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The present paper is aimed at developing a fast numerical solution of the time domain
boundary integral equation (TDBIE) reformulated from the convective wave equation for
large scale wave scattering and propagation problems. Historically, numerical solutions of
boundary integral equation in the time domain have encountered two major difficulties.
The first is the intrinsic numerical instability in the early time domain boundary integral
equation formulations. And the second is the formidably high computational cost associated
with the direct solution of the time-domain boundary integral equation. In this paper,
both issues are addressed. A stable Burton-Miller type formulation is proposed for the
time domain boundary integral equation in the presence of a mean flow. A justification
for stability through the energy equation associated with the convective wave equation
is given. A comparison of the current formulation with a previous one in literature is
also offered. The boundary integral equation is solved by a time domain boundary element
method (TDBEM), using high-order basis functions and unstructured surface elements. To
significantly reduce the computational cost, a Time Domain Propagation and Distribution
(TDPD) algorithm is proposed, making use of the delay- and amplitude-compensated field
with a mean flow. Implemented in multi-level interactions, the current algorithm shows a
computational cost of O(N'?%) per time step where N is the total number of unknowns
on surface elements. Furthermore, GPU computing has been utilized to speedup the
computation. Numerical aspects of the GPU computing for boundary element solutions
are discussed. Comparison with CPU executions is also given. Numerical examples that
demonstrate the capabilities of the proposed method are presented.

I. Introduction

Currently, it is still computationally challenging to calculate accurately sound scattering by an acoustically
large body at mid to high frequencies. Such a computation is important for studies on noise shielding effects
and noise reduction treatments.2%43 To resolve acoustic waves at mid to high acoustic frequencies, the total
number of nodes on the surface of the body, could be in the orders of 107 ~ 10%. With such a large number
of nodes on the surface alone, volume-based methods, such as finite difference and finite element methods,
may not yet be practical for routine applications due to limitations in available computational power and
memory storage. Surface-based methods, such as the Boundary Element Method (BEM), may offer a viable
approach for accurate solutions. With recent advances in High Performance Computing (HPC), including
massively parallel CPUs and GPUs (Graphic Processing Units), and advances in multi-level fast integral
equation methods, a time domain fast scattering solution is increasingly becoming a possibility.

For the wave equation in the frequency domain, fast numerical solution of boundary integral equations has
been studied extensively in literature. For instance, the Fast Multipole Method (FMM) provides a rapid

*Professor, Department of Mathematics and Statistics, ATAA Associate Fellow

1 of 36

American Institute of Aeronautics and Astronautics



acceleration of the BEM for the Helmholtz equation.'!»?2:23 In this approach, the linear system formed in
the Boundary Element Method is solved by an iterative solver, in which the matrix vector multiplication,
typically of O(IN?) complexity, is accelerated by Fast Multipole Method to a reduced O(NN) complexity, where
N is the total number of unknowns. Recently developed wideband FMM can effectively deal with high and
low frequency waves.'!:24 Other non-multipole based fast methods have also be vigorously developed in the
literature. -2 6:65

Compared to the frequency domain solutions, time domain Boundary Element Method for the wave equation
has received far less attention in the literature. The present paper is aimed at developing a fast numerical
solution of the time domain boundary integral equation (TDBIE) reformulated for the convective wave
equation for large scale wave scattering and propagation problems. A time domain solution has several
distinct advantages:

1. Broadband sources and time dependent transient signals can be simulated and studied;
2. Scattering solutions at all frequencies are obtained within one single computation;

It can be coupled naturally with nonlinear computations where many frequencies are generated;

- W

Inversion of a large dense linear system is avoided;

5. There are many applications where a time domain solution is preferred, such as in interior acoustics,
simulation of time reversal problems, etc.

Although research on time domain boundary element method for wave equation was started in the 60s,'? 4960
historically, its development has been hindered by two major difficulties. The first is the intrinsic numerical
instability in the early time domain boundary integral equation formulations. The instability is attributed to
the excitation of the interior resonant modes that are inevitably excited when a transient signal containing a
continuous spectrum is introduced in the computation. The second is the formidably high computational cost
associated with the direct solution of the time-domain boundary integral equation which scales as O(N;N?),
where N, is the total number of time steps. These difficulties presented barriers for applications of the time
domain BEM to large scale real-world problems.

In recent years, due to continued research efforts, substantial progresses in time domain BEM have been
made. The instability problem has been largely improved. For the wave equation without a convection
velocity, an effective way to avoid the instability is to use the Burton-Miller type formulation in the time
domain.1% 436 Tn [10], the stability of the formulation was shown theoretically. In [36], the formulation was
extended to the use of high-order basis functions with an explicit treatment of the hypersingularity in the
Burton-Miller type integral equation. Additionally, time discretization based on the so-called convolution
quadrature has also been shown to be unconditionally stable when it is coupled with a Galerkin spatial
discretization.?12:28:59 A stabilized time marching scheme significantly broadens the applicability of the
time-domain boundary element approach both in the geometrical shape of the body and in the range of
frequencies that can be included in the calculation.

Furthermore, in the last decade, methods aimed at reducing the computational complexity of time domain
integral equations have also been developed. In particular, two interesting fast methods for time domain
integral equations have been proposed in the literature. One is the multi-level Plane Wave Time Domain
(PWTD) algorithm, which is akin to the Fast Multipole Method (FMM) in the frequency domain.'®?? The
second is the multi-level Cartesian Non-uniform Grid Time Domain algorithm (CNGTDA) based on far-field
smoothness of the wave equation kernel.*4%47 In both approaches, the computational complexity can be
reduced formally from O(N;N?) to as low as O(N;N log® N), where N; is the number of time steps and N
is the total number of unknowns. In the present paper, a new, and simplified, algorithm that exploits far
field smoothness of the kernel is proposed.

With the advances in stability and fast multi-level numerical methods as well as the emergence of massively
parallel computational architectures like GPUs (Graphics Processing Unit), fast and efficient solution of
time domain boundary integral equations for large scale real-world applications is increasingly becoming a
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possibility. In this paper, a formulation of stable time domain boundary integral equation for the convective
wave is proposed and its efficient solution based on a multi-level Cartesian Non-uniform Grid Time Domain
method is developed. In addition, application of the recently emerged General Purpose GPU (GPGPU)
computing techniques has also been considered for the time domain boundary element method.

The rest of the paper is organized as follows. In section 2, derivation of the time domain boundary integral
equation in the presence of a mean flow is given and a stable Burton-Miller type formulation is proposed. A
theoretical justification for stability is also presented and a comparison with a previous Kirchhoff formulation
is offered. In section 3, the time domain boundary element method is described. A time domain algorithm
to significantly reduce the computational complexity is proposed and described in section 4. In section 5, use
of GPUs for accelerating the computation is discussed and a comparison with CPU only approach is given.
Several numerical examples are presented in section 6. Section 7 contains the conclusions of this study.

