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Abstract

Recent advances in the development of perfectly matched layer (PML) as absorbing boundary conditions for computational aero-
acoustics are reviewed. The PML methodology is presented as a complex change of variables. In this context, the importance of a proper
space–time transformation in the PML technique for Euler equations is emphasized. A unified approach for the derivation of PML equa-
tions is offered that involves three essential steps. The three-step approach is illustrated in details for the PML of linear and non-linear
Euler equations. Numerical examples are also given that include non-reflecting boundary conditions for a ducted channel flow and
mixing layer roll-up vortices.
� 2007 Published by Elsevier Ltd.
1. Introduction

At artificial boundaries, it is necessary to apply non-
reflecting boundary conditions. In computational fluid
dynamics and computational aeroacoustics, non-reflecting
boundary conditions are often formulated based on the
one-dimensional characteristics of governing equations or
the far field asymptotic solutions (see, e.g., [29,11,25,
2,28]). Another common approach is to add a buffer/
sponge zone to the non-reflecting boundary in which the
numerical solutions are damped or filtered (see, e.g.,
reviews in [19,6]). Perfectly matched layer (PML) is a new
technique of developing non-reflecting boundary condi-
tions by constructing modified governing equations that
can absorb out-going waves at open computational
boundaries.

Berenger proposed the first perfectly matched layer in
1994 for computational electro-magnetics [5]. The signifi-
cance of the PML technique lies in the fact that the absorb-
ing zone is theoretically reflectionless for multi-dimensional
linear waves of any angle and frequency. As a result, PML
zones, when applicable, are usually thin compared to most
other buffer zone formulations. Berenger’s original PML
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formulation used split physical variables, which was later
shown to be dynamically stable but only weakly well-posed
[1]. However, subsequent studies showed that PML tech-
nique was equivalent to a complex change of variables in
the frequency domain and the PML equations could in fact
be formed in unsplit physical variables [7,10,31,30].

Extension of the PML technique to computational fluid
dynamics and computational aeroacoustics started with the
linearized Euler equations with a uniform mean flow. In
[16], Berenger’s technique was first applied directly to the
linear Euler equations. It was shown that the resulting
PML equations were indeed perfectly matched to the line-
arized Euler equations, i.e., the PML absorbing domain is
theoretically reflectionless to the acoustic, vorticity and
entropy waves. However, numerical instability was also
observed in [16] and, later, instability waves were found
in [26] for the initial PML formulation given in [16]. Subse-
quently, in [18], it was found that the instability of the ini-
tial PML formulation was due to the fact that there is an
inconsistency in the phase and group velocities of the
acoustic wave in the presence of a non-zero mean flow.
The analysis in [18] suggested that a necessary condition
for the PML technique to work was that all physical waves
have consistent phase and group velocities. The same con-
dition was also reached independently in [4]. Recognizing
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this, new formulations of PML have appeared in the liter-
ature [18,12,13,3]. For instance, in [18], a stable PML for
the linearized Euler equations with a uniform mean flow
was proposed. It employed a space–time transformation
before applying the PML technique so that in the trans-
formed coordinates all waves have consistent phase and
group velocities. This has led to a dynamically stable and
computationally effective absorbing boundary condition.
Other equivalent treatments of the necessary space–time
transformation were also presented independently in the
PML formulations given in [12,13,3].

Further extensions of PML technique to the linearized
Euler equations with non-uniform mean flows were carried
out in [12,20]. In [20], it was shown that with a uni-direc-
tional non-uniform mean flow, it would again be possible
to apply a proper space–time transformation, determined
by the dispersion relations of the acoustic wave modes sup-
ported by the mean flow, so that all linear waves have con-
sistent phase and group velocities. Stable PML equations
were derived following such transformations. Most recently,
the PML technique has been applied to the non-linear Euler
[21] and non-linear Navier–Stokes equations [14].

In this paper, these recent progresses in the development
of PML for computational aeroacoustics will be reviewed
and an emerging method of formulating PML absorbing
boundary conditions for the governing equations of fluid
dynamics will be offered. This method would involve three
steps. First, a proper space–time transformation is deter-
mined and applied to the governing equations to ensure a
consistency in the phase and group velocities of the linear
waves; second, the transformed equation is modified with
a PML complex change of variable in the frequency
domain; and third, the absorbing boundary condition is
obtained by re-writing the frequency domain PML in the
original physical space and time coordinates.

In the next section, the basics of PML methodology is
presented through a complex change of variables and the
importance of a proper space–time transformation in the
derivation of PML equations is explained. At the end of
the section, three essential steps in deriving PML equations
are outlined. Then, in Sections 3 and 4, PML for the linear
and non-linear Euler equations are derived following the
three-step method, with numerical examples that validate
the effectiveness of PML as non-reflecting boundary
conditions.

