant, comparing the cases of M3NO with M2N1 and M4NO with M3N1, even for the same number of
stencils and the same order of basis functions, the two-sided interpolations have a much better resolution
than the one-sided counter-parts.

Clearly, as far as the issue of accuracy is concerned, using two-sided interpolation is advantages. The two-
sides interpolation with stencils from ¢;_js to ¢4 is applicable whenever the following condition is met:

tn —tp > NAt (36)
where t;, given by (9), is the time at which interpolation is required and J is that determined by (18).

IV. Optimization of temporal basis functions

Given a stencil of M + N + 1 points, from t;_js to t;;n as in Figure 2, a polynomial of order M + N can
be uniquely determined, as was done and discussed in the previous section using the Lagrange polynomials.

However, instead of choosing the interpolation coefficients Se(n), or the resulting temporal basis function
U, (), to fit the highest possible order in 7, or 7, we can seek an optimization of the coefficients such that
the interpolation error in the Fourier frequency space is minimized. The optimization procedure is similar
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in spirit to those in [29, 30] for the spatial interpolations. The optimized schemes presented here, however,
are valid for an arbitrary point in time and for up to the second derivative in time.

To this end, we will limit in this paper the form of S¢(n) to be a polynomial of 1 of degree M + N:

M+N

Se(m) = > ally (37)
n=0

The coeflicients agf) are to be determined such that the following expression, which is the sum of interpolation

error functions in the Fourier space,

o 1
OBJECTIVE : E:/_{/O [[Eo(n, )” + [E1(n, €)” + | Ea(n, &)[*] dndg (38)

is minimized. In (38), Eo(n, &), E1(n,§) and Ea(n,§) are that given in (32), (34) and (35) respectively, and
&o is a chosen limit of the non-dimensional frequency for optimization.

In carrying out the optimization process, two additional conditions will also be considered. The first is an
imposed order of interpolation m. By expanding (32) as a Taylor series in & and enforcing the equation up
to order m, we get

N
> St —(=n)F =0, k=012..m (39)
L=—M

This condition ensures that the resulting optimized interpolation is accurate to order m in n and £. In
terms of the coefficients @'Y as defined in (37), the order condition (39) leads to the following constraint for

optimization:

N
CONSTRAINTI: > a{) = (=1)* 6k, n=0,1,.., M+ N, k=0,1,..,m (40)
b=—M

In particular, when the highest possible order for (39) is enforced at m = M + N, Lagrange interpolation
results. This can be easily verified by solving directly for Sy from (39) with m = M+ N. For the optimizations
carried out next, the imposed order will be less than M + N, which frees up some of the coefficients a,(f) for

optimization.

The second condition is to ensure that for the point that falls on the grid, ¢’ = t;, the interpolation will
return exactly the value at the grid point, i.e., by (19), we require that

N
plty) = Y Se(0)uw/ ™ = (41)
{=—M
This leads to
CONSTRAINTIT: al” =1, and o’ =0, £+£0 (42)

A. Optimized one-sided temporal basis functions.

We first present the optimized temporal basis functions where the interpolation stencil is one-sided. As an
example, for the case of M = 3 and N = 0, while the maximum possible order for the basis functions is 3,
the imposed order is a reduced one at m = 1. After carrying out the minimization of (38), subject to the
constraints given in (40) and (42), the optimized basis function is as follows:
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Figure 6. Interpolation errors of optimized one-sided temporal basis functions.
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1+ 1.82015757 + 0.9767629272 + 0.1566531173 -1<7<0

1.0001132 4 0.495601447 — 1.015054272 — 0.4806604573 0<7<1
U(r) =< 1.0192289 — 0.546286827 — 0.9643869472 + 0.4913615573 1l<r7<2 (43)
0.99549608 — 1.83367877 + 1.002678272 — 0.1673542173 2<7<3
0 other

Compared to the un-optimized one shown in (14), we see that the coefficients now get slightly modified.
For this particular optimization, the value of & in (38) has been taken to be 0.3. The optimized basis
function will be denoted as 30-opt-1-0.3, following the schematic notation of “MN-opt-m-¢,”, indicating
that the temporal basis function uses a stencil from t;_yr to t;4n with an optimization of imposed order m
and a limit & in the objective integral (38). Here, &y is an adjustable parameter that defines the range of
non-dimensional frequency wAt for optimization. The value of £, can be made larger or smaller depending
on the maximum tolerable error for interpolation.

