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Perfectly Matched Layers (PML) are discussed. The basic ideas and central results of these
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1 Introduction

In numerical simulations with an infinite or semi-
infinite domain, the open boundaries are necessarily
truncated and artificial boundaries are formed. The
boundary conditions to be applied at these artificial
boundaries should be transparent to out-going distur-
bances. This turns out to be a difficult problem under
most general assumptions and remains an outstand-
ing issue for computational fluid dynamics (CFD) and
computational aeroacoustics (CAA). Due to the im-
portance of the subject, there is an extensive liter-
ature on non-reflecting boundary conditions. Some
previous reviews can be found in Renault(1992),
Givoli(1994), Tam(1998), Tsynkov(1998) and Turkel
and Yefet(1998).

This paper will review methods that employ “ab-
sorbing layers” for the purpose of annihilating the
out-going disturbances. In particular, we will focus
on methods that are genuinely multi-dimensional and
applicable to the Navier-Stokes equations or the Eu-
ler equations and leave out absorbing boundary con-
ditions that are primarily for specialized systems such
as the wave equation or frequency domain formula-
tions. Special attentions will be given to the recently
emerged Perfectly Matched Layer technique and its
application to computational aeroacoustics.
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In section 2, we will review three commonly used
techniques, loosely termed “zonal techniques”. The
aim here is not to give details of each individual ap-
proach, but to survey and summarize the basic ideas
and central results of these methods. In section 3, we
will discuss the main ideas behind the construction
of Perfectly Matched Layers for the linearized Euler
equations. The recent work presented in Hu(2001)
will be generalized to three dimensional equations
and the PML equations are rewritten in a more com-
pact form. Examples of the PML technique for duct
acoustics are presented in section 4. We will see that
PML is applicable as the inflow and outflow boundary
conditions in a ducted environment without a specific
modal assumption. Finally, in section 5, we offer a
comparison of PML and non-PML absorbing bound-
ary conditions.

2 Zonal techniques

The methods reviewed in this section are variously re-
ferred to as “absorbing layers”, “sponge layers”, “exit
zones”, or “buffer zones” etc, in the literature. The
basic strategy of these methods is to introduce ad-
ditional zones of grid points, or layers, to surround
the truncated physical domain so that out-going dis-
turbances are attenuated in the added zones. The
numerical solutions inside absorbing zones need not
be physical as long as the use of the zone does not
cause significant reflection back into the physical do-
main. Various ways of constructing the absorbing
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zones have been proposed. In this section, we will re-
view three approaches as a representative of what are
frequently used in computational fluid dynamics and
computational aeroacoustics. We note that these ap-
proaches are often implemented in a combined fash-
ion. In some cases, the absorbing zone is terminated
with a characteristics based non-reflecting boundary
condition (see Hixon(2004) in this special issue) at
the exit end of the zone.

2.1 Artificial dissipation and damping
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Figure 1: Schematic of an absorbing zone added to
the physical domain.

In this approach, an absorbing zone is created and
appended to the physical computational domain (Fig-
ure 1) in which the governing equations are modi-
fied to mimic a physical dissipation mechanism. The
advantage of using the physical analogy is that the
modified equations will likely be mathematically well-
posed. Israeli and Orszag(1981) analyzed the effec-
tiveness of adding artificial dissipation and artificial
damping terms to the one dimensional wave equation.
Written as a system of two first order equations, the
model equations used in their analysis were
0%v
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where p(x) > 0 and v(z) > 0 were the artificial dis-
sipation and damping coefficients respectively. The
u(x) term is analogous to the viscous dissipation and
the v(z) term simulates “Newtonian cooling” or “fric-
tion” effects. They analyzed separately the effective-
ness of using the p term and the v term in an absorb-
ing zone. For example, if the computational domain
was 0 < x < x( and the absorbing zone was created in
xo < & < L with p(z) = po(constant) and v(x) = 0,
the reflection coefficient at the interface x = ¢ was
found to be

Coikae @ — ik tan[a(L — )]
- a+ iktana(L — x9)] ®)

where @ = k/v/1+iuok and k& was the wavenum-
ber of the incident wave(Israeli and Orszag(1981)).