2. PML methodology and proper space–time

transformation

The PML technique can be viewed as a complex change
of variable in the frequency domain [7,8,10,30]. For exam-
ple, consider the construction of a vertical x-layer that ter-
minates the open computational domain in the x direction.
This will involve a PML complex change of variable for x as

x! xþ i

x

Z x

x0

rx dx ð1Þ
where rx > 0 is the absorption coefficient (a constant or a
function of x) and x0 is the location of the PML/Euler
interface. To see why such a complex change of variable
will introduce wave absorption, consider a wave ansatz of
the form

eiðkx�xtÞ ð2Þ
where k is the wavenumber in the direction of x and x is
the frequency. Under transformation (1) and (2) becomes

eiðkx�xtÞe
�k

x

R x

x0
rx dx ð3Þ

while the eigenvectors of the system remain unchanged
[18]. As argued in [18,20], the second factor in expression
(3), with a purely real exponent, indicates that the wave
amplitude will decay exponentially in the PML zone if,
and only if,

k
x

Z x

x0
rx dx > 0 ð4Þ

as the wave propagates from an arbitrary location x 0 in the
PML zone. This means that the PML is absorbing for a
wave that propagates to the right (x increasing) with
k=x > 0 or propagates to the left (x decreasing) with
k=x < 0. In other words, for the amplitude of the wave
to be reducing (and not increasing) in the PML domain,
the sign of k/x or, equivalently, the phase velocity x/k,
should be consistent with the direction of wave propaga-
tion [18,4]. Since the direction of propagation of a disper-
sive wave is determined by the group velocity, this
necessary condition has been expressed nicely in [4] as

k
x

dx
dk

> 0 ð5Þ

This can also be written equivalently as

cphcg > 0 ð6Þ

where cph and cg represent, respectively, the phase velocity,
x/k, and the group velocity, dx=dk.

Unfortunately, in the presence of a mean flow, the phase
and group velocities of acoustic waves are not always con-
sistent. Consider linear waves in the presence of a uniform
mean flow. The dispersion relations of linear waves sup-
ported by the Euler equations can be found in closed forms
as

DIðx; kÞ ¼ ðx� UkÞ2 � k2 � k2
y ¼ 0 ð7Þ

for the acoustic waves and

DIIðx; kÞ ¼ x� Uk ¼ 0 ð8Þ
for the vorticity and entropy waves, where ky is the wave-
number in the y direction and U is the mean flow Mach
number (in x direction). The dispersion relations (7) and
(8) are shown in Fig. 1. Clearly, for the vorticity and entro-
py waves, given by DII, both the phase and group velocities
are the same as the mean flow U, and thus are consistent in
their signs, as required by (6). For the acoustic waves, given
by DI, however, an inspection of the dispersion curves in
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Fig. 1. Dispersion relations of the acoustic (I) and vorticity/entropy (II)
waves. Symbols indicate the point of zero group velocity. The dashed line
has a slope of �ð1� U 2Þ=U .

ω

k

Fig. 2. Dispersion relations of the acoustic (I) and vorticity/entropy (II)
waves in transformed coordinates.
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Fig. 1 shows that there exist waves that have phase and
group velocities in opposite directions. The points of zero
group velocity are indicated by a triangle in Fig. 1. For
the acoustic waves on the dispersion curve that are between
the zero group velocity point and the vertical x axis, their
phase velocity is negative but their group velocity (slope of
the dispersion curve) is positive. Therefore, if the PML
technique is applied directly to the Euler equations, these
waves will be amplified and give rise to instability of the
layer. Thus, a modification of the Euler equation is needed
before applying the PML complex change of variable (1).

The zero group velocity point ðx0; k0Þ of the acoustic
waves can be found by solving coupled equations

DIðx0; k0Þ ¼ 0 ð9Þ
oDI

ok
ðx0; k0Þ ¼ 0 ð10Þ

By substituting (7) into (9) and (10), we find that, for any
given value of ky,

x0

k0

¼ � 1� U 2

U
ð11Þ

Since the ratio of x0 and k0 is a fixed constant independent
of ky, it is now possible to apply a linear space–time trans-
formation so that under the transformed coordinates, the
phase and group velocities of all linear waves become con-
sistent. For this purpose, a suitable transformation for a
new time variable will be

�t ¼ t þ bx

which induces the following changes in the frequency and
wavenumber space as

�x ¼ x; �k ¼ k þ bx ð12Þ
By (11), the obvious choice for b is

b ¼ � k0

x0

¼ U

1� U 2
ð13Þ

It is straight forward to verify that, in the transformed
coordinates, the dispersion relations (7) and (8) become

�DIð�x; �kÞ ¼
�x2

1� U 2
� ð1� U 2Þ�k2 � k2

y ¼ 0 ð14Þ

for the acoustic waves and

�DIIð�x; �kÞ ¼
�x

1� U 2
� U�k ¼ 0 ð15Þ

for the vorticity and entropy waves, as plotted in Fig. 2.
Now all the waves have consistent phase and group veloc-
ities. Application of the PML technique in the transformed
coordinates should now yield stable absorbing boundary
conditions.