II. Derivation of Time Domain Boundary Integral Equation for scattering in
the presence of a mean flow and its stability

In this section, the time domain boundary integral equation for scattering with a uniform mean flow is
derived. In particular, a new boundary integral equation based on the Burton-Miller type formulation is
proposed. Stability of the new formulation is discussed. Comparisons of the current formulation with the
previously well-known formulations in aeroacoustics are also given.

A. Time domain Kirchhoff formulation in the presence of a mean flow

Consider the convective wave equation with a constant mean flow U written as

P 2
(& +U- V> p— AV = q(r, 1) (1)
with homogeneous initial condition
op
p(r,O):E(r,O):O, t=0 (2)

Here g(r,t) represents the source term. The current problem is considered in the context of finding the
acoustic solution exterior of certain specified surface, or a collection of surfaces, S, such as the scattered
sound field by a aircraft as shown in Figure 1. The formulation of the problem is to be completed with
specified boundary conditions on physical surfaces or control surfaces.

To reformulate the wave propagation problem, the PDE (1), the initial condition (2) as well as the boundary
conditions, into an integral equation, we introduce the Green’s function G(r,t;7’,t") to the adjoint equation
defined as follows:

2
(% +U- v> G—AVEG=6(r—r)o(t—1t) (3)

and initial condition
G(r t;r' ') = %—?(r,t;r’,t') =0, t>t (4)

Note that the time domain adjoint Green’s function G(r,t; 7/, ') is non-zero only for t € (—oco,t'].

By the operation of G'x(1)-px(3) and by using the following properties of the differential operators for any
two functions u and p,
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uV?p — pV?u =V - (uVp — pVu)

and
D) e (2iv ) w2 (2 hu.v)p-p(Lrv.v
Y\ o P=P\ 5 Yo"\t P=P\ 5

» o {[o(Zru9)n(Lu-v) )

/7 [Agle(g+vv)r-s(g+vv)e|+v:|e(5+v-9)r-s(g+v-v)c|u

— V- (GVp — pVé)} drdt = /t,+ /v [éq(mt) —p(r, t)o(r — )5t — t')] drdt

Since the first term in the above will be zero by initial conditions, we get an expression for pressure p at an
arbitrary point ' and time ¢’ as

't 't
p(r' t') = / / Gq(r,t)drdt + 02/ / V - (GVp — pVG)drdt
o- Jv - Jv

[ oo s}

The integrals in the second and third terms above can be readily converted to surface integrals by using the
Divergence Theorem, which yields

p(r',t) /7 /qutdrdt+c /7 /G——p )drdt
_// ( LU v) (aa—erU-vé)

where r¢ denotes points on surface S, and

U, drdt (5)

U,=n-U

is the normal component of the mean velocity on surface point r5. In this work, the unit normal vector n
is assumed to be outward from the solution domain. For the exterior scattering problem, the normal vector
is then the one that is inward to the body.

For convenience of discussion, we introduce a modified normal derivative as

0 0 _
%_%_Mn(M.v)_(n—MnM)-V, and n=n—M,M

Then, equation (5) can be written as
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t't

U,drgdt (6)

t't 't
- ~ 0 oG
p(r' ") :/ / Gq(r,t)drdt+c2/ /(G—p — p——)drdt — /
0 \% 0 on on 0

Furthermore, if we define

ap G
/lGE_pat

0 0 10

on  on  "cot

we get

p(r',t) /7 /qutdrdH—C /7 /G——p )drsdt (7)

Equation (5), (6) or (7) is the Kirchhoff representation of the acoustic field in the presence of a mean flow.

For simplicity, in what follows, we consider the case where the mean flow is along the x axis,

U =(U,0,0)

Figure 1. A schematic showing the scattering body and mean flow.

Under this condition, the free space Green’s function of the adjoint equation (3) is well-known and can be
written as® %4

~ o Go R
G(r,t,r,t)—47rc S|t —t+B8-(r—7) o (8)
where
Go = R(rl, oy and R(rr!) = a7 502y P+ e? - 2 (9)
in which
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a:\/l—(U/c)sz/l—MQ,B:CQ? :L:c% (10)

U2 202

The arguments for R(r, ") will be omitted when there is no misunderstanding for doing so. Utilizing (8), the

integral relation (5) can be expressed in integrations of retarded values on the surfaces only. In particular,
note that

5 1 ;o .,__R 1 (o .,__R P! _
VG = Trc? (VGo)o <t t+B-(r —r) _ca2>+47r02G06 <t t+8-(r —r) —Ca2>[ B8 ] (VR)}
oG 1 9Go [, , R 1 e , R 1 8R
on 47r028—n(5<t —tEp(r _")_ca_2>+RG°5 <t —tB-(r _")_E> {_5'"_(;72%]

Then equation (5) becomes

1 1 OR\ Op

1 1 dp 9Go
p(r' 1) = Trc2 /V EQ(""vth)d"" T e /S {CQGO%(""SJIR) - CQWP("'SJZR) - *Go (—B n— E%) a("”swth)

—UnGo[U - Vp(rs,ty)] + Un(U - VGo)p(rs,ty) + UnGo |—2— B -U — ca%(u . VR)} %(rs,t}?)} drs

where the retarded time for ¢’ has been denoted by

th=t'4+8-(r' —r)— R/ca? (11)
Note also that

2 2
2 . C Un U -
and further, if we decompose mean flow U as
U=Umn+Ur (13)

where U is the tangential component of U, we have

1 1 1 0 G
p(’!‘/,t/) = ) / ﬁq(’f’,t%{)d’l’ + m / |:(C2 - Uz) Goa_z(rsa t;%) - <02(Q)—n0 - n(U ' VGO)) p(rsvtj‘%)
14 S

_ . / L (208 _ vE)) v P
UnGo (Ur - Vp(rs,ty)) + Go [caz (c o U,(U -VR) Un at(rs,tR) drs

To further simplify the expressions, we note these modified normal derivatives:

OR _OR _ i v wR) = 2™z 8) Fney—y)Hma(z=2) _ om-(r 1)

on — on R B R
0Gy _ 090Gy o oomi(e—a)+mely—y)+ns(z—2) om-(r—7')
5 = on M,(M -VGoy) = —« B =—a B
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Finally, the Kirchhoff integral relation (5) can be written as

dp oG
drp(r' t") / 74 q(r, thy)dr + / [(1 — M?) G08 (rs, thy) — 87_1019(7“5,1%'}3)
—M,Go (MT-Vp(rs,t'R))—i—LG (g{z 2Mn> gi(rs,tR)} dr, (14)
ca

By equation (14), solution at any point 7’ and time ¢’ is related to the direct contribution from the source
function g and a surface integral involving the retarded pressure and its normal derivative. In other words,
if both p(rs,t) and %(rs, t) are known, then p(r’',¢") can be computed by using (14). However, p and g—i
are not independent. They have to satisfy the boundary integral equation formed when 7’ is taken to be a
boundary point 7/, as we will see next.