R =

Under the assumption that pok < 1, the reflection
coefficient was found asymptotically to be

[R| e 000 L O(Lpok). (@)
From (4), it was estimated that to achieve a reflection
of 1% by using the p term alone, an absorbing zone
containing at least 15 wavelengths was necessary.

The damping provided by the v term was found
to be more effective. For example, if u(z) = 0 and
v(z) = vo(z) (with vp(zg) = 0) inside the absorbing
zone, the formula for the reflection coefficient was
given by

kv + vy
kv — vy

R =

T=x0

It was estimated that minimal reflection might be
achieved with a layer of one and a half wavelengths.

The analysis in Israeli and Orszag(1981) also
showed that the method can be further improved by
using a characteristics based boundary condition or
filtering operator at the exit end of the zone.

For the Euler and Navier-Stokes equations, an ar-
tificial damping term, such as the v term in (1), can
be easily introduced as follow,

(?9—1; = L(u) — v(u—uyp) (5)
where u is the solution vector and L(u) denotes the
spatial operators of the governing equations. Here, ug
is the time independent “target” value in the absorb-
ing zone (see Freund(1997)). In Kosloff et al(1986),
a system similar to (5) was analyzed for the two-
dimensional wave equation, with numerical examples.
In particular, the reflection coefficient of a multi-layer
absorbing zone was calculated.

2.2 Grid stretching and numerical fil-
tering

Attenuation of the solution may also be achieved by
purely numerical means. One such approach, used in
Rai et al(1991) and Colonius et al(1993), is to create
a “sponge layer”, or “exit zone”, in which the grids are
stretched and coarsened. When an out-going wave
enters the sponge layer, it becomes under-resolved in
the coarsened grid. Since most numerical schemes
have a built-in mechanism of dissipating the distur-
bances in unresolved scales, the numerical solutions
inside the sponge layer are attenuated through nu-
merical dissipation.

Computationally, grid stretching is equivalent to a
modification of spatial derivative terms. For example,
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if the grids in the x direction are to be stretched, one
can replace the x derivative as

9 10 ©
Oz ax) Ox

where a(z) > 1 is an increasing function with
a(xg) = 1. Then, inside the sponge layer, spatial
derivative terms can be discretized in the same way
as those in the interior region.

One should be careful that the stretching has to
be done very gradually and a(x) must be a slowly
varying function, because a sudden increase in grid
spacing can cause numerical reflection (e.g., Vichn-
evetsky(1981) and Hu and Atkins(2002)). This may
lead to an excessively large exit zone and sometimes
result in an exit zone that has as many grid points as
the physical domain. A model of smoothly stretching
the grid was discussed in Colonius et al(1993).

The attenuation of the numerical solution, how-
ever, can be enhanced by applying low-pass numer-
ical filters inside the added zone, thus reducing the
length of the exit zone. In Colonius et al(1993), a
five-point explicit filter operation was enforced in the
sponge layer. In Visbal and Gaitonde(2001), implicit
high-order filters were used. It was noted in Visbal
and Gaitonde(2001) that, since grid stretching could
cause high frequency grid-to-grid oscillations, high-
order filters should be applied to the solutions in the
physical domain as well. Examples were presented
in Visbal and Gaitonde(2001) where grid stretching
could even be done non-smoothly when combined
with high-order filters. In Liu et al(1993), a grid
stretching in the streamwise direction was combined
with an increase in viscous dissipation similar to the
u term in (1) in section 2.1.