As we have seen, a proper space–time transformation
plays an important role in the stability of PML for the
Euler equations. In proceeding discussions, the value of b
is determined from the dispersion relation of the acoustic
waves, by (9), (10) and (13). If the mean flow is non-uni-
form, no closed-form dispersion relation is available and
a numerical study on the dispersion relation of linear waves
has to be carried out, as discussed in details in [20]. How-
ever, for the special case of constant mean density, i.e.,
when �q ¼ 1, a simple empirical formula for b was given
in [20], where

b ¼ U m

1� U 2
m

; Um ¼
1

b� a

Z b

a
UðyÞdy ð16Þ
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in which a 6 y 6 b is the computational domain for y and
Um is the average of mean velocity UðyÞ. In summary, the
derivation of PML equations for the Euler equations will
involve essentially three steps:

Step 1, apply a proper space–time transformation,

�t ¼ t þ bx ð17Þ

This will result in the changes of partial derivative terms
as

o

ot
! o

ot
;

o

ox
! o

ox
þ b

o

ot
ð18Þ

Step 2, apply PML complex change of variables in the fre-
quency domain of transformed variables,

x! xþ i

�x

Z x

x0

rx dx; y ! y þ i

�x

Z y

y0

ry dy;

z! zþ i

�x

Z z

z0

rz dz ð19Þ

for x–, y– and z–layers respectively, where rx; ry and rz are
positive functions of x, y and z respectively. This will result
in the changes of partial derivatives as

o

ox
! 1

1þ i rx
�x

o

ox
;

o

oy
! 1

1þ i
ry

�x

o

oy
;

o

oz
! 1

1þ i rz
�x

o

oz
ð20Þ

Step 3, re-write the frequency domain equations in the ori-
ginal space and time variables.

In the next two sections, this three-step method will be
illustrated by examples of PML for the linear and non-lin-
ear Euler equations.

3. PML for linearized Euler equations

We consider the construction of PML equations as non-
reflecting boundary conditions for a ducted Couette flow
with a subsonic non-uniform mean velocity. This problem
was one of those proposed in the fourth CAA workshop of
Benchmark problems [9]. As shown in Fig. 3, non-reflect-
ing boundary conditions are needed at the inflow and out-
flow boundaries of the channel. We will discuss the
construction of stable PML equation following the three-
step method described in the previous section.
U(y)

PM
L

PM
L

Fig. 3. Schematic of Couette flow with PML absorbing boundary
condition.
3.1. Dispersion relation and determination of value for b

The linearized Euler equation with a non-uniform mean
flow is

ou

ot
þ A

ou

ox
þ B

ou

oy
þ Cu ¼ 0 ð21Þ

where

u¼

q

u

v

p

0
BBB@

1
CCCA; A¼

U 1 0 0

0 U 0 1

0 0 U 0

0 1 0 U

0
BBB@

1
CCCA; B¼

0 0 1 0

0 0 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA; C¼

0 0 0 0

0 0 dU
dy 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA

The mean velocity is given by eU ðyÞ ¼ 0:9y in a physical
domain of �2 6 x 6 2 and 0 6 y 6 1. The mean density
has been assumed to be constant, �q ¼ 1. Solid wall bound-
ary conditions are applied at y ¼ 0 and y ¼ 1.

To construct the PML equation for the Euler equations
in (21) with a non-uniform mean flow, we first examine the
physical waves associated with (21) and their dispersion
relations. For this purpose, a dispersive wave analysis of
(21) is carried out. Specifically, we let

u ¼ ûðyÞeiðkx�xtÞ ð22Þ
in (21) and get

�ixûþ ikAûþ B
dû

dy
þ Cû ¼ 0 ð23Þ

Together with the homogeneous boundary conditions at
y ¼ 0 and y ¼ 1, (23) forms an eigenvalue problem for x
for any given value of k. The eigensolutions are called nor-
mal modes in the theory of hydrodynamic stability analy-
sis. This eigenvalue problem has been solved numerically
by a spectral collocation method using Chebyshev polyno-
mials [20]. It yields a complete spectrum of the waves sup-
ported by (23).