B. Derivation of boundary integral equation

To derive the boundary integral equation consider the limit 7’ —> r’ for equation (14) where 7, is a point

and the limit can not be directly interchanged with the integration. Th1s particular limit has been studied in
the literature.*?:® To properly find the limit, consider modifying surface S by a spherical surface centered
at r/, as shown in Figure 2. Specifically, if we denote the small spherical surface as S, we proceed as

0Go ——(rs, 7 )p(rs, t)h)drs = lim 0Go

' ths)d
7"%7‘;\ S n 7'~>7" S-S, n (7"5,7‘ )p(TS, R) Ts

+aim [ L0 ) o, ) — plr, )] ey e t) Tim [ Z e ar,  (15)
n

’ ’ ’ ’
r'=rl g, ON 2T J S,

Note that, for the surface integral on S,, we have

0Go ___ymilws — ) +malys —y) +ns(s =) __ 5 €

on R3 R3

and

€

——dr :—a2/ —dr :—a2/ dr
ror s o s B 5. (s = 24)? +a2(ys — Y +a2(z — )27

When 7/, is a point on a smooth surface, S. is a hemisphere. By the symmetry of R with respect to
hemispheres S, and S!, the complementary hemisphere of S, and by using a spherical coordinate centered
at v/, namely z, — 2}, = ecos ¢, ys — Y., = esingcosl, z; — z, = esin psin b, we have

oG 2 2 3 &
lim Od = —a2/ %drs S _3 = __/ / coing 3/2 dedd
T s. R 2 Js.4s R 52 cos? ¢ + €2a2 sin? gb)

1
1
= —7Ta2/ 3 2dt = 27
1 (a2 + (1—a2)2)Y

The last integral above can be found by direct integration.

Thus, as € — 0, following (15), we have

7 of 36

American Institute of Aeronautics and Astronautics



r’

Figure 2. A schematic diagram for a hemisphere that caps a surface point r’,. Note that the normal vector is
in the direction outward from the region of solution and into the body.

. 0Gy
lim

r'orl g on

0Gy

(rs, 7 )p(rs, ty)drs = i 8—ﬁ(rs,r’5)p(rs,t}%)drs —27p(rl,t') (16)

Applying this limit to (14), we get the Boundary Integral Equation as follows:

1 1 dp Gy
2rp(rl,t') = = /V ﬁq('r’s,t’R)d'r —l—/s [(1 — Mfl) GO%(rs,t%) — %p(rs,t%{)

1 OR dp
~M,Go (Mr - st — — —a?M, | = (rs,th)| drs 1
Go (M Vplrasth)) + 6o (52 — My ) Lot ar (17)
On a solid surface, we have g—i = 0. Equation (17) can be used to solve for p(r,,t"). Then, by using (14),

solutions at any field point (v,¢") can be obtained.

C. Derivation of Burton-Miller formulation in time domain with a mean flow

It is well known that integral equation solution by the boundary element method for the exterior scattering
problem can lead to numerical instability. The instability is generally attributed to the existence of resonance
frequencies for the interior domain.'453:63:64 In the frequency domain solutions, common remedies include
the Burton-Miller formulation,® where the boundary integral equation is reformulated using a combination
of the single and double layer potentials, and the CHIEF method,%' where additional collocation points from
the interior domain are added to the boundary integral equation. In time domain solutions, the instability
is more prevalent as a continuous spectrum of frequencies within the numerical resolution are present in
the calculation. This instability has been a major difficulty for the use of time domain integral equations.
Recently, progresses have been made in eliminating the numerical instability. In [14], a Burton-Miller type
formulation has been used for the March-On-in-Time solution of the time domain integral equation for the
wave equation, where the new integral equation is formed by a linear combination of the time and normal
derivatives of the original boundary integral equation. In [10], a theoretical justification has been provided
for the extension of the Burton-Miller formulation to the time domain for the wave equation without flow.

In this paper, it is proposed that the Burton-Miller type formulation for the time domain boundary integral
equation in the presence of a mean flow be formed by a linear combination of the time and modified normal
derivatives of the boundary integral equation. Use of the modified normal derivative was also suggested in
an earlier work in a frequency domain formulation.®* To the author’s knowledge, such a formulation for the
time domain is new and has not been studied previously in the literature. A theoretical justification will be
given in the next section.

To facilitate the derivation of the reformulation, we express the time domain integral relations (14) and (17)
as
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i _l l ] _ 2 8 _8G0 / i@ /
inCr's ) = % [ datr'stwyir+ [ [(0=22) Go 22 rsth) = G2 (st + 25 Lt )

1
—M,Go <MT -Vp(rs, tR) + E%(rs,tﬁg))] drs (18)

where

r’ exterior of S
Cs =

= =

r’ on S (smooth points)

With an application of the boundary condition g—z = 0 for the problem of scattering by bodies with solid
surfaces, equation (18) becomes

N 1 I 0G0 / R dp / / 10p /
1nCp(r'st) = % [t tiar— [ |52 (ot + o L)) + 30,Go (M- Tptrasti) + £ L) )|
(19)

Taking a derivative of the above in the form of

0 0
8 —i—bca ; (20)

where a and b are constants and c is the speed of sound, the Burton-Miller formulation leads to the following

owrt) |, 0C, op(r. 1)
471'(1037 on (T’s, ) + 4ﬂ—bCOST
1 1 0q b (9
7aC_2 Rat( s ) / —qr.s7tR)d

o [ [2G0 (op R Op W iy 1P
a/s |: on <8t( .sth)"'_ o2 atz (T57tR) +MnGO MT Vat (TS7tR)+ catz (T57tR) d'rs

> Go / R op 9Go iy, Lop,
b [ | (vt + o Prntn) ) 20, 500 (M Torasti) 4L Pt )|

0Go

a2 s On

_n Op / R _, OR\ &p
(05 Gt + 2 (M- = 52) SR .

b _, OR 182p
—;/SMnGo <Mn — 8ﬁ’> <MT Vat (rs,tR) + T (rs,tR)> drs (21)

The proper values for the coefficients a and b will be given in the next section following a discussion on the
stability. The term with a double normal derivative of the G is hyper-singular. In particular, we have

0°Go _ 0 [_aznmx—x'>+n2<y—y'>+n3<z—z/>}

on'on ~ on' R3
2 niny + ng_n’2 +ngny Mn/(a_znlM) 4 ga2™ ('r_— r’) (?_R
R3 R3 R4 on’
2a2n1n1 + nanb + nank 304 [n-(r—7)n-(r'—-r)
= 3 + sa RS
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To deal with the hyper-singular term 88;,%%, we note the relation

/ %drs (22)

This equation can be easily justified from the fact that p = 1 is a solution to the interior domain problem
with a homogeneous normal derivative boundary condition.