Another technique of creating an absorbing zone is
to directly multiply the disturbances with an appro-
priate damping function. In Wasistho et al(1997),
the numerical solution inside the absorbing zone is
modified, at each Runge-Kutta stage, according to
the following formula,

U= Uy + £(2) (U — Upey)

where u,.s is a reference “target” flow and £(z) is a
smooth function that varies from unity, at the start
of the absorbing zone, to zero, at the end of the
zone. This approach was shown to be effective for
absorbing the Tollmien-Schlichting wave in a com-
pressible boundary layer. Details on the formulation
of the damping function £(x) were given in Wasistho
et al(1997).

2.3 Modification of convective mean
velocity

In numerical simulations of laminar to turbulent tran-
sitions of incompressible flows, it was recognized that
the upstream influence of an outflow boundary re-
sulted from the ellipticity of the Navier-Stokes equa-
tions (see Streett and Macaraeg(1989)). To eliminate
the upstream influence, a buffer zone was introduced
in Streett and Macaraeg(1989) in which the viscous
effects were gradually reduced to zero and the gov-
erning equations were modified to be completely hy-
perbolic with an outward convective mean flow, thus
forgoing the necessity of non-reflecting boundary con-
ditions. This method of modifying the characteris-
tics of the governing equations has been extended
to compressible Euler equations and Navier-Stokes
equations in the works by Ta’asan and Nark(1995)
and Freund(1997). In Ta’asan and Nark(1995), for
the compressible Euler equations, the mean flow in-
side the buffer zone was modified to increase gradu-
ally and become eventually supersonic at the end of
the buffer domain. At that point, since the flow is su-
personic and outward, termination of the grid will not
cause any reflection. In Freund(1997), this approach
was combined with additional damping terms simi-
lar to those used in a sponge layer. The combination
was shown in numerical simulations to be effective
in reducing the length of the buffer zone and work
better than stand-alone characteristics-based bound-
ary conditions for the Navier-Stokes equations. The
buffer zone was also used to impose inflow boundary
condition in Freund(1997).

The formulation and implementation of the buffer
zone appears to be relatively simple. It essentially
involves an addition to the governing equations of
artificial convective terms of the form

du Oou
% + VO(‘rvy)a—y

UO (Ia y)
where Uy and Vj are the artificial velocities that are
zero at the start of the buffer zone and are gradu-
ally increased to become supersonic in the outward
direction.

In all the methods reviewed above, the performance
of the absorbing zone depends largely on the gradu-
alness in the variation of the added absorbing terms,
the length of the absorbing zone as well as the wave-
length of the out-going disturbances. The issue then
is computational efficiency. In the next section, a
method for the linearized Euler equations, based on
the Perfectly Matched Layer technique, will be re-
viewed where the absorbing zone can be significantly
shortened. A heuristic argument about the difference
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between the Perfectly Matched Layer and the zonal
techniques will be discussed in section 5.

3 Perfectly Matched Layers

The Perfectly Matched Layer (PML) technique was
first proposed in Berenger(1994) for numerical solu-
tion of Maxwell equations. It showed for the first time
that it was possible to formulate an absorbing layer
that was theoretically reflectionless for electromag-
netic waves of any frequency and any angle of inci-
dence. PML quickly became the method of choice in
the computational electromagnetics community. The
extension of the PML technique to the Euler equa-
tions was first given in Hu(1996a,b). However, it was
found that a direct adaption of the split formulation
of Berenger(1994) to the Euler equations can give rise
to instabilities in the PML domain (e.g., Hu(1996a),
Abarbanel et al(1997), Tam et al (1998) and Hes-
thaven(1998)). Recently, a new formulation of a Per-
fectly Matched Layer for the Euler equations was pro-
posed in Hu(2001). The new formulation eliminated
the instability waves of Hu(1996a) while still being
perfectly matched to the linearized Euler equations.
Similar ways of avoiding instability in the PML do-
main were also discussed in several recent works, e.g.,
Becache et al(2003) and Hagstrom et al(2003). In this
section, we will review the main ideas of constructing
stable Perfectly Matched Layers for Euler equations.
In the next section, examples for duct acoustics will
be given.