The interpolation errors in the Fourier space of the optimized and un-optimized basis functions are shown
and compared in Figure 6, for one-sided stencils with M = 3, 4, 5 and 6. The coefficients of the optimized
basis functions are given in Appendix B, tables 4-9. In each of the cases, it is seen that the resolution of
optimized interpolation has been extended to higher frequencies compared to the un-optimized ones. It is
also seen that, due to the reduced formal order of interpolation, the error at lower frequencies is somewhat
elevated. However, the increased error is kept at a practically insignificant levels and is controllable by
varying &y. For the special case of M=6 and N=0, it is noted that the un-optimized as well as as optimized
schemes at an order higher than 2 are found to be unstable. The particular optimized scheme 60-opt-2-0.8
shown in Figure 6 are stable in the numerical tests conducted in the current study.

B. Two-sided

Optimization for interpolations using two-sided stencils has also been performed. The errors for the various
two-sided schemes are shown in Figure 7. The gain in resolution by the optimization is more significant for
wider stencils. For instance, for the M4N3 schemes, using a criteria of |F3| < 0.001, the accuracy limit is
increased from wAt < 0.7 to wAt < 0.9, an increase of 28% in resolution.

The coefficients of the optimized two-sided basis functions for selected stencils are given in Appendix B,
Tables 10-12.

V. Applications of optimized temporal basis functions

In this section, the optimized temporal basis functions are applied to the numerical solution for scattering
of a point source by a sphere, as shown in Figure 8. The sphere is assumed to have a rigid surface for which
an analytical solution exists. The radius of the sphere is 0.5 and a point source is placed at r = (0,0, 1).
By solving the time domain boundary integral equation, scattering solutions at all frequencies, within the
resolution of time domain temporal basis functions used, are computed in one single time domain calculation.

To examine the accuracy and benefits of the optimized temporal basis functions, the solution along a line
in the plane z = —2.5 will be computed and compared with the exact solution, as shown in Figure 8. For
the examples presented in this section, 32,642 constant elements are used. Here, the extra fine resolution in
space is used for the purpose of isolating as much as possible the errors by the temporal basis functions from
that by the spatial discretization. Further details on the numerical procedures are referred to [19].

A. Optimized one-sided temporal basis functions

We first show the results of optimized one-sided temporal basis functions and the comparisons with that of
the un-optmized shifted Lagrange basis functions. In Figure 9, the converted frequency domain solution as a
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Figure 7. Errors of optimized two-sides temporal basis functions.
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Figure 8. Converted frequency domain solution, scattering of a point source by a sphere.
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Figure 9. Scattering solutions by un-optimized and optimized temporal basis functions.
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function of z along the line y = 0, z = —2.5 are plotted. For each case, the solutions by the un-optimized and
optimized basis functions at a chosen frequency are shown, to demonstrate the benefits of the optimized ones.
The chosen frequency is such that the solution by the optimized basis functions is still accurate while that
by the un-optimized basis functions is showing larger errors. This indicates that the use of optimized basis
functions provides more accurate solutions when the same time step size has been used. As the optimization
for basis functions results in simply a different set of coefficients for the temporal basis polynomials, there
should be no additional computational cost incurred compared to the un-optimized ones.

To demonstrate further the quantitative behavior of the numerical error, a relative error in the L2 norm is
computed for each case:

_ [la = dell

Epo = (44)

|l2]]2
where @ and 4. are the numerical and exact frequency domain solutions respectively.

In Figure 10, the relative error Fp, is plotted as a function of the frequency for various optimized and
un-optimized temporal basis functions. In all the computations in Figure 10, the time step has been kept
the same with At = 0.0125. It is seen that the use of optimized basis functions keeps the error low for a
larger range in the frequency space. Conversely, for a given range of frequency of interest, a larger time
step can used with the optimized temporal basis functions to achieve an acceptable accuracy, resulting in a
significant increase in computational efficiency and, at the same time, reduction in memory requirement.
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Figure 10. Relative Ly errors as a function of the frequency. All computations are made with At = 0.0125.
Benefits of using optimized temporal basis functions are shown with more accurate solutions at a higher
frequency compared to that using un-optimized ones.

B. Hybrid temporal basis functions

As noted in Section 2, when the retarded time that is a few time steps earlier than the current time,
specifically when the condition (36) is satisfied, two-sided interpolation can and should be employed. Here,
we present the results by a mixed use of one-sided and two-sided basis functions. When the retarded time ¢/,
falls within the interval (¢,,—1,t,) that is immediately after the current time ¢,,, the one-sided basis functions
(N = 0) are used; otherwise, the two-sided basis functions (N > 1) are applied as indicated. Figure 11
shows the relative errors in L2 norms where hybrid basis functions are used, as a function of the frequency
while keeping the time step size At = 0.0125 in all the cases. As can be seen, in general, using the two-sided
basis functions improves the accuracy. However, the improvements are not as significant as those in Figure
10 between the optimized and un-optimized basis functions. This is mainly because the accuracy of the
solution is now limited by the basis functions used for the most current interval (¢,_1,t, ), which has a lower
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Figure 11. Relative error in L2 norm for mixed basis functions. For the results shown in blue curves, one-sided
A one-sided basis functions are used for the most current time interval and a two-sided basis function is used
for the rest of the intervals. Results by the one-sided and two-sided hybrid basis functions are shown in red
curves. The stencils of the schemes are as indicated.

resolution compared to the two-sided one used in the rest of the time intervals. To fully take advantages
of two-sided basis functions, further improvements for interpolations in the most current interval will be
required.