By (22), we have

oC, 0 [0Gy, 0G?3
o T o /SW‘“‘S = / oo (23)

Equation (23) can be used utilized to reduce the hyper-singularity of the term with the double normal
derivative of Gy, so that it can be evaluated using the Cauchy principal value (see [10] and the Appendix).
By substituting the above into (21) and re-arranging the terms, we get the following Burton-Miller type
Boundary Integral Equation:

ap(ry,t') 1 1 dq b o 1 Jq

ap(ri,t')
P2V ) prbeC (rl, t)dr o |, Tot

dmaCs =5, o ‘@), Rot

( Ts, tR)d

o [ [2G0 (op R Op i iy 1P
GL |: on <8t( .sth)"'_ o2 atz (T57tR) +MnGO MT Vat (TS7tR)+ catz (T57tR) d'rs

azGO ’ / / R 8[) /
b [ o (lreste) = (e ) o P b))

—be /Mnaqo (M Vp(TMtR) + 12?(7‘57255»)) drs

0Go _n Op R _, OR\ 9*p
) an |:(M n ) ot (TS7tR) + E (M n = 8”71/) ot2 (rsvtR):| drs
b , OR dp 1 82p
_E/SMnGo (M ~ 3 > (MT Vat (rs,tR) + = vy (rs,tR) ) drs (24)

With the reduction of the singularity, equation (24) is in a form that can be readily used for Boundary
Element computations.

To carry out the operation M - V%(rs, t%2), note the decomposition

M= M,n + MTleg + MTgen

where e¢ and e,, are the unit vectors in the local surface coordinates, such that

M -n =M,
M-e€ :MT1+MT2(65~677)

M - e, = MTl(eg . en) + Mo

giving

10 of 36

American Institute of Aeronautics and Astronautics



M -ec — (ec-ey)M - ey

Then,

op Py 0 Op 0 Op
M Vat (’l“s,tR) = MT18§ En (’l“s,tR) +MT28 ot (’l“s,tR)

where (£,7) is the local element coordinate on the surface. The derivatives in the right hand side can be
easily computed in local basis functions.

We also note that

Ip(ry,t')  Op(r,t')
on’ - on’

ap(ry,t')
on’

— My M -Vp(r, ') = (1 — M2) — My Mz - Vp(ri,t')

D. Stability of the time domain Burton-Miller formulation in the presence of a mean flow

We now consider the stability of the Burton-Miller type formulation given in the previous section. The
considerations follows closely those given in [10] for the case without flow. The main point is to demonstrate
that with reformulation of the Burton-Miller type, there will be no non-trivial solution for the interior
domain, thus eliminating the resonant frequencies.

We first establish an energy equation for the convective wave equation that will be useful in proving the
stability of the current formulation. For a solution to the homogeneous convective wave equation,

0 2,
<8t+U V) ¢—c V=0 (25)

it can be shown that it has an associated energy equation as

ki 1 U V¢ Do ¢ 1 D¢ _
( |Vo|? t55 | Dl ~ @ ﬁ)Jrv-[—a <V —C—QEUH =0 (26)
where
D 8

Equation (26) can be verified directly for any ¢ that satisfies (25). Equation (26) can also be inferred from
the well-known results on acoustic energy equations.?? 2

Now suppose that there is a non-trivial solution pg(r’,t’) to the homogeneous Burton-Miller formulation
(24):

o 0Go R 09po
02 (it + [ (22 (vt + 25 2oty ) + 21aGo s Lty )

on ot
0 " [0Gy R dpo 1 d'po
te s LanCart )+ [ [ (potrat) 4 580 t)) + MGt B0 ar b =0 n

in which
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d 0

Bl I N v4
at ot o7

We will show in what follows that such a solution is not possible.

Suppose we let

Q("'lvt,) :/ {aGO (pO(T87tR) + iapo (TS7tR)) + MnGO_ po( Sv ) d"'s
s L on ca?

It is easily seen that Q(r’,t'), now a function of 7’ and ¢’ through R(r,r’) and ¢/, satisfies the homogeneous

wave equation, both in the exterior and interior regions of surface S, due to the integral kernel used.

However, Q(r’,t’) is not continuous across the surface and, considering the limit (16), the jump conditions

at the boundary are

QR+ — Q- = —4dmpo
0Qy 0Q- _
on' on’

where subscripts + and — indicatesthe solutions exterior and interior of S respectively. After applying these
jump conditions to (27), and following the work in [10], we have, on the boundary interior of S,

{Q }+bc —1Q-1=0 (28)

On the other hand, since @_ satisfies the convective wave equation and by the energy equation (26) of the
convective wave equation, we have

0 >, 1 [DQ [P U-vQ Do | Q. 100Q-
8t/ { Ve-I"+5z | | — & Dt dv_/vv { ot (VQ, 2( o Y vQ*) U)}ds
or
1 », 1 |DQ_|> U-vQ_DQ_ 0Q- 0Q- M, |0Q_ |?
/V[EVQ 52 | o 2 } -/ /S{—at on e o }ds 29

where V represents the volume interior of S. The minus sign on the right hand side has been added due to
the fact that the normal derivative used in the equation is still inward of the body surface. Note that, the
left hand side of (29) is positive:

1 |DQ_ U VQ_ DQ_ 1 U VQ_ DQ_
/V[WQ|+2_2 Dt | 2 Dt}dv_z/[ Dt 72 c2 Dt]dv
1 DG 1 DQ_ U -VQ_ DQ_
72/ {(WQ ‘_Z’ Dt ) +2ZWQ"’ Dt ‘_2 c Dt ]dvzo

for subsonic flows |U| < ¢. On the other hand, using (28), the right hand side of (29) will be negative:

AR I e AT

Q-

ot

2 M,
C

Q-

ot ot

2
:|dS<0

provided

% < —max (M,) (30)
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The above implies that Q_ has to be a trivial solution,

A simple choice for a and b is

E. Comparison with earlier formulations

Extension of the Kirchhoff formula to a medium with a non-zero mean flow or to a static medium with
moving surfaces have be studied extensively in the literature, both in the time domain and in the frequency
domain.16:17:39,51,53-56.58 T zeroacoustics studies, the most well-known formulations include those due to
Ffowces-Williams-Hawkings'” and Farassat-Myers.!6:5%:56 These formulations were obtained through a use
of generalized functions and have been widely used in noise predictions. The current formulation shown in
(14) and (17), through the adjoint fundamental solution of the convective wave equation, is equivalent to
those obtained by the generalized functions. A demonstration of the equivalence is offered below.

In [56], the pressure field by a moving surface by the Farassat-Myers method is expressed as

_ . VB, 2 -
4W¢H(f):/ (M = D)on + Mu My V20 + (1) Brgy + (1/r)Ead, (32)

g r(1—M,)

in which

B n-— M, ~(n-7—M,)(1—M?)
Bi =Myt By = S Tar

Note that the equation above was developed in a static reference frame where the surface is moving, and
the normal vector is assumed to be outward of the surface, opposite to the one used in the derivations in
previous sections of this paper. We are going to show that equation (32) is equivalent to equation (14).

. . . . . . . ~/
For convenience of discussion, let the receiver and source coordinates in the static frame be denoted as 7
and 7 respectively. Then we have

rF=r+7U, #=r+{U

where r and 7’ are the source and receiver locations in the moving frame. In (32),

l

/

r=# -7, and M, = M - ——~
7 =7
It can be readily shown that®*
r(1—M,) =R
where R is as defined in (9). Furthermore, we have
I~ . 1 _ tl —™\U
" P Mn:n~%—Mn*n[T r+( ) ]_Mn
=7 r
_n [r' —r+ (r/c)U] M- n-(r'—r)
r r
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where we have use the fact that

et —1*) =7

Then, when written in variables of the moving frame, equation (32) becomes

(M2 = 1)én + MMy - Voo + (1/c) (= My + =00 ) G2 4 mGomd (1 a2y
R

amon(f) = [ |o-dS

:/S [(M,%—1)%¢n+Mn1—l_%Mt-V2¢+(l/c)% (_MnJr n-(w_r)) %Jrn.(@’_r)(l_Mzw s (33)

Equivalence to equation (14) follows immediately.