3.1 Basic ideas of PML

We will illustrate the basic ideas for the PML tech-
nique through the construction of a vertical xz-layer
for the linearized Euler equations with a constant
mean flow. Let the governing equations be written
as

ou ou ou
e 1B =
ot " A TBg, 7Y ™
where
P M 1 0 0
u 0o M 0 1
u=| , A= 0o o M o |
p O 1 0 M
0010
00 0 0
B=1101001 (8)
001 0

Here, p is the density, (u,v) is the velocity vector, p
is the pressure, and M is the Mach number of the
mean flow.

As shown in previous works for the Maxwell equa-
tions, e.g., Chew et al(1994), Gedney(1996), Zhao et
al(1996), Collino et al(1998), Petropoulos(2000) and
Turkel et al(1998), the PML technique can be viewed
as a complex change of variables in the frequency do-
main. However, to avoid generating instability waves
in the PML domain, it has been found necessary to
introduce a coordinate transformation before apply-
ing the PML technique. It was suggested in Hu(2001)
that the following transformation be made,

M
T

T=x, §=+\1—- M2y, t=1t+

In the transformed variables Z, § and ¢, the linearized
Euler equation (7) is written as

9)

—0

(10)
where I is the identity matrix. In the frequency do-
main, equation (10) becomes

M ou
(I—i—mA) 8t+A_+V1_ B

=0
(11)

where we have assumed u(z, y,t) = e”“'a(z, y).
At this point, a key step is a complex change of
variable for Z as follows,

M
—z'u_J(I—I—l MA> +A——|—\/1— B

—it

- T
_ o
x—>x+:/ odx
w —

Zo

(12)

where o, (x) > 0is the absorption coefficient and Z is
the coordinate at the start of the PML domain. Here,
o, can be constant (as in Hu(2001)) or any spatially
varying function. The change of variable (12) will be
referred to as the PML complex change of variable in
this paper. Accordingly, the partial derivative % will
be modified as

0 1 0

= =

0z 14 2= 0z

and equation (11) becomes
M 1 ou
—iw | I+ —=A |1 — A —
zw<+1_M2 >u+1+zzf O

+\/1—M2B% =0
Y
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This is the PML equation in the frequency domain.

Equation (13) can be written back in the time do-
main in several different ways. One way, without
splitting the equations or the physical variables, is
to multiply the equation by (1+ Z%f) which gives im-
mediately

M ._ ou
(I + WA) (—iwu 4+ o,01) + A%

(14)

- MQB% +o,\/1 —MQB? =0
y y

where q is an auxiliary variable and defined as

A
q=—u.

€l

The time domain version can be readily obtained
from (14). When expressed in the original variables
x,y and t, we get the following set of equations to be
used in a vertical PML domain,

ou ou ou dq o.M
E—FA(%—FB@ +0o B8 +%u+1—M2A =0,
(15)
oq

Similarly, for problems where both the vertical and
horizontal absorbing layers (including corners) are
needed, the PML complex change of variable should
be applied to both z and ¥,

i z i Y
:E—wﬁ—i—j/ ozdx, gj—>gj+:/ oydy
W Jzo W Jgo
where 0, and o, are functions of = and y respectively.
This leads to a PML equation for the 2-D Euler equa-
tions as follows,

Ju , p\0u, gou

J0q dq
o A By, touBg

A2
toy or oy

(0z +0y)u

%A(u +0yq) =0.
where q is the same as in (16)(see Hu(2001)).
We note that equation (17) recovers the Euler
equation (7) when o, = 0, = 0. Since o, and o,
are functions of x and y respectively, it follows that,
in a vertical z-layer, o, is non-zero but o, = 0; in
a horizontal y-layer, o, is non-zero but o, = 0; in
the corner layer, both o, and o, are non-zero, as il-
lustrated in Figure 2. Equation (17) has been shown
to be perfectly matched to the Euler equation (7).
That is, theoretically no reflection will occur when

‘0,09 + (17)

an acoustic, vorticity or entropy wave enters the PML
domain from the Euler domain, regardless of the wave
frequency and angle of propagation. Once entered
the PML domain, the amplitude of the wave decays
exponentially.