VI. Scattering of a point source by a flat plate and comparison with
experimental results

In this section, we present an application of the time domain integral equation solver to the scattering of a
point source by a flat plate. An experimental study had been conducted in the early 80s of such a problem
in connection with the investigation for the noise shielding effects by an aircraft body.! The computational
solution will be compared with the experimental results given in [1].

The dimension of the plate is 2m x 0.5m x 0.0032m, as shown in Figure 12. To cover the range of frequency
in the experiment, up to 20kHz, a mesh of 801x 201 elements is used on the top and bottom surfaces of
the plate. Along the thickness of the plate, 4 elements are used. This leads to a total of 330,018 constant
elements for the discretization of the plate surface.

In the first case of the experiment, denoted as Case LR1, a point source is placed 0.25 meters above the
center of the plate, as shown in Figure 12 (left). The scattered sound below the plate along a microphones
traverse line is measured in the experiments, see Figure 12 (right). In the coordinate setup shown in Figure
12, the top surface of the plate is located at z = 0 and the microphone traverse line is located on the plane
z = —2.5 (meters) and along the line y = 0. To assess the sound shielding effects, measurements of sound
pressure with and without the plate are made. The shielding of sound is calculated as

ASPL = 20log <||§ : D (45)

where p, and p,, are the shielded and un-shielded sound pressures, respectively.
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CaseLR1

Point Source

Thickness=0.0032m

Figure 12. Left: configuration of the plate and point source in the experiment for case LR1; the dimension is in
meters. Right: computational setup, which consists of the scattering body and the field points. The numerical
solutions along the indicated microphone traverse line are compared with those from the experiment.

In the computation shown in Figure 12, in addition to the boundary elements on the surface of the plate
for the purpose of solving the time domain boundary integral equation (1), field points are also included
where the scattered sound field is computed, simulating an experimental environment, as illustrated in Figure
12(right). The point source is modeled in time by a short pulse with a broad spectrum. After the completion
of the time domain simulation of (1), the frequency domain solution of all frequencies up to 20kHz becomes
available at once. The converted frequency domain solution, at 3 kHz, is shown in Figure 12. More details
on the numerical method can be found in [19].

Comparison with experimental results for the case LR1 is shown in Figure 13. The shielding effect, defined
in (45), as a function of the traverse angle 6 is plotted at four selected frequencies of 1kHz, 4kHz, 8kHz,
12kHz, 16kHz and 20kHz. The experimental measurements are in solid black lines and the computations
are in solid purple lines. The dashed lines were from the prediction given in! based on a simplified edge
diffraction calculation. Relatively good agreements are found between the computed and measured values on
the level of shielding as well as its variation in 6. It is to be emphasized that all the current computational
results for frequency up to 20 kHz are from one single time domain calculation.'®

Comparison with the experimental results for the case of LR4 is shown in Figure 14, where the location of
the point source is moved to the back of the plate and is directly above one of the edges of the plate. The
shielding effects at frequencies 2kHz, 8kHz, 12kHz, 16kHz and 20 kHz are plotted for both the experimental
and computational results. Again, good agreements are observed on the level of shielding and its variation
in 0. Here, the traverse angle 6 is measured from the location of the point source.

VII. Conclusions

A Fourier analysis of the temporal basis functions used in the March-On-in-Time schemes is presented. One
of the advantages of a Fourier analysis is that it provides a quantitative measure of the temporal interpolation
errors in the frequency space. Temporal resolution of various well-known shifted Lagrange basis functions
are presented. Based on the formulation of the Fourier analysis, optimized temporal basis functions that
significantly extend the resolution in the frequency space are proposed. The optimized coefficients for the
basis polynomials are given in the present paper. The substantial gain in accuracy as well as stability of
the new basis functions are demonstrated by numerical examples. For instances, the accuracy limits of
the conventional third-, fourth- and fifth-order shifted Lagrange basis functions are increased from 25, 18
and 14 points per wave period to 22, 12 and 10 points per wave period by using the optimized temporal
basis functions respectively. The use of optimized basis functions keeps the error low for a larger range
in the frequency space, and for a given range of frequency of interest, a larger time step can used with
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Figure 13. Case LR1l. Comparison of computational and experimental results, at frequencies 1kHz, 4kHz,
8kHz, 12kHz, 16kHz and 20Hz as indicated. Black: experimental measurements; purple: current computation.
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12kHz, 16kHz and 20Hz as indicated. Black: experimental measurements; purple: current computation.
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the optimized temporal basis functions. The increased time step size not only results in an increase in
computational efficiency, it reduces substantially the requirement on the memory as well.