III. Time Domain Boundary Element Method

To solve the time domain boundary integral equation formulated in (24), a Boundary Element Method is
used in this work. In this approach, the surface of the scatterer is discretized by a set of surface elements S,:

S =ule S,

where N, is the total number of elements. To facilitate the application of high-order basis functions, quadri-
lateral elements will be used. Each surface element is mapped to a standard element where collocation points
based on the Chebychev-Gauss points are defined and local nodal basis functions are introduced, Figure 3.
Integration over each element is carried out by high-order quadratures. However, no continuity is assumed
across the element boundaries. In this way, boundary elements are completely unstructured and the order
of the basis functions can be increased relatively easily.

z
n
1
® 4 9
{ @ @
_1 1 E

pd y

X

Figure 3. Mapping of a quadrilateral element to a standard domain in local variables (£, 7). Collocations points
and high-order quadratures are based on the standard element.

Numerical solution on the surface is expressed as

N N
p(rs,t) = Z Z ui di(rs)V(t —tn) (34)

n=0i=1

in which ¢;(rs) is the surface basis function for the ith node and ¥(7) is the temporal basis function defined
as
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o () —“At<71<0
1

U_y(7) 0<7 <AL
U(r) =< T_y(r) At <7 < 2At (35)
U_3(7) 2At <17 < 3At
0 other

where

_ I_ 5 plm + (i = O)At]
L e R (V) (36)

Higher-order temporal basis functions can be similarly constructed. Basis functions with continuous deriva-
tives have also been proposed recently.%® The surface basis function ¢;(r5) is a nodal polynomial constructed
using Chebychev polynomials and is non-zero only on the element that contains node ¢. With these spatial
and temporal basis functions, the expansion coefficient u in (34) represents the solution at ith node at time
t=t,.

By substituting expansion (34) into boundary integral equation (24), a March-On-in-Time scheme is obtained
that is of the form

I
Bow =q¢' — > Bu " (37)

m=1

where u/ denotes the vector of all unknowns uf at time level t;. Equation (37) relates the solution at time
step t = t; to those at earlier time steps. The maximum time history required is dependent on the length of
the scatterer and the mean flow as

L _ _
- I = —_M - —7 R ! 38
WaY: cagAtu TSIE%)G(S [ ('f‘s ’l"s) + (’l"s, 7’5)] ( )
All the B,,, matrices are sparse. In particular, we note that matrix By in (37) is a very sparse matrix and
represents interactions between nearby nodes at the same time level ¢;. As a result, its inversion can be done
easily by an iterative method, such as the Jacobi iterative method, with rapid convergence.?¢

The computational challenge for the March-On-in-Time scheme of (37) lies in the computational cost asso-
ciated with the evaluation of the right hand side of the equation. A direct evaluation of the right hand side
of (37) has a computational cost at each time step of order O(N?) where N is the total number of nodes.
This computational cost has to be reduced for the method to be useful for practical problems where N can
be of order 10° or higher.

IV. Delay- and amplitude-compensated acoustic field in the presence of a
mean flow

Fast multi-level and multi-grid time domain algorithms are used in this work to reduce the computational
complexity for the evaluation of the right hand side of (24) and (37). A number of fast methods for time-
domain wave equation have been proposed in the last decade. One is the multi-level Plane Wave Time
Domain (PWTD) algorithm,'® which is akin to the plane wave Fast Multipole Method (FMM) in the
frequency domain. In this approach, using a Fourier representation integral and an extension from the
frequency domain FMM, the time signals from a group of source points are combined and represented as
outgoing plane waves, which are then translated and aggregated onto observer points. As a result, the
contribution from a group of N source points to a group of My observer points, typically an order O(N4Mj)
operation, can be reduced approximately to order O(N,) + O(Mj) operations, provided the time signal
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is divided judiciously into small segments to satisfy causality. However, computation of the translation
functions in PWTD is complicated due to the presence of ghost signals.

Another method for time domain March-On-in-Time acceleration is based on the observation that a specially
constructed delay- and amplitude-compensated radiation field of a given group of sources can be represented
by an extremely sparse and highly non-uniform space grid over the far-field.»"8 A recent Cartesian Non-
uniform Grid Time Domain Algorithm (CNGTDA) has been given in [40, 47| exploiting the smoothness of
the compensated field. This method will be used in the current study.

A. Derivation of delay- and amplitude-compensated field

I'O—I'C o © °
o|© -

Figure 4. A diagram showing the group of source points, enclosed by a cubic box, and the far field receiver
points. Due to the clustering of the source points, it becomes possible to get a spatially slow-varying far field
when it is sampled at a characteristic time 7.

An extension of the delay- and amplitude-compensated acoustic field method from the simple wave equation
to one with a nonzero mean flow has been carried out in the current work and will be used in this paper to
accelerate the computation of the surface integrals in the time domain boundary integral equation (24).

Consider the acoustic field due to a group of N nodal points of source strength ¢; (), located at r; = (z;, yi, 2;)
and within a sphere of radius Ry,

(39)

S g (t+ B (r— 1) — R(r,7;) /o’
p(r,t) = Z a2 4rc2R(r,7;) )

i=1

where 3, a and R are as defined earlier. It is to be emphasized here that although point sources are used
for this example, the analysis given below applies to other forms of sources, such as the discretized surface
integral terms, in a straight forward manner.

The delay- and amplitude-compensated field at any point r for (39) is defined as

) N g (748 (re—ri) + By(r,7e) fca® = R(r,ri)/ca?)
p(’l", T) - Rp(rv TC)

4rc2R(r,r;)

i=1

where

Ry(r,rc) = V(@ —2e)2 + a2y — ye)? + 02(z — 2.)?

Ry(r,re) = /(@ —we)? + 02(y — ye)? + a2(z — z)? + L2/2
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and 7=t+8-(r—7r.) — Ry(r,r.)/ca? (41)

in which r. = (z., ye, zc) is the center of the sphere of radius Ry that contains the sources, as illustrated in
Figure 4. The inclusion of the term with L is optional and its optimal value is to be determined later such
that its use in R, given in (41) provides the optimal delay compensation, as was argued in.* 78

The advantage of using the delay- and amplitude-compensated field p(r, 7) is that it can be represented by
far fewer spatial points than those needed for the actual field p(r,t). As an illustration, Figure 5 shows an
instantaneous acoustic field created by a group of 100 source points with random amplitudes and phases (left)
and its delay- and amplitude-compensated field given by (40) (right). As demonstrated, spatial variation of
the compensated field reduces rapidly as the points move away from the source region.