Furthermore, the auxiliary variable q is only
needed inside the PML domains, because the spatial
derivative 80‘ is only required when oy # 0 which only
happens inside a horizontal y-layer or corner layer
and g—‘; is only required when o, # 0 inside a vertical
z-layer or corner layer. As a result, we do not need
to compute nor store q in the Euler domain.

Y,

max 6, #0 2q o, #0
6;#) 0,=0 , cy¢0 T 6;0
x#0 0,#0
Gy=0 Euler oy=0
34 29
2y y
[ #(_) Tttt z)_q _______ - _(7:0
(s;,(#) 0,=0. oy#0. 6}0
Y min
Xmin X max
Figure 2: Illustration of a computational domain

combining the Euler and PML domains. Solid ar-
rowed lines indicate the domains where dq/dy is
needed and dashed arrowed lines indicate the do-
mains where dq/0x is needed.

Equation (17) can be conveniently written in a
compact form that resembles the original Euler equa-
tions as follows,

du ouY ou” oM
Yy_0 (1
n A8z+B8 +u +1_M2Au 0 (18)
where
u =u+oyq, u’ =u+o0,.q,

and u* = (0, + oy)u+0,0,q

The absorbing coefficients are often taken to be
power functions, for example,

r — X A
D

or exponential functions, for example,
0a(1) = (1 — 1m0/ D)

where D is the thickness of the PML domain and § is
a parameter controlling the rate of change of o, ().

(19)

o(2) = om
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3.2 PML for 3-D Euler equations

Figure 3: Schematic of PML domains in three dimen-
sion.

The PML technique can be applied to the Euler
equations in three dimensions as shown in Hu(2002).
Let the linearized Euler Equations be written in the
matrix form as

Ju ou ou ou

—+A—+B—+C—=0

ot T TPy TV a:
where A, B and C are matrices with constant coeffi-
cients.

After applying the transformation

(20)

and the PML complex change of variables to the
transformed equation,

T . Yy
/ R p— i/ o, dy,
Zo w Yi

we get the PML equations in 3-D,

ou ou¥® ou*”? ou*¥
U LA B C *
ot Thor TP, T T
42 M p e (21)

1— M2

where

z

u =u+ (0, +0.)q1 +0y0.q2,

Tz

u =u+(0m+oz)(h + 0,092,

u”? =u+ (Um + Uy)ql + 0z0yq2,

u" = (0x+0oy+0.)ut(0y0.+020:40,0,)q1+02040-q2

and the auxiliary variables q; and q- are computed
as

Jqi B
o (22)
Jq2 B
o @ (23)

The absorption coeflicients o, o, and o, are func-
tions of z, y and z respectively, as illustrated in Fig-
ure 3. Again, it is easy to verify that the auxiliary
variables q; and g2 are only required inside the added
PML domains and need not be known inside the Eu-
ler domain. Obviously, equation (21) can be further
simplified wherever any of the absorption coefficients
is zero. In particular, q2 is not needed in a region
where any two of the absorption coefficients are zero.

3.3 Termination of PML domain and
effectiveness of PML

Although PML is theoretically reflectionless, the
PML domain in actual computation is of finite length
and a certain boundary condition has to be applied
to terminate the PML domain itself (Figure 2). The
main consideration here is to maintain numerical sta-
bility and to use boundary conditions that are consis-
tent with the stability requirements of the numerical
scheme. Reflections that occur at the outer bound-
aries do not really concern us because when the out-
going waves reach the PML outer boundary, their
magnitudes have already been reduced significantly
and are usually exponentially small. Even when they
are reflected, these waves will travel through the PML
domain again and be damped further before they re-
enter the physical domain.