Fig. 4 shows the dispersion relation diagram of all the
normal modes of (23), i.e., real part of x vs. k. The imag-
inary part of x is found to be zero for all modes, indicating
that the Couette flow does not have physical instability
wave.

In the dispersion diagram, we see two families of waves.
One family has phase speed between U min ¼ 0 and
Umax ¼ 0:9, shown between dashed lines in the xr–k dia-
gram. These are ‘‘vortical’’ modes that convect with the
mean flow. They are non-dispersive waves, i.e.,
x=k ¼ constant [32]. For these waves, condition (6) is
satisfied.

The other family of modes are ‘‘acoustic’’ modes [27,23].
A closer examination of the acoustic modes indicates that
they have a phase speed supersonic relative to part of the
mean flow. They are dispersive waves. Fig. 4 indicates that
the acoustic modes do not always have consistent phase
and group velocities. A triangle on the acoustic modes
denotes the location where the group velocity is zero. As
we can see, for the acoustic modes in the upper left and
lower right quarters in Fig. 6 that lie between the triangle



Fig. 4. Dispersion relation diagram of physical wave. Triangles denote the
points of zero group velocity.

Fig. 5. Dispersion relation diagram after applying the space–time
transformation.
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and the vertical axis, their phase velocity (xr/k) is negative
but their group velocity (dxr/dk) is positive. This situation
is quite similar to the case of uniform flow shown in Fig. 1.
As has been explained earlier, applying the PML complex
change of variable (1) to the Euler equations (21) without
a proper space–time coordinate transformation will result
in these waves being amplified and becoming unstable
modes.

Remarkably, the locations of points of zero group veloc-
ity on the dispersion diagram (triangles in Fig. 4) appear to
lie nearly on a straight line. Inspection of points of zero
group velocity shows a line of xr ¼ c0k where the slope
of the line is approximately c0 ¼ �1:85. This suggests a
space–time coordinate transformation of the form (17)
with the value for b determined by

b ¼ � 1

c0

¼ 0:54 ð24Þ

We point out that if the empirical formula (16) is directly
used here, we have U m ¼ 0:45 and a value for b ¼ 0:56,
which is a very good approximation and could also be used
effectively in computations. In Fig. 5, we show the disper-
sion relation diagram in frequency–wavenumber space
of the transformed coordinates. Indeed, we see that the
phase and group velocities of all waves are consistent and
the necessary condition (6) becomes satisfied by all wave
modes.
3.2. Derivation of PML equation

Once the value for b is determined, the derivation of
PML equation can proceed as described in the previous
section. In the first step, after the space–time transforma-
tion (17), the Euler equations in the frequency domain
becomes

�i�xðIþ bAÞ~uþ A
o~u

ox
þ B

o~u

oy
þ C~u ¼ 0 ð25Þ

For the second step, by a complex change of variable of the
form (19) for x, we get the following PML equations in the
frequency domain,

�i�xðIþ bAÞ~uþ 1

1þ irx
�x

A
o~u

ox
þ B

o~u

oy
þ C~u ¼ 0 ð26Þ

Finally, to re-write the above in the time domain, we mul-
tiply 1þ irz

�x to the equation and get

ð�i�xþ rxÞðIþ bAÞ~uþ A
o~u

ox
þ 1þ irx

�x

� �
B

o~u

oy

þ 1þ irx

�x

� �
C~u ¼ 0 ð27Þ

This can be readily re-written in the original physical time
domain as follows:

ou

ot
þ A

ou

ox
þ B

ou

oy
þ rxB

oq

oy
þ Cðuþ rxqÞ

þ rxuþ rxbAu ¼ 0 ð28Þ

where

oq

ot
¼ u ð29Þ

as shown in [18,20]. Here, q is an auxiliary variable vec-
tor. It is only needed inside the PML domain [18].
Eqs. (28) and (29) form the system of equations to be
solved in the PML domains at the inflow and outflow
boundaries.
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3.3. Numerical example

For numerical results, a computational domain of
½�2:15625; 2:15625� � ½0; 1� will be used, which is discret-
ized by a uniform grid of 553� 129 points with
Dx ¼ Dy ¼ 1=128 and 20 grid points in the PML domains
at the inflow and outflow.

The initial conditions are the acoustic and density pulses
given in the Benchmark problem [9]. The spatial derivatives
are approximated by the 7-point DRP scheme [28] and the
time integration is carried out by the optimized 5- and 6-
stage alternating low-dissipation and low-dispersion
Runge–Kutta scheme (LDDRK5-6 [22]). A 10th order
filter has also been applied to limit the oscillations from
the thin density wave in the problem.