Figure 5. Left: An instantaneous acoustic field due to 100 random sources in a mean flow of Mach number
0.5; Right: The delay- and amplitude-compensated field of the same acoustic field at left.

For the field points far from the source box, instead of computing and storing p(r,t), it is only necessary
to compute and store p(r,7) on a spatially coarse and highly non-uniform mesh. As a result, it requires
a much smaller storage and fewer computations involving those nodal points on the interpolating mesh.
Furthermore, the actual field due to the source points at any location and time (7,¢) can be recovered by
interpolating the compensated field,

p(r -r—rc—~pr,rc ca?
pirp) = B 2800 ) —Rytrur o) )

Hence, costs for computing interactions between nodal points can be greatly reduced by utilizing the compen-
sated field. In particular, we note that once p(r, ), or a representation of which, is obtained, computation
of the actual field by (42) no longer requires the input of source points.

Note that the compensated field as given in (40) is computed on a time variable denoted by 7. Formulation
of the compensated field is akin to a computation of solutions along the characteristics of the wave equation.
The 7 in (40) will be referred to as the characteristics time. A one-dimensional rendering of 7 is shown in
Figure 6.

To see the reason for the much reduced spatial variation of the compensated field p(r,7), we consider the
frequency domain expression for (40):

s 4 (w)e—iw(‘r+ﬁ-(rc—ri)+1:2p/ca2—§/ca2)
412 R

}5(7‘,&)) = Rp (43)

i=1
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Note that, under a spherical coordinate (z — 2., a(y — y.), a(z — z.)) = (psin ¢ cos b, psin ¢psin b, p cos ¢),

R* = RZQ, + R? —2R,R;cos ¢

giving

Ry —R=\/R3+12/2— /R + R? — 2R, Ricos ¢
Royf14+ 2 R\/1+R12 o Bl ¢
=Ry — — Ry —L —2— cos
" 2Rz RZ "R,
_ _ _ _ 2
_ L2 _ R? R; 1 [ R? R;
:Rp<1+ = +-~~>—Rp 14+ -t — Lcosp— - | =t —2="cosop | +---
ARZ 2R2 R, 8\ R2 "R,
— Lg - RZQ RZ 1 R2 2
=Rp(1+4R%+--->—Rp(1+2R%—R—pcosgb—g 4R—écos S+ |+

R;cos ¢ + L (L R2(1 2oy ) +
= I; cos — | —= — R} — Cos
2R, \ 2 ¢

We see that the phase of the compensated field in (43) varies only with O (w/R,), in contrast to O (wR) for
the actual field. Furthermore, the variation is minimized if

Ly = max R(r;,r.) (44)

1 t o / T fixed

source box receiver box

Figure 6. A diagram illustrating the characteristic time 7 in a one-dimensionalized situation. The characteristic
time represents the approximate propagation path for the sources in the group in this space-time diagram.

B. Multilevel implementation

Solution of the boundary integral equation is found in a time marching scheme (37) where at each time
step the interactions between each element and every other elements as well as itself are computed. The
interactions will be classified into Near Interactions and Far Interactions. Near interactions, where two
elements are nearby, are computed directly. Far interactions, where elements are far apart (to be more
precisely defined next), are computed using the compensated field.
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Figure 7. Surface elements are sub-divided into a hierarchy of boxes. Shown are the boxes for a conventional
airplane at levels 5,6,7 and 8 with level 1 being the smallest box that encloses the entire airplane.
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Figure 8. A schematic showing the two-stage approach for computing far interactions: Stage 1: the sources
are propagated on to the interpolating mesh of the far field receiver box; Stage 2: the actual field values on the
elements within the receiver box are interpolated from the interpolating mesh. These two steps are referred
to as the Propagation-Distribution scheme.

To facilitate the application of the delay- and amplitude-compensated field to the solution of the boundary
integral equation (24), an oct-tree box hierarchy is constructed by successively dividing the box that bounds
the body of surfaces, from level £ = 1 (highest) to ¢ = L (lowest), a schematic in 2D is shown in Figure
9. An interaction list is created where any box pair that satisfies the following conditions, and any of their
parents does not, is treated as far interactions:

Rc > Rmzn (Bs, Bo) (Causality)

Rs/Amin <7 (Accuracy)

Ng > npin  (Efficiency)

in which ~ is a ratio for accuracy and 7, is the minimum number of elements within a box for far interaction
to be cost effective. Here R, denotes the distance between the centers of source and receiver boxes and Ryin
denotes the minimum requirement for far interaction condition (to be defined later). For far interactions,
a two-step strategy will be implemented. In the first step, the compensated field of each source box is
computed at a coarse interpolating mesh in each receiver box. In the second step, the actual field values on
each receiver element are interpolated from the compensated field values of the interpolating mesh that they
belong. This is as illustrated in Figure 8. These two steps will be referred to as Propagation and Distribution
respectively.

C. Time Domain Propagation and Distribution Algorithm

Consider a far interaction between a source box B and a receiver box B,. The interaction will be computed
in two stages. In the first stage, solutions on all the source nodes within By are propagated to a coarse
interpolating grid of the observer/receiver box using compensated field. In the second stage, the compensated
field on each observer element is computed by interpolation from those of the coarse grid and immediately
distributed to the actual time grid by anterpolation. Details on the implementation of these two steps are
given below.
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Let I; denote the set of all source points in the source box B,, and I, and I, denote the sets of interpolating
grid and the receiver nodes in the receiver box B, respectively. The essential steps for the far interactions
using the Time Domain Propagation and Distribution Algorithm (TDPD) are as follows:

1. Assume complete solutions are available for ¢t <t;. At time t =t; = jAt, determine 7; such that

Rp(rm r.)

ca?

- B(xo - xc) 2 tj (45)

for all grid points and nodal points r, in receiver box B,. This leads to the choice of

. Rp (7’0, TC)
T =t roglllgn,lo ca? = Blwo = zc) (46)

2. Compute compensated field on the coarse interpolating grid rig as follows,

i P (mlo 2 _ ppls i 2
ﬁ("'gg,Tj) (r,, Ig T Z i TJ 8- (re—7i) + R:D(TO }rc)/ca — R(ro’,ry)/ca?) (47)
Ar 2R (1o, 1)
Note that causality at the source points requires that
T+ B (re —10) + Ry(ro,rc)[ca® = R(ro, 7)) fea® < t; (48)

which leads to the condition on the source and receiver boxes,

Rp(rov TC)
ca?