Several types of boundary conditions are possible.
One possibility is to use a set of simple boundary
conditions as suggested in Hu(2001), i.e.,

at =X,y =Y and y=Y :p=20,

min max*

at  inflow x = X in: p =p=v =20,
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in which [Xmin, Xmaz] X [Yimin, Ymaz] denotes the en-
tire computational domain as indicated in Figure 2.
The second possibility is to apply other non-reflecting
boundary conditions such as the characteristics-based
non-reflecting boundary conditions. The third possi-
bility is to apply periodic boundary conditions when
two opposite sides of the computational domain are
covered by PML absorbing layers as in Hu(1996a) and
Alpert et al(2002).

100 1 4

50 “

i
-50 b

-100

Figure 4: Contours of the pressure p at levels +0.1,
+0.05, +0.01, £0.005 and £0.001. M = 0.8, D =
10Az. t = 600.

To estimate the efficiency of a finite length PML
domain, consider a plane acoustic wave incident on
the vertical x-layer (where o, = 0). The transmitted
wave inside the PML domain has been found to be of
the form

iw Cos @

u= Aéaexp(mx

iwsin ¢
1+ M cos (by)
(24)
where &, is the eigenvector of the acoustic wave and
A an arbitrary constant(Hu(2001)). Here ¢ is the
angle of the phase plane. Assuming a prefect reflec-
tion at the end of the PML domain of thickness D,
the reflected wave travels through the PML domain
again and, when it re-enters the Euler domain, the
original wave amplitude is reduced by a factor of the
reflection coefficient R,

M + cos ¢ /m dx +
— opdx
(1—=M2)(1+ Mcoso) J,,

2cos ¢ @o+D
m/ ozdz).  (25)
)

For o, in the form of (19), the theoretical reflection
coefficient is

R = exp(—

2 cos ¢ omD
1—MZ2cos2¢ 3+ 1)'
From (26), we see that the reflection coefficient re-
duces exponentially with D and o,,. Furthermore, R
is independent of the frequency, or the wavelength, of
the out-going wave.

The reflection coefficient R can be further reduced
if we combine the PML with a grid stretching of
the form (6), e.g., Petropoulos(2000) and Zhao et
al(1996). Then, the reflection coeflicient will be

R = exp(— (26)

2 cos ¢ @o+D
T P o4 COS2¢/ a(z)o,dx)
zo

where «(x) > 1 is the stretching factor.

A numerical example given in Hu(2001) is re-
plotted in Figure 4, where the Euler equations were
solved with the following source term added to the
equation for the pressure:

R = exp(—

2 2
P(x,y,t) = sin(Qt)e~ (" 2) g
The frequency of the source is = 0.037 and the
mean flow Mach number is M = 0.8. Due to the
mean flow, the acoustic wave has a larger wavelength
at the downstream boundary than that at the up-
stream boundary. The Euler equations are solved
in the square domain [—100, 100] x [—100,100]. The
PML domains for this calculation have a thickness
D = 10Ax. Pressure contours of the numerical solu-
tion at ¢t = 600 are plotted in Figure 4. This example
shows that PML equations can be effective for ab-
sorbing long as well as short waves.

4 Ducted Environment

The PML absorption boundary condition discussed in
the previous section can be readily used to terminate
an open boundary inside a duct. In fact, in a confined
environment, the PML equation is simpler because it
is only necessary to apply the absorbing boundary
condition in one direction.