The absorption coefficient in the PML domain varies
with x as follows:

rx ¼
4

Dx
x� x0

D

��� ���2 ð30Þ

where x0 denotes the interface of the Euler and PML do-
mains and D is the width of the PML domain, i.e.,
D ¼ 20Dx for the cases reported here.

A grid stretching inside the PML also improves the effec-
tiveness of the PML because the total absorption rate
depends directly on the width of the PML domain [19].
The grid stretching is equivalent to modifying the x deriv-
ative term of the PML equation as

o

ox
! 1

aðxÞ
o

ox
ð31Þ

where aðxÞP 1 is a smooth function with aðx0Þ ¼ 1 [19].
We have used the following expression for a(x) in the
calculations,

aðxÞ ¼ 1þ 2
x� x0

D

��� ���2 ð32Þ

The initial acoustic pulse is reflected back and fourth by the
channel walls and, at the same time, radiates outward
through the inflow and outflow boundaries. Fig. 6 shows
the pressure contours of the numerical and exact solutions
at t ¼ 8, 16 and 32. Because of the repeated reflections by
channel walls, the out-going waves are propagating
increasingly at a grazing angle with the boundary, a situa-
tion very difficult to treat using characteristics based
boundary conditions. Under the present PML absorbing
boundary condition, the numerical solution decays expo-
nentially inside the PML domain with very little reflection.
Even with only 20 grid points in the PML domain, the
agreements on contours between the numerical and exact
solutions are excellent. Fig. 7 shows the density contours.
The absorption of the density pulse by the PML domain
is clearly shown. We note that the initial density pulse is
stretched thin by the shear mean flow and becomes less re-
solved by the 7-point finite difference scheme at t ¼ 16 and
beyond. Although there are some oscillations near the den-
sity wave, the overall contours compare well with the exact
solution. Clearly, PML Eq. (28) can provide a very effective
non-reflecting boundary condition for duct flows.

4. PML for non-linear Euler equations

In this section, we give an example of constructing PML
for the two-dimensional non-linear Euler equation. Written
in conservation form, the Euler equations are

ou

ot
þ oF1ðuÞ

ox
þ oF2ðuÞ

oy
¼ 0 ð33Þ

where

u ¼

q

qu

qv

qe

2
6664

3
7775; F1 ¼

qu

qu2 þ p

quv

qhu

2
6664

3
7775; F2 ¼

qv

quv

qv2 þ p

qhv

2
6664

3
7775 ð34Þ

and

h ¼ eþ p
q
; p ¼ ðc� 1Þq e� u2 þ v2

2

� �
ð35Þ

In (34) and (35), u and v are the velocity components, p is
the pressure, q is the density and e is the energy. Specific
heats ratio c ¼ 1:4.

At non-reflecting boundaries, we introduce PML
domains to absorb out-going disturbances, as shown in
Fig. 8. We wish to formulate the equations to be used in
the PML domain so that the disturbances can be exponen-
tially reduced once they enter the added zones.

In a non-linear simulation, the total variable u can be
considered as consisting of a time independent mean state
and a perturbation that has to be governed by non-linear
equations. Since the mean state could be quite large com-
pared to the time-dependent perturbed state, it may not
be most efficient to absorb the total variable u and to
reduce it to nearly zero inside the PML domain. Although
it is common to decompose the total variable u into a time-
independent mean-flow and a time-dependent fluctuation,
the exact mean state is usually unknown at the start of
the computation. The PML formulation presented here will
not require the exact mean-flow. Instead, we shall partition
the solution inside the PML domain into two parts as

u ¼ �up þ u0 ð36Þ

where �up is a time-independent ‘‘pseudo mean-flow’’
[17,21]. It is important to note that it is not necessary for
this pseudo mean-flow to be the exact mean-flow at the
non-reflecting boundary. We only require that the chosen
�up satisfy the steady Euler equation:

oF1ð�upÞ
ox

þ oF2ð�upÞ
oy

¼ 0 ð37Þ

The use of �up is strictly to make the PML domain more
efficient since we now need only to absorb u 0, the difference