- ﬁ(xo - xc)

5 < min
co co

R;D(TO; TC) R(’l"o, )
ri€B,,7,EB, 2 -

This condition is approximately the following on the distance between the centers of the boxes:

R, > max [R (ro, C)] ~ min [R (To, C)] +  max  [Re—R(re,v)] +|M|—+ max [M(a, - o)

~ r,€B, r,€B, ri€Bs,7oEB,
(49)

where L, is the maximum dimension of the source box in z.
3. By interpolating spatially, get the compensated field at each observation point p(rle ;) from those at the
interpolating grid ﬁ(rég VTi)

4. Recover actual field p(rle t') at time t' = 1; + Bplrytre) B (rle—r.) by

ca?

plrle,m)

p("t) R(rlr)

5. Distribute p(rle ') to p(rle ty), p(rle tei1), p(rle teia) and p(rle tiis) by anterpolation, where

Tj = = B (rg — Tc)H (51)
floor
and
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Figure 9. An illustration of interpolation and anterpolation for the time grids at source and receiver boxes.
Values of the compensated field on the characteristics time grid 7 is distributed onto the real time grid. Far
field values are aggregated automatically and stored on real time t grid.

p(rl toye) = p(rle tige) + U(tire — p(rle '), £=0,1,2,3 (52)

The above algorithm gives a complete description for propagating a time signal from a cluster of source
points to a group of far receiver points contained in a far interaction box.

We note that the compensated field is to be constructed in the characteristics time 7, whose grid usually
will not coincide with that of the real time ¢. The values at the source locations required for (47) can be
obtained by interpolation. If the same temporal basis functions as (35) are used, we have, for any given ¢,

q(r, t) = q(r, tn)\p(t - tn) + Q(Tv tnfl)\p(t - tnfl) + Q('n tn72)\p(t - tn72) + Q(r, tn73)\11(t - tnfB) (53)

where

n=|—-—
At cetling

On the observer mesh I,, given the values on the characteristics time 7, the actual field on the real ¢ time
grid may also be similarly interpolated from the 7 grid, as is done in [47]. However, doing so will result
in a storage of time history on the 7 grid and separate storage for each source box on the same receiver
and excessive interpolation operations. A more efficient treatment is to distribute p(r,¢") onto the ¢ time
grid as follows: any value of p(r,7) on the characteristics time grid is distributed to the ¢ grid as soon as
it is computed, eliminating the need for storing the time history of ﬁ(rég,Tj) and p(rle ). In other words,
p(r,7) is distributed to p(r,tx), p(r,trr1), p(r,trr2) and p(r,tiyys) with weights (¢, — t'), V(tp11 — t'),
Y(tpy2 — t') and (tg4s — t') respectively, where k is as defined in (51), as illustrated in Figure 9. This
distribution is also referred to as anterpolation. Aggregation of contributions from all source boxes is done
automatically through (52).

Compared to the CNGTDA in [47], the interaction list in the present algorithm is not limited to the boxes
in the same level. This is computationally more efficient in the time domain because the interpolation to
the characteristics time at each source box needs to be done only once per time step.

In Figure 10, the signal for the right hand side of (24) due to a group of randomly phased source elements
is plotted, together with the signal obtained by direct evaluation of the integrals. Very good agreements are

shown.
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Figure 10. Computed right hand side of the integral equation (24) on a receiver nodes due to all the source
nodes in the source box, mean flow Mach number M = 0.2. Over 200 elements are included in each of the
source and receiver boxes. Only a 3x3 interpolating mesh of Chebychev-Gauss points is used. Line: computed
by the Time Domain Propagation and Distribution Algorithm; Symbol: computed directly.
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V. GPU acceleration

GPU (Graphics Processing Unit) computing is a recently emerged alternative for High Performance Com-
puting. General Purpose GPU (GPGPU) computing is a technology that is rapidly evolving. Unlike CPUs,
GPUs have a throughput-oriented architecture.’®2! A GPU contains many microprocessors (MP) and each
microprocessor can execute a massive number of threads on streaming processor (SP) cores. It employs
SIMD (Single Instruction Multiple Data) data processing model. For instances, for the NVIDIA C2090
model (FERMI architecture), a single GPU has 512 cores, and the most recent product Tesla K20 has 2496
cores and delivers over one Teraflops in double precision. A comparison between CPU and GPU architectures
is illustrated in Figure 10. Programming on GPU has been made considerably simpler with the releases of
CUDA (Compute unified device architecture)®” and OpenCL (Open Computing Language)®® programming

tools.
CoreICoreICore
CoreICoreICore

Cache

Control

DRAM | DRAM

Figure 11. A schematic of comparison between CPU and GPU archtectures. While CPUs have a sophisticated
cache structure, GPU are designed to have massively large number of computing cores.

Research papers on GPU for scientific computing have appeared in recent literature. Orders-of-magnitude
speed-ups over a single CPU performance have been achieved in a diverse field of applications, includ-
ing finite element methods, finite difference methods, integral equation methods and multi-body prob-

lems.2%:37,38,:40,41,67 GPU computing is fast becoming a new research area in high performance computing.

GPU computing favors intrinsically parallel algorithms. It is most effective when a time consuming compu-
tation can be efficiently divided into independent small computations. Such massive parallelism is naturally
abundant in the time domain Boundary Element Methods. At each time step, computations on each element
can be carried out independently, resulting in a high degree of parallelism. This makes the time domain
BEM a good application for GPU computing.

GPU computing has been integrated to accelerate the present algorithm in two ways. First, for near-field
interactions, high degree of parallelization can be realized as each element requires only information from
its close neighbors within a distance of a few time steps of propagation. Especially, on singular elements
where the source and observer points are on the same element, high-order integration quadratures are usually
needed to treat the singular or hypersingular integration. These interactions are localized and computing
intensive, ideal for GPU execution. The near-filed interaction coefficients can be computed by GPU on the
fly to reduce memory requirement.

Second, for far-field interactions, the construction of compensated field for each source box outlined in
propagation stage can also be carried out independently. As such, one thread block can be assigned to each
element in a source box, where the memory can be shared among the threads in the block.

In Cuda Fortran, GPU computing is carried out through user defined functions called kernels. A kernel
function is to be executed, by design, on a specified grid of threads. All threads, in the tens of thousands,
are executed concurrently. Accordingly, in the solution of time domain boundary element method, two kernel
functions are created, one for the near interactions and the other for the far interactions. The dimensions
of threads are further sub-divided into blocks. Use of shared memory within each block speeds up memory
access dramatically. In Figure 12, a GPU computing grid formed by source elements and receiver elements is
illustrated, where one source element fits one block, and one GPU computing thread is assigned for a single
interaction between a quadrature point and a receiver node.
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Figure 12. A schematic of a GPU computing grid. Each grid point represents an indexed computing thread.
The threads are further organized into blocks where shared memory is allocated and available for all threads
within the block.

Number of unknowns | 3 GPUs 3 CPU cores 30 CPU cores | 60 CPU cores | 120 CPU cores
(M2090) | (XEON 2.8Ghz)

8100 2.10 65.03 (31) 6.65 (31) 4.12 (39) 3.62 (68)
32459 15.38 510.18 (33) 58.85 (38) 29.15 (38) 21.65 (56)
72925 42.21 1381.41 (33) 144.14 (34) 83.83 (40) 63.67 (60)

Table 1. Computational time (Wall Clock) per time step in seconds, in GPU and CPU with indicated number
of cores. Number in parenthesis indicates the pro-rated speedup of GPU v.s. per CPU core.
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In Table I, a comparison between the GPU and CPU execution time is given. Compared to a single CPU
core, use of one GPU gains a speedup of over 30 times. While a modern CPU open has multiple cores, 12
or more, the table also shows that inter-nodal communications can slow down the computation significantly.
Use of GPU can effectively reduce the communication time. The GPU as an computing accelerator has a
particularly strong impact on a single-workstation computing environment.