4.1 PML absorbing condition for duct

acoustics

Consider a duct with rigid walls and a rectangular
cross section, shown in Figure 5(top). Suppose that
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the physical domain is to be terminated at © = A
and z = B in the inflow and outflow boundaries re-
spectively. To absorb the out-going waves at these
artificial boundaries, we add vertical xz-layers. The
PML equations to be used in the added domains in-
volve only o,

ou ou ou” ou” oM
—+A—+B C * i Au=0
ot TR TPy T T T
(27)
where
u® = u+o,q; and u* =o,u

and q; is the same as that in equation (22). This, of
course, is just a special case of (21) with oy, = 0, = 0.

x=A

PML
PML

x=B

Figure 5: Schematic of a rectangular duct in three
dimensions. Top: rectangular duct; bottom: circular
duct.

We show the numerical solution of an acoustic
pulse inside a two-dimensional duct. The mean flow
has a Mach number M = 0.5. The entire computa-
tional domain is [-110,110] x [-50, 50] where solid
walls are located at y = £50. A uniform grid of
Ax = Ay = 1 has been used. The PML domain has
a thickness of 10Az. The acoustic pulse is initiated
at t = 0 by the initial condition:

2.2
—(In2) (m+52)2 +y '

p:u:v:07p:

Figures 6(a)-(c) show the pressure contours inside
the duct at ¢ = 60,110 and 150. As the acoustic
pulse is convected downstream, it is reflected by the
duct walls. However, no visible reflection from the

50 : .
-100 50 ] 50 100

10

100 0 50 100

0T T ——

ol !
-100 -50 0 50 100

Figure 6: Propagation of an acoustic pulse inside a 2-
D duct with solid walls. M = 0.5, D = 10Az. (a)-(c):
numerical solution; (d)-(f): reference solution with a
larger domain. Vertical lines at x = £100 indicate
the start of PML domains.
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open boundaries is detected. For comparison, a ref-
erence solution with a larger domain is plotted in Fig-
ures 6(d)-(f). This example shows that PML can be
an effective non-reflecting boundary for duct acous-
tics without assuming any specific modal form of the
acoustic waves.

4.2 Use of PML as inflow condition

In many duct acoustics problems, an incoming wave
is to be specified at the inflow boundary. The PML
technique can be used to impose the incoming waves.
Inside the PML domain for the inflow boundary, there
are both the incoming and out-going waves. The left-
traveling out-going waves in the inflow region can be
a result of reflections occurred inside the duct (e.g., a
nonuniform duct) or at the out-flow boundary. It is
the out-going waves that are to be absorbed. The in-
coming wave, on the other hand, should not be mod-
ified at all. This can be achieved as follows. Since
the incoming wave is known, we compute the physi-
cal variables in the inflow PML domain as a sum of
two parts:

(28)
where u;,. denotes the specified incoming wave and
u’ is the part representing the out-going wave. The
PML equation (27) is then applied to advance u’ in
time.

/
u= Ujp+1u

600
=)

Pressure Contours, M=0.5, t
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Figure 7: Propagation of a duct mode with rigid
walls.

In Figure 7, we show the propagation of a two-
dimensional symmetric duct mode formed by an in-
coming wave specified as

Wine = Im {f'(y)ei(kmw—wt)} :

kcos(kyy)
—wﬁfgsz cos(kyy)
ij\;J[kI sin(kyy)

cos(kyy)

where f(y) =

For the 2-D duct with rigid walls, k, = mn/50 (where
m is an integer) and w = Mk, + / k3 + k2.

For the results shown in Figure 7, k, = 0.04m,
ky = 5k,/6 and M = 0.5. The computation was
initiated with the duct mode occupying half of the
computational domain. Specifically, at ¢ = 0, we have

u(z,y,0) =Im {f(y)eikzz} h(x),

where h(z) = %[1 - tanh(%)].

The h(z) function was used so that the initial condi-
tions would not have an abrupt front. Alternatively,
the front can be placed inside the exit PML domain.
Pressure contours at ¢ = 600 are shown in Figure 7.
Judging by the regularity of the contours, the reflec-
tions from the two open boundaries are indeed quite
small.