Moreover optimization for both one-sided and two-sided basis functions has been carried out. While signifi-
cant gains in accuracy are observed for the optimized one-sided basis functions, the improvements by further
using the two-sided basis functions are not as substantial. This indicates that the overall accuracy is limited
by the interpolation scheme used for the most current interval.

In addition, numerical results for the scattering of a point source by a flat plate are also presented and
compared with experimental measurements. The full configuration of the experiment are modeled and all
the frequencies covered in the experiments are included in one single time domain simulation. Very good
agreements are observed.
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APPENDIX A.

Two-sided shifted Lagrange basis functions are given, as 7-normalized basis functions W,(7), in Tables 1, 2
and 3.

M=2N=1 M=3N=-1 M=3N=2
v 1+ 2r + 272 4 T8 4 et 4 570
Uy [ 1+87r4 724308 | 148748224 3734 L7t | 1487372 28,3 3874 Lg5
I T O S A B e
Uy | 1—37—72+178 1-3572 4104 1—3r—5724+ 534 40t = Ls5
Uy | 1-rgpr2- 173 1-37 5724373 14 1-Br—3r24 283 3744 Ls5
Uy — By B2 I3 Lt | 1180 15,2 dEp8 Lt oS

Table 1. Two-sided shifted Lagrange basis functions M2N1, M3N1 and M3N2 schemes.

APPENDIX B.

Optimized one-sided basis functions are given in this appendix. The optimized schemes are denote as MIN-
opt-m-§; for a stencil from ¢;_p; to t;4n of order m and a value of §; used in the optimization of (38).
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Table 2. Two-sided shifted Lagrange basis functions M4N1 and M4N2 schemes.
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Table 3. Two-sided shifted Lagrange basis functions for the M4N3 scheme.
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For convenience of implementation, the optimized basis functions are given both as Sy(n) in (20) and as the

T-normalized basis functionW,(7), £ = —M, ..., N, where
M+N
Setn) =Y alPn”
n=0
M+N
Uy(1) = Z bﬁf)T”
n=0

The optimized coefficients for one-sided schemes are listed in tables 4-9, and for two-sided schemes are listed
in tables 10-12.

30-opt-1-0.3:

al” =1, a{? = —1.820157538622123, a5 = 0.9767629249288535, a ) = —0.1566531198507175

al™ =0, a{™V = 2.976488345219672, ol ™" = —2.457035584498764, a$ ") = 0.4806604580295282

al™? =0, {7 = —1.492504074572975, al"? = 1.983782394210968, a§ ? = —0.4913615565069039

—3)

al™ =0, {7 = 0.3361732679754260, a{™® = —0.5035097346410570, a$~* = 0.1673542183280932

b§? =1, b{? = 1.820157538622123, b{*) = 0.9767629249288535, b\ = 0.1566531198507175

—1)

b§™ = 1.000113218750436, b{™" = 0.4956014496892710, b§~ " = —1.015054210410179, b~ ") = —0.4806604580295282

2)

b$™? = 1.019228975642691, b{™? = —0.5462868241880500, b\~ 2) = —0.9643869448304550, bl 2 = 0.4913615565069039

b5 = 0.9954960870152810, b{™ = —1.833678754987600, b,~*) = 1.002678230311782, b~ *) = —0.1673542183280932

Table 4. Optimized coefficients of a one-sided scheme 30-opt-1-0.3 for M=3 and N=0.

40-opt-2-0.4:

al® =1, a{? = —2.062150691362142, a{” = 1.411138926293613, o’ = —0.3815749670613513, a”) = 0.03258852451576015

a((,fl) =0, a§71>

3.940193508706198, al~ " = —4.195717425454449, a{™ ") = 1.393477742162557, a{~ " = —0.1379601918306038

al™® =0, a{7? = —2.947676377945740, "% = 4.620318718601672, al 2 = —1.890983424119563, a " = 0.2183494283972505

al™ =0, {7 = 1.323374995221450, a{™® = —2.298040866014450, a$~®) = 1.127833489996861, a{ > = —0.1531723793657302

al™ =0, ol = —0.253741434619772, ai"*) = 0.46230064657361, a§ Y = —0.248752840978503, a'~*) = 0.04019461828332335

b§? =1, b{? = 2.062150691362142, b{*) = 1.411138926293613, b\ = 0.3815749670613513,
b{® = 0.03258852451576015

b = 0.9999936335837022, b{™1) = 0.8226488830374440, b§") = —0.8430453499504010, bS~ P = —0.8416369748401418,
b\ = —0.1379601918306038