Fig. 6. Pressure contours at t ¼ 8, 16 and 32.
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Fig. 7. Density contours at t ¼ 8, 16 and 32.
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between u and a prescribed pseudo mean-flow �up, as illus-
trated in Fig. 9. Obviously, the choice for �up is not unique.
In what follows, we shall develop PML equations that
absorb u 0, the difference between u and �up inside the
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Fig. 8. Schematic of Euler and PML domains with four open boundaries.
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PML domain. By Eq. (37), it is easy to see that the equa-
tion for u 0 can be written as

ou0

ot
þ o½F1ðuÞ � F1ð�upÞ�

ox
þ o½F2ðuÞ � F2ð�upÞ�

oy
¼ 0 ð38Þ

Following the three-step method for the derivation of
PML, we will first apply a proper space–time transforma-
tion of the form (17) to Eq. (38):

ou0

o�t
þ b

o½F1ðuÞ � F1ð�upÞ�
o�t

þ o½F1ðuÞ � F1ð�upÞ�
ox

þ o½F2ðuÞ � F2ð�upÞ�
oy

¼ 0 ð39Þ

Here, the parameter b is based on the pseudo mean flow �up

[21]. In the frequency domain, the above is

ð�i�xÞð~u0 þ b g½F1ðuÞ � F1ð�upÞ�Þ þ
o g½F1ðuÞ � F1ð�upÞ�

ox

þ o g½F2ðuÞ � F2ð�upÞ�
oy

¼ 0 ð40Þ

where ~½� denotes the time Fourier transformed quantity. As
a second step, we apply the PML complex change of vari-
ables (19) to the above and get
up

u

u

PMLEuler

Fig. 9. Absorption of non-linear disturbances with a pseudo mean-flow in
the PML domain.
ð�i�xÞð~u0 þ b g½F1ðuÞ � F1ð�upÞ�Þ þ
1

1þ i rx
�x

o g½F1ðuÞ � F1ð�upÞ�
ox

þ 1

1þ i
ry

�x

o g½F2ðuÞ � F2ð�upÞ�
oy

¼ 0 ð41Þ

Eq. (41) is the PML equation for (38) in the frequency do-
main. As a final step, we shall write (41) in the original time
domain. We will present two approaches. The first uses un-
split physical variables while the second uses split equations
but introduces fewer auxiliary variables.
4.1. Unsplit version

In the unsplit approach, following [12,14], we multiply
1þ i rx

�x

� �
1þ i

ry

�x

� �
to Eq. (41) and get

�i�xþ rx þ ry þ i
rxry

�x

� �
ð�u0 þ b g½F1ðuÞ � F1ð�upÞ�Þ

þ 1þ i
ry

�x

� � o g½F1ðuÞ � F1ð�upÞ�
ox

þ 1þ i
rx

�x

� � o g½F2ðuÞ � F2ð�upÞ�
oy

¼ 0 ð42Þ

By defining auxiliary variables q0, q1 and q2 as

oq

ot
¼ u0; ð43Þ

oq1

o�t
¼ F1ðuÞ � F1ð�upÞ; ð44Þ

oq2

o�t
¼ F2ðuÞ � F2ð�upÞ; ð45Þ

the time domain equation for (42) can now be written as

ou0

o�t
þ b

o½F1ðuÞ � F1ð�upÞ�
o�t

þ ðrx þ ryÞu0

þ ðrx þ ryÞb½F1ðuÞ � F1ð�upÞ� þ rxryqþ rxrybq1

þ o½F1ðuÞ � F1ð�upÞ�
ox

þ o½F2ðuÞ � F2ð�upÞ�
oy

þ ry
oq1

ox
þ rx

oq2

oy
¼ 0 ð46Þ

In the original space and time variables x; y and t, we get

ou0

ot
þ o½F1ðuÞ � F1ð�upÞ�

ox
þ o½F2ðuÞ � F2ð�upÞ�

oy

þ ry
oq1

ox
þ rx

oq2

oy
þ ðrx þ ryÞu0 þ rxb½F1ðuÞ � F1ð�upÞ�

þ rxryqþ rxrybq1 ¼ 0

Since the pseudo mean-flow is time-independent and satis-
fies the steady Euler equation, we have the following PML
equation written in the original total variable u,
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ou

ot
þ oF1ðuÞ

ox
þ oF2ðuÞ

oy
þ ry

oq1

ox
þ rx

oq2

oy

þ ðrx þ ryÞðu� �upÞ þ rxb½F1ðuÞ � F1ð�upÞ�
þ rxryqþ rxrybq1 ¼ 0 ð47Þ

Eqs. (47) and (43)–(45) are to be solved in the PML domain.
Before presenting a different way of deriving the time-

domain equations, we note that, first, upon linearization
about �up, the above can be shown to be equivalent to the
PML for the linearized Euler equations with a non-uniform
mean-flow given in [14]. Second, there are three sets of aux-
iliary variables introduced in the PML domain, which
could increase computational storage and cost. For this
reason, we next consider a split approach in forming the
time-domain PML equation in which only one set of aux-
iliary variable is necessary.