4.3 Duct of cylindrical cross section

For a duct of cylindrical cross section, Figure 5(bot-
tom), the linearized Euler equations in cylindrical co-
ordinates can be written as

Ju ou ou Ju

—+A—+B— C— D

ot o TPar Trtee T
where A, B, C and D are matrices with constant
coefficients. The PML absorbing boundary condition
can be derived very similarly to those in the rectan-
gular coordinates, since only the o, term is needed
inside the duct. We get

ou Ju ouw* 1_o0u® 1_ . .
ot T Ag TB TG TP T
o.M
+1_M2Au_0

where
u* =u+o0,q; and u* = o u.

Due to the limitation of space, numerical example
will not be given here.

5 Discussion and summary

We have reviewed basic ideas for the zonal techniques
and the PML method for the linearized Euler equa-
tions. On the surface, the PML technique appears
to be similar to the artificial damping technique re-
viewed in section 2.1. There are, however, important
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and non-trivial distinctions. To provide a heuristic
argument, let’s compare the two methods when the
absorption coefficient used is a constant o, = oy.

The acoustic wave solution of the linearized Euler
equation (7) can be written as

iw Cos @
x
1+ M cos ¢

iwsin ¢

1—|—Mcos¢y

) (29)

a = Ajéexp(
where &, = (1,cos¢,sin ¢, 1) is the acoustic eigen-
vector of (7) and ¢ the phase angle.

The acoustic wave solution of the PML equations

(15)-(16), by (24), is of the form
LA iw cos ¢
a= Ageaezp(l n Mcosgbx

M + cos ¢
T - M1+ Mcosg) 0

twsin ¢
1+ Mcosgby

)- (30)

Here A; and As are arbitrary constants. It is easy
to see that the solution given in (30) can be matched
exactly to that of the Euler equations given in (29)
along any vertical interface of x = xo(constant) by
adjusting constants As or A;. This means that the
acoustic waves can go through the interface transpar-
ently and without any reflection.

The artificial damping model of equation (5), on
the other hand, would modify the linearized Euler
equations as

Ou Ju ou
AT L BEE
ot + Ox + dy
The acoustic wave solution for (31), while keeping the

same eigenvector &,, will be

+ oou = 0. (31)

1w Cos ¢ cos ¢
T — o0
1+ M cos ¢ 1—1—Mcos<;50

a = Aségexp(

iwsin ¢ sin ¢ ) (32)
— o0Y)-
1—|—Mcosgby 1+ M cos ¢ 0y

Along a vertical interface z = xg, it is obvious that
(32) can not be matched to (29) as a function of y,
except for the special case of ¢ = 0(i.e., normal inci-
dent). Consequently, reflections are generated at the
interface.

In summary, we see two main issues for absorbing
boundary conditions. The first is how to formulate
the equations to be used in the absorbing zone that
cause as little reflection as possible. The second is
how to minimize the computational cost. These two
issues are related. A better formulation of the ab-
sorbing boundary condition leads to a shorter and

more efficient absorbing layer. In this sense, the per-
fectly matched absorbing layer is the ultimate ab-
sorbing boundary condition. While the zonal tech-
niques reviewed in Section 2 are generally applica-
ble to the non-linear Euler and Navier-Stokes equa-
tions, the cases where the PML technique can be
successfully applied are still limited at the present
time. The PML technique for Computational Aeroa-
coustics is under active development. In addition to
the linearized Euler equations with a uniform mean
flow, the procedure described in Section 3 can be
used to derive PML equation for non-uniform mean
flows by assuming the mean flow Mach number M
as a function of y(see Hu(2003) and Hasgstrom et al
(2003)). Some ideas on applying PML to certain non-
linear Euler equations were presented in Hu(1996b).
Clearly, more works are needed to further expand
the application of PML to fully non-linear Euler and
Navier-Stokes equations.
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