b$™? = 0.9516455799147180, b{~? = 0.1710208842617900, b§~ 2 = —1.485195544581696, b 2 = 0.1441879969415590,
b2 = 0.2183494283972505

b§™® = 1.332298692825400, b~ = —1.444017057551140, b?) = —0.4188479417921300, bS~> = 0.7102350623919010,
b = —0.1531723793657302

b§™ = 0.7514850646052620, b{™ = —1.794349651531750, bS~*) = 1.335949910030616, b~ *) = —0.3943610515546706,

b = 0.04019461828332335

Table 5. Optimized coefficients of a one-sided scheme 40-opt-2-0.4 for M—4 and N=0.
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40-opt-0-0.5:

al®” =1, ol = —2.034105581242223, a{” = 1.348564342790794, a{? = —0.3349900179133711, a{” = 0.02053535385764966

al™ =0, a{™V = 3.861902518822506, ol ™" = —4.015123947967559, a$ ") = 1.253368113587240, a{ ") = —0.1001612149114932

al™® =0, {7 = —2.875187020819725, a\"?) = 4.441354241058630, a§ 2 = —1.741242953899078, a'~? = 0.1750950769588371

al™ =0, {7 = 1.304038639460538, ol = —2.237608224395451, a{"®) = 1.066275342579155, a{ > = —0.1327171661167696

al™ =0, {7 = —0.256648556221096, a§ " = 0.462813588513586, al *) = —0.243410484353946, a’~*) = 0.037247950211776

b =1, b = 2.034105581242223, b\ = 1.348564342790794, b{" = 0.3349900179133711,
b{?) = 0.02053535385764966

b5 = 0.9999854695306938, b{") = 0.8088858959968650, bS 1) = —0.8559868966747980, bS " = —0.8527232539412672,
b{™ = —0.1001612149114932

b$™? = 0.8866205227438440, b{™? = 0.4016430406913600, bS~ > = —1.803821635323750, b > = 0.3404823382283810,
b = 0.1750950769588371

b§™® = 1.812985693001390, b{™ = —2.334369602113890, bS~?) = —0.1921428885113860, bS~ > = 0.5263306508220800,
b = —0.1327171661167696

b5 = 0.3356274468951080, b{™ = —1.297632157112838, bS~*) = 1.117690996596730, b~ *) = —0.3525567190344700,
b = 0.03724795021177600

Table 6. Optimized coefficients of a one-sided scheme 40-opt-0-0.5 for M—4 and N=0.

50-opt-3-0.5:

al®” =1, a{? = —2.253708396282178, o' = 1.802980567846060, a ) = —0.6435629579203238,
al? = 0.09800825706055226, a'” = —0.003717475566444615

al™ =0, a{™" = 4.885997199963343, a{™" = —6.133796019327818, a§ ™" = 2.696612864444295,

—1)

ai_l) = —0.4705165275321261, ay = 0.02170250467191372

al™® =0, {7 = —4.840238170364923, a{~? = 8.505378398850670, al 2 = —4.517488545240609,

a{™? = 0.9019835395229814, al~* = —0.04963526302320873

al™® =0, {7 = 3.241815274136500, a{~® = —6.243164759045710, al *) = 3.808418028259290,
(=3 = 0.05586551670259000

5

a{™® = —0.8629340239817120, a

aé"l) —0, a(1—4) — —1.238362855620700, a(2*4) = 2.490475559620370, af;“) = —1.633007088972323,
(=% = _0.0310478851909856

5

al™ = 0.4119422542202200, a

al™® =0, {7 = 0.2044969481679640, al ® = —0.4218737479435780, a > = 0.2890276994296667,
a{™® = —0.07848349928991710, a{~® = 0.006832602406135260

b8 =1, b{? = 2.253708396282178, bS") = 1.802980567846060, b\ = 0.6435629579203238,
b{?) = 0.09800825706055226, b\ = 0.003717475566444615

b~ = 1.000000022219608, b{~ = 1.065309832128350, b§~ " = —0.6500315444685530, b~ ") = —1.031571801034928,
b = —0.3620040041725575, b{™ Y = —0.02170250467191372

b$™? = 1.044537108372981, b{™? = 0.1359348949708500, b§~ > = —0.9227689658981300, b5~ > = —0.7129692500148930,
b = 0.4056309092908941, b$™?) = 0.04963526302320873
b$™® = 0.04191437020961000, b{~% = 1.961226842612910, bS~?) = —3.482150290025250, bS > = 1.518893756288150,
b = —0.02495127344286200, bS~* = —0.05.586551670259000

i = 4.045886482021400, b{™ = —6.017025386585420, b~ Y = 2.570200374862790, b~ Y = 0.009592652006509000,
b~ = —0.2090154495994932, b~ = 0.03104788519098566

b{™® = —1.096201066066790, b{~> = 0.2270301998286800, bS~>) = 0.6817698576829370, b~ > = —0.4275083151651400,
b = 0.09233156086346440, bl = —0.006832602406135260