4.2. Split version

In the split approach, we re-write the frequency domain
PML (41) in two equations as follows, similar to what was
done in the original PML formulation [5,16],

ð�i�xÞð�u01þb g½F1ðuÞ�F1ð�upÞ�Þþ
1

1þ irx
�x

o g½F1ðuÞ�F1ð�upÞ�
ox

¼ 0

ð48Þ

ð�i�xÞ�u02þ
1

1þ i
ry

�x

o g½F2ðuÞ�F2ð�upÞ�
oy

¼ 0 ð49Þ

where we have

u0 ¼ u01 þ u02 ð50Þ
As we can see, by adding the two Eqs. (48) and (49), we will
recover (41). To write the above in the time domain, we
multiply 1þ i rx

�x

� �
and 1þ i

ry

�x

� �
to (48) and (49), respec-

tively, and get

ð�i�xþ rxÞð�u01 þ b g½F1ðuÞ � F1ð�upÞ�Þ þ
o g½F1ðuÞ � F1ð�upÞ�

ox
¼ 0

ð�i�xþ ryÞ�u02 þ
o g½F2ðuÞ � F2ð�upÞ�

oy
¼ 0

which yields immediately

ð�i�xÞð�u01 þ b g½F1ðuÞ � F1ð�upÞ�Þ þ rxð�u01 þ b g½F1ðuÞ � F1ð�upÞ�Þ

þ o g½F1ðuÞ � F1ð�upÞ�
ox

¼ 0

ð�i�xÞ�u02 þ ry�u
0
2 þ

o g½F2ðuÞ � F2ð�upÞ�
oy

¼ 0

The above can be written easily in the time domain as

ou01
o�t
þ b

o½F1ðuÞ � F1ð�upÞ�
o�t

þ rxðu01 þ b½F1ðuÞ � F1ð�upÞ�Þ

þ o½F1ðuÞ � F1ð�upÞ�
ox

¼ 0

ou02
o�t
þ ryu

0
2 þ

o½F2ðuÞ � F2ð�upÞ�
oy

¼ 0
Finally, in the original space and time variables x; y and t,
we get

ou01
ot
þ rxu

0
1 þ rxb½F1ðuÞ � F1ð�upÞ� þ

o½F1ðuÞ � F1ð�upÞ�
ox

¼ 0

ð51Þ
ou02
ot
þ ryu

0
2 þ

o½F2ðuÞ � F2ð�upÞ�
oy

¼ 0 ð52Þ

These two equations form the PML for absorbing u 0 in the
PML domain.

We can also re-write these two equations slightly differ-
ently for implementational convenience, as was done in
some previous PML works [15,26]. By adding (52) to (51)
and replacing u01 with u0 � u02, (51) may be written alterna-
tively as

ou0

ot
þ rxðu0 � u02Þ þ ryu02 þ rxb½F1ðuÞ � F1ð�upÞ�

þ o½F1ðuÞ � F1ð�upÞ�
ox

þ o½F2ðuÞ � F2ð�upÞ�
oy

¼ 0

Finally, by renaming u02 the auxiliary variable q and noting
the fact that �up is independent of time and satisfies the stea-
dy Euler equation, we have the following equations to be
used in PML domains,

ou

ot
þ oF1ðuÞ

ox
þ oF2ðuÞ

oy
þ rxðu� �up � qÞ

þ ryqþ rxb½F1ðuÞ � F1ð�upÞ� ¼ 0 ð53Þ
oq

ot
þ ryqþ

o½F2ðuÞ � F2ð�upÞ�
oy

¼ 0 ð54Þ

In this way, only one auxiliary variable, q, is necessary.
For a numerical example, we present a simulation of

roll-up vortices of a shear flow induced by the Kelvin–
Helmholtz instability, and use PML as the absorbing
boundary condition as the vortices convect out of the com-
putational domain. The entire computational domain is
½�1:5; 9:5� � ½�1:1; 1:1� with Dx ¼ 0:05 and Dy ¼ 0:01,
including the surrounding PML domain with a width of
10 grid points. A smaller grid size is used in the y direction
in order to better resolve the shear flow. The non-linear
Euler Eq. (33) is solved in the interior physical domain
and the PML Eqs. (53) and (54) are solved in the PML
domain.