VI. Sample results

In this section, sample results of time domain scattering computations are shown. All computations were
carried out in the time domain and the frequency domain solutions were obtained by post processing. All
sources in the examples are modeled as point sources initiated with a broadband pulse of short duration.
The time function g(t) for sources used in the examples is as follows:32

q(t) = NL}WQ(MNW/MNV, It < MAt (54)
us

where woAt = 7/5, M = 50.

For a few pre-selected frequencies, the frequency domain solution can be computed concurrently with the
time domain solution,

p(r,w) = At [p(r,t1)e ™ 4 p(r,ta)e™ 2 4 p(r,tz)e™ ™ 4.0 ] (55)

The advantage of this method is that the frequency domain solutions at these frequencies become immediately
available at the end of time marching and no storage for the time history is needed. The disadvantage is that
the computational cost increase rapidly when the number of required frequencies increases. Another option
to get the frequency domain solution is to carry out an FFT of the time domain solution. Computationally,
the second option would be more efficient when a large number of frequencies are of interest.

A. Point source scattering by a sphere

In this example, scattering of a point source by a sphere is computed to demonstrate the time domain
solution and its frequency domain results. In Figure 13 (top), and instantaneous contour plot is shown as
the point source with a time function specified in (54) is reflected by the sphere. The frequency domain
solutions, obtained though (55) are also shown in Figure 13.

A comparison with the exact solution is shown in Figure 14. We note that solutions of all frequencies within
the numerical resolution are available in the same time domain simulation. Comparisons in L2 norms are
shown in Figure 15 for varying total number of elements. The absolute values of the solutions are used in
the comparison. The relative error in L2 norm reduces with the increase in the number of surface elements.

B. Scattering by an airplane

In this example, scattering of two point sources placed above the airplane wings is computed. The purpose
of the example is to demonstrate the application of the time domain boundary element method to problems
with a compex geometry and at high frequencies. The geometry in the example is from the NASA Common
Research Model?® with a total of 1,314,144 qudrilateral elements on the surface of the airplane. The elements
are organized into an oct-tree of 10 levels. An interaction list for far interactions is created and acounts for
over 99.5% of the all interactions. Computation is carried out on a cluster of 72 GPUs (NVIDIA M2090) in
less than 24 hours. After the time domain simulation is done, the frequency domain solution are available
at any frequency within the numerical resolution. Frequency domain solutions at a few selected frequencies
obtained by (55) are shown in Figure 16.
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Figure 13. Scattering of a point source by a sphere. Top figure is an instantaneous contour plot. Frequency

domain solutions at wa/c = 27, 37w, 47,67 are shown.
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Figure 14. Comparison of numerical (symbols) and exact (line) solutions for p(z,w) on the surface of the sphere.
Square: absolute values; circle: real part. Also shown in inserts are the magnified solutions at the shadow
region. The radius of sphere is a = 0.5 and the source point is located at (0,0,1). A total of 5200 constant
elements are used on the surface of the sphere.
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Figure 15. Relative L2 norm of the differences between the numerical and exact solutions (absolute values).
Constant elements are used.o: N = 2050; A: N = 5200; O: N = 8100; <¢: N = 32459.
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Figure 16. Frequency domain solution of scattering by an airplane at selected freqeuncies. The geometry is
from the NASA Common Research Model with 1,354,144 surface elements. Constant elements have been used
for the computation.
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An operation count has been conducted for the Common Research Model airplane as the number of total
surface elements increases. The trends for the increase of the operations for far interactions and near
interactions per time step are shown in Figure 17. With an increase in the oct-tree levels along with the
increase in the total number of elements, computational cost for the near interaction can be kept to grow
linearly with NV as expected. The cost for far interactions, for both the propagtion and distribution stages,
increases as N2, However, we note that the cost for the distribution stage is much lower than that of the
propagation stage, due to the fact that a high-order quadrature has been used for evaluation of the surface
integrals on the element, where number of quadrature points far exceeds the number of collocation points.
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Figure 17. Operational count (in 10°) as a function of total number of elements. Trend lines are as shown.
Symbols indicate the total elvels in the oct-tree structure, (J: 7 levels; A: 8 levels; o: 9 levels; {: 10 levels; A:
11 levels; B: 12 levels.

C. Solution with far field signatures
In this example, far field solutions are computed in addition to the solution on the surface of the airplane.

Once the solution on the surface of the scatterer is found, field values can be obtained by (14) or (24). The
frequency domain solutions are shown in Figure 18. For this example, the mean flow Mach number M = 0.2.

VII. Conclusions

Numerical solution of the time domain boundary integral equation (TDBIE) for convective wave equation
with a non-zero mean flow has been considered in this paper. An extended Kirchhoff formula has been
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Figure 18. Frequency domain solution with the far field signature. Also shown are the surface mesh and the
mesh for far field data. Flow Mach number M = 0.2 with 131,553 elements on airplane surface.
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presented and the implied boundary integral equation that relates the pressure and its normal derivative
at the boundary has been derived. For numerical solution of the exterior scattering problem, a stable
Burton-Miller type formulation has been proposed where the resonance frequencies in the interior domain
are eliminated. Numerical experiements suggest that the formulation is stable for time domain boundary
element methods.

To significantly reduce the computational cost of the time domain Boundary Element Method (TDBEM),
a Time Domain Propagation and Distribution (TDPD) algorithm has been developed, based on the delay-
and amplitude-compensated field and the recently proposed multi-level Cartesian Non-uniform Grid Time
Domain algorithm (CNGTDA). The computational cost can be reduce from O(N?) to O(N'2) making it
a potentially practical approach for computing scattering solution with millions of surface elements in time
domain under currently available computational capabilities.

The recently emerged General Purpose GPU (GPGPU) computing has also been utilized to speed up the
computation. A speed up of 30 times has been observed for the current algorithm comparing the performances
on a single GPU (M2090) and a single CPU core (XEON 2.8GHz). As such, use of GPU can accelerate the
computation dramatically especially in a single workstation environment. The speedup also results in a need
of fewer computational nodes and thus reduces inter-nodal communication cost.
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Appendix: Evaluation of hyper-singular integral

We consider the numerical evaluation of the regularized integral involving the double normal derivartive of
Go. Let

0°G R 0p
Fr0) = (S ) (plracti) =)+ P st e x v

where (r,6) is the polar coordinates for the local variable (§,7n) centerred at the nodal point 7/, on element
Se. Denote the limit

lim 72 F(r,0) = G(0)

r—0

Then we have

|drdf

e—0 e—0

27 pr(0) 2 pr(0) 2 _
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2 pr(0) 2 _ 2m
B / / rF(r.6) —G0.0) o / G(0,6) lnr(6)do
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where we have used the fact that
2
/ G(0,0)dd =0
0
The final integral can be evaluated using high-order numerical quadratures.
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