Table 7. Optimized coefficients of a one-sided scheme 50-opt-3-0.5 for M=5 and N=0.
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50-opt-1-0.6:

al® =1, ol = —2.215037130002110, a{” = 1.709521692382997, a{”) = —0.5603976849101513,
a{?) = 0.06394402097872657, a{”) = 0.001969077570047259

al™ =0, a7 = 4.742633982281605, ol = —5.779728449023321, o) = 2.371825057889128,

al™V = —0.3324790253197149, a{ ") = —0.002251452993678422

%) — _4.638819984009898, a\ %) = 7.989496031369253, al ? = —4.021183642875550,

a{™? = 0.6795150419741979, al 2 = —0.009.007662381550786

aéﬁz) =0, al”

al™ =0, a{™ = 3.118574740431463, a{® = —5.902228809953020, a{ *) = 3.449889828358286,
al™ = —0.6876777025009474, al™?) = 0.02144215404498828

Y = _1.216039807949110, ol = 2.407274859976580, oY = —1.521540535095678,

a$™ = 0.3470062754645280, al~?) = —0.01670089682084681

5

a874) =0, aY

al™ =0, a{™® = 0.20868819924805, a\ " = —0.4243353247524800, a§ ®) = 0.2814069766339650,
a{™® = —0.07030861059678980, al™® = 0.004548780581040484

b =1, b{” = 2.215037130002110, 65" = 1.709521692382997, bY") = 0.5603976849101513,
b'%) = 0.06394402097872657, b*) = —0.001969077570047259

b\ = 1.000000112834019, b$ ) = 1.0425211083449, bS~ ") = —0.68164195721101, b§ ") = —1.019394426673484,
b\ = —0.3437362902881070, b = 0.002251452993678422

b{"?) = 1.094870489830355, b\~ = —0.08882877961078, b\~ 2 = —0.54985780902736, b 2 = —1.054630197656002,
b = 0.5894384181586900, b% %) = 0.009007662381550786

b7 = —1.108760172253658, b~ = 4.732892235495, b\~ = —6.19843469763277, b} ®) = 2.872448737604138,
b7 = —0.3660453918261232, b\~ = —0.02144215404498828

b\ = 8.005532456077490, b\~ = —12.46467197550624, bS~ Y = 6.77281691808117, b = —1.35841638100128,
b = 0.01208833904759180, b5 ~* = 0.01670089682084681

b™®) = —4.117012350568240, b\~ = 3.86850778337276, bS ") = —1.06354653846087, b ) = —0.01242990995829,
b = 0.04341090392922230, b’ *) = —0.004548780581040484

Table 8. Optimized coefficients of a one-sided scheme 50-opt-1-0.6 for M=5 and N=0.
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60-opt-2-0.8:

al” =1, a{® = —2.335338640342133, a{”) = 1.964165026362754, a{’) = —0.7385687289262745,
al®) = 0.1076408436734090, a{”) = 0.004207072283015086, a\’) = —0.002105561530452494

al™ =0, a7V = 5.463663989183361, ol = —7.317425711495562, al ) = 3.466208969176967,
al™" = —0.6175063130227441, a{ ") = —0.005425514102058792, o’ ") = 0.01048451884945769

al™ =0, a7 = —6.489567664533225, o' = 11.96384343392011, ol ? = —6.893802373593481,
al™? = 1.467129856434025, ol = —0.02598815228941379, a{ 2 = —0.02161495904990831

al™ =0, o™ = 5.720280598165229, oY = —1.152419880172741, o = 7.569600527652864,

a{™® = —1.867044019804100, a{® = 0.07785134875009855, al > = 0.02351016807234565

al™ =0, a{™ = —-3.320996093997950, a$™ = 7.001317521175880, a§ *) = —4.929546099273250,
al™® = 1.358803395934456, a{ ") = —0.08647607573845128, al Y = —0.01410251545537654

al™ =0, a{™ = 1.151132047769120, a§~®) = —2.483273973548600, a{ ®) = 1.825867637634650,
a$™® = —0.5433076551194460, al > = 0.04523585119646552, a’ > = 0.004345137828776000