The initial condition in primitive variables is

q

u

v

p

0
BBB@

1
CCCA ¼

�qðyÞ
UðyÞ

0
1
c

0
BBB@

1
CCCA ð55Þ

where

UðyÞ ¼ 1

2
ðU 1 þ U 2Þ þ ðU 1 � U 2Þ tanh

2y
d

� �	 

ð56Þ
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and

�qðyÞ ¼ 1
�T ðyÞ ð57Þ

with

�T ðyÞ ¼ T 1
U � U 2

U 1 � U 2

þ T 2

U 1 � U
U 1 � U 2

þ c� 1

2
ðU 1 � UÞðU � U 2Þ ð58Þ

where the mean temperature �T ðyÞ is determined by the
Crocco relation for compressible flows. The parameters are

U 1 ¼ 0:8; U 2 ¼ 0:2; d ¼ 0:4;

T 1 ¼ 1; T 2 ¼ 0:8; c ¼ 1:4

A source term is added to the energy equation in (33)
to induce the instability wave. The source term is of the
form

sðx; y; tÞ ¼ 5 sinðxtÞe�ðln 2Þ½ðx�x0Þ2þðy�y0Þ2�=r2
0

where x ¼ p=2; ðx0; y0Þ ¼ ð�0:5; 0Þ and r0 ¼ 0:03.
Fig. 10. Vorticity contours in
The source term will excite the Kelvin–Helmholtz insta-
bility wave which will grow exponentially and then develop
into roll-up vortices. The vortices at the out-flow bound-
ary, as well as the acoustic waves at all four artificial
boundaries, are to be absorbed by the PML. The pseudo
mean-flow �up used in the PML equation is the same parallel
flow as that of the initial condition (55). The linear wave
analysis for this particular shear flow has been carried
out in [14], where the value for b was found to be approx-
imately 1/1.4. Fig. 10 shows vorticity contours at progres-
sive time frames as the roll-up vortices exit the outflow
boundary. As the vortices convect downstream, they are
absorbed exponentially in the PML domain. No numerical
instability is observed.

In Fig. 11, we compare time history of v velocity compo-
nent at a point close to the outflow boundary with that of a
larger domain computation. The numerical solution is plot-
ted in the solid line and the larger domain calculation in
circles. Very little differences were found. This confirms
the effectiveness of PML in truncating the outflow bound-
ary in a non-linear simulation.

It is also possible to use a different pseudo mean-flow at
the outflow boundary. In addition to the initial condition
progressive time frames.



Fig. 11. velocity v as a function of time at a point close to the outflow
boundary, ðx; yÞ ¼ ð8:75; 0:5Þ. Solid line: computational; circle: larger
domain calculation.
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(55) as pseudo mean-flow in the PML equations, parallel
flows of UðyÞ in the form of (56) with d ¼ 0:6 and
d ¼ 0:8 have also been tested. Fig. 12 shows the instanta-
neous u velocity contours obtained using three different
pseudo mean-flow profiles. The results are very close which
implies that all three pseudo mean-flows are viable choices
for the PML equations.

More examples of PML for the non-linear Euler equa-
tion can be found in [21].

5. Concluding remarks

From the linearized Euler equations with a uniform
mean-flow, to a non-uniform mean-flow, to the fully
Fig. 12. Instantaneous contours of the u velocity and the pseudo mean velocity
d ¼ 0:6 and (c) d ¼ 0:8.
non-linear Euler equations, the PML technique has been
successfully applied to a broad class of problems in
Computational Aeroacoustics as a non-reflecting boundary
condition. In this paper, recent developments are reviewed.
The importance of a proper space–time transformation
in the process of deriving the PML equations is empha-
sized through the view point of PML as complex change
of variables. Three essential steps in the construction of
PML are outlined and illustrated by examples for the line-
arized and non-linear Euler equations, with numerical
examples.

The presentation of the PML technique in this review
has been focused on the view that the PML technique is
essentially a complex change of variable in the frequency
domain. There are however other approaches in the litera-
ture on deriving the PML equations. In [3,12], different, but
somewhat equivalent, ways of constructing the PML equa-
tions were offered. And recently, in [24], a new approach of
formulating the PML based on a factorization of the Euler
system was given.

PML for Computational Fluid Dynamics and Compu-
tational Aeroacoustics is still an active area of research.
Further applications of the PML technique are being
explored. Some of the unanswered questions are: how to
formulate stable PML with a mean flow in an arbitrary
direction? Is there a simple and direct formula for deter-
mining the parameter b for an arbitrarily given mean flow?
How to formulate PML for transonic mean flows? What
are the stability properties of the non-linear PML equa-
tions? How to extend the PML to non-linear Navier–
Stokes equations and what are the physical and non-phys-
ical effects of using PML in a turbulence simulation? We
hope these questions will be answered in future studies.
profile used in the PML equation at the outflow boundary: (a) d ¼ 0:4; (b)
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