5)
al™ =0, ol = —0.1801751362443900, a§~® = 0.3955725053129100, a{ % = —0.2997599326714800,
a$™® = 0.09428389190440000, a{~® = —0.009404530099655280, al ®) = —0.0005167887148419200

b =1, b = 2.335338640342133, b = 1.964165026362754, b\’ = 0.7385687289262745,
b\ = 0.1076408436734090, bL*) = —0.004.207072283015086, b\ = —0.002.105561530452494
b\ = 0.9999999385894208, b\ ") = 1.206806235781379, b5 = —0.5208240403798516, b\ = —1.151618953054557,

b\ = —0.4873661007911727, b\ = —0.05748159899468735, b\ ") = 0.01048451884945769

b = 0.9849188683551670, bl = 0.6407913268212580, b2 = —1.454496608355274, by 2 = —0.3453169383168390,
b = —0.08964920945461200, bS 2 = 0.2853676608883135, b\ > = —0.02161495904990831

b = 2.648491492458130, b\~ = —5.121169188855139, bS~?) = 5.366547248153540, b§®) = —4.867184436579184,
b7 = 2.474598901214041, b3 = —0.5010343740523202, b§ ™) = 0.02351016807234565
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b = —15.25158989284142, b\ = 33.41923123353735, b5 Y = —31.2064574816500, b = 15.07608366535612,
b\ = —3.755321828124940, b\ = 0.4249364466674883, b\ Y = —0.01410251545537654

b{™%) = 41.59479921838780, b\ = —64.4380077536637, b\ > = 40.68907346341115, b > = —13.13152190630211,
b = 2.217015310583192, b\ = —0.1755899860597455, b\~ ") = 0.00434513782877600

b = —26.63758250972294, b\~ = 31.39874452103854, b Y = —14.99494326320565, b ©) = 3.655104610958875,
b8 = —0.4669179170998952, b’ %) = 0.02800892383396440, b\ ®) = —0.000516788714841920

Table 9. Optimized coefficients of a one-sided scheme 60-opt-2-0.8 for M—=6 and N=0.

27 of 31

American Institute of Aeronautics and Astronautics




Downloaded by Fang Hu on December 21, 2014 | http://arc.aiaa.org | DOI: 10.2514/6.2014-3194

31-opt-2-0.5:

al’ =0, a{") = —0.2566666655914183, a$") = 0.1664601448949525, a$) = —0.2495593410606286, i) = 0.03976734891271412
al” =1, al? = —0.8165551541642040, oS = —0.8568739613695883, a{’) = 0.8366848450375022, a'” = —0.1632602282052145
al™ =0, a7 = 1.489665456041122, a{~ ") = 0.2718610147390500, a§ ") = —1.012698488748735, a}~ " = 0.2511765911393588
al™ =0, a{7? = —0.502998787223958, a\"?) = 0.161059275050855, a§~ > = 0.513579806627478, ai” > = —0.1716418933139305

al™ =0, ol = 0.0865551509384589, a{™* = —0.0425064733152697, ol = —0.0880068218556164, o> = 0.04395818146707

b§Y = 1.012453500459714, b{") = 2.097334374214066, bS") = 1.453742261553123, b§") = 0.4086287367114851,
b = 0.03976734891271412

b§? =1, b{? = 0.8165551541642040, b5 = —0.8568739613695883, bS") = —0.8366848450375022,
b{®) = —0.1632602282052145

b = 1.000004573170796, b~ = 0.000001616169548, bS~ " = —1.259174904671002, b5 ") = 0.0079921241913,
b = 0.2511765911393588

b$™? = 1.000607685752440, b{™ = —0.8116554064634220, bS~2) = —0.8768673247186090, bS~ > = 0.8595553398839660,
b = —0.1716418933139305

b5 = 1.061535701709146, b{™ = —2.202815719388985, bS~*) = 1.539173929206075, b~ >) = —0.4394913557492488,
b = 0.04395818146707210

Table 10. Optimized coefficients of a two-sided scheme 31-opt-2-0.5 for M=3 and N=1.

41-opt-3-0.6:

al? =0, ol = —0.2072314848018746, ol = 0.4259961829831501, al" = —0.2894795639340527,
al) = 0.07698535219432342, a{" = —0.006270493057061551

al” =1, a{? = —1.057224797042076, a5 = —0.6608475885450225, al”) = 1.036721249943883,
al” = —0.3525248689380824, a{” = 0.03387603365013272

al™ =0, ol = 1.967880702853717, al~Y = —0.1165714756514110, a{ ) = —1418756027101672,
al™Y = 0.6402459538090958, a5_1) = —0.07279920402991539

al™ =0, a{7? = —0.987978478289948, o\ ? = 0.554838128392867, ol = 0.930736220982244,
a$™ = —0.575442169742026, al~? = 0.07784634075956530

al™ =0, ol = 0.3373714601964230, ol = —0.246552390567162, a§ *) = —0.304691540764742,
(=3) = _0.04144673874460764

5

a{™® = 0.255319192837479, a

al™ =0, a{™ = —0.05281740291624100, ol ¥ = 0.04313714338757800, al ¥ = 0.04546966087433870,
(=4 _ 0.008794061421886520

5

a{™ = —0.04458346016078870, a

b§Y = 1.005963076970462, b\" = 2.266956416632934, bS" = 1.819051918521864, b§") = 0.6601259032819619,
b{) = 0.1083378174796312, 5" = 0.006270493057061551

b§? =1, b{? = 1.057224797042076, b5 = —0.6608475885450225, b{") = —1.036721249943883,
() = —0.3525248689380824, b{”) = —0.03387603365013272

b = 0.9999999498798146, b{™ = 0.3245425346673150, b§" = —1.259355874401006, b~ ") = —0.4142357478355570,
b = 0.2762499336595188, bl = 0.07279920402991539

b$™? = 0.9732935132831980, b{™? = —0.2137665160888480, b2 = —1.443649358757065, bs~ > = 0.5589475065713520,
b~ = 0.2030212378536270, bl 2 = —0.07784634075956530

b§™® = 1.175768369732920, b{™P = —1.419929151027054, b~?) = —0.3921593052700280, bS ™ = 0.9710677137296820,
b = —0.3663818883316356, b\~ *) = 0.04144673874460764

b~ = 0.9807360733438470, b{™Y = —2317856285005482, b~ Y = 1.936960208451300, b§~Y = —0.7391841258035628,
bi = 0.1312977682769417, bl = —0.008794061421886520

Table 11. Optimized coefficients of a two-sided scheme 41-opt-3-0.6 for M=4 and N=1.
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51-opt-4-0.8:

al? =0, alV = —0.1767398794956751, al") = 0.3948890656191663, al") = —0.3102054841166552,
al) = 0.1060950140568273, o' = —0.01419469891182375, al') = 0.0001559837806004457

al® =1, ol = —1.236283089901758, al”) = —0.4.77569579896645, ) = 1.158963892100039,
al?) = —0.5.269997846949658, a\” = 0.08.390301503827131, a') = —0.002.014458050832157

al™ =0, a7V = 2.415846975277249, a{™ P = —0.5.771547514709360, oV = —1.7250705320837,
al™" = 1.085240379289086, al ) = —0.2.065945915140004, a§ ") = 0.007.732533545154094

al™® =0, a7 = —1.599092745511250, a\ %) = 1.186533492466867, al > = 1.348086223000850,

al™? = —1.192863951343233, al 2 = 0.2712421939097631, a{ > = —0.01390522928430374

al™ =0, a{™ = 0.816125476322960, a{® = —0.74431215389603, a{ ®) = —0.63039213575091,
al™® = 0.74572221439243, ol = —0.2002686993506443, a{"® = 0.01312531038130151

5

al™ =0, a{™ = —0.25650580073832, al ) = 0.2561563420434330, ol * = 0.183221175033803,

al™ = —0.2553852527776407, al Y = 0.0788423013075866, al Y = —0.006328679519750083

al™ =0, a{™ = 0.036649154046801, a{®) = —0.0385424148658540, a °) = —0.02460313818343,
a$™® = 0.03819138107749597, a{™®) = —0.01292952047915256, a’ ) = 0.001234539147829928

bV = 1.002280125980748, b\ = 2.393423916554004, bS") = 2.106362348137340, bS") = 0.8.796522050742108,
b{") = 0.1.794082653249527, b{") = 0.01.513060159542642, bS") = 0.0001.559837806004457

b\ =1, b\” = 1.236283089901758, bY") = —0.477569579896645, b\") = —1.158963892100039,
b = —0.5269997846949658, b*) = —0.08390301503827131, b\ = —0.002014458050832157

~1) = 1.000000013042853, b\~ = 0.559200363058456, b5 1) = —1.190881983950213, b§ ") = —0.7045957408357219,

b\ = 0.1682554248963954, b\ = 0.1601993902430758, b\ ") = 0.007732533545154094

b

b2 = 1.03663057227702, b\ = —0.1.8200094757769, b’ = —0.9.91563517217471, b2 = —0.4.30025683156908,
b2 = 0.6.852442306961736, b2 = —0.1.043794424981182, b2 = —0.01.390522928430374

b\ = 0.035536070179111, b~ = 2.10445665901869, b\ *) = —4.27413850985563, bS~>) = 2.618240898696925
b7 = —0.48639137439153, b~ = —0.0359868875127829, b\~ = 0.01312531038130151

b\ = 4.23225362690136, b\~ = —7.24347524052195, b = 4.09476965681066, bS Y = —0.611115554525306
b\ = —0.197422311365929, b\~ = 0.0730460071664154, b\~ Y = —0.006328679519750083

~) = _1.101171013415250, b{~®) = 0.355462295161609, b5 > = 0.73302158597198, b§ > = —0.593192233153169

b8 %) = 0.177905549534905, b\ = —0.02410665395574528, b*) = 0.001234539147829928

by

Table 12. Optimized coefficients of a two-sided scheme 51-opt-4-0.8 for M=5 and N=1.
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