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In this paper we formulate a numerical method that is high order with strong accuracy for
numerical wave numbers, and is adaptive to non-uniform grids. Such a method is devel-
oped based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equa-
tion, resulting in finite difference type schemes applicable to non-uniform grids. The
schemes will be referred to as DGM-FD schemes. These schemes inherit naturally some
features of the DGM, such as high-order approximations, applicability to non-uniform grids
and super-accuracy for wave propagations. Stability of the schemes with boundary clo-
sures is investigated and validated. Proposed scheme is demonstrated by numerical exam-
ples including the linearized acoustic waves and solutions of non-linear Burger’s equation
and the flat-plate boundary layer problem. For non-linear equations, proposed flux finite
difference formula requires no explicit upwind and downwind split of the flux. This is in
contrast to existing upwind finite difference schemes in the literature.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Accurate and efficient numerical wave approximation is important in many areas of study such as computational aero-
acoustics (CAA). While dissipation and dispersion errors influence the accuracy of the method, efficiency can be assessed by
computational cost and effective adaptability to different mesh structures. Finite difference and finite element methods are
commonly used numerical schemes in CAA. Finite difference methods have the advantage of ease of use as well as high order
convergence, but often require a uniform grid, and stable boundary closure can be non-trivial. High-order finite difference
schemes optimized for such properties are widely used in CAA applications, such as compact schemes, Dispersion Relation
Preserving (DRP) schemes and many others [5,11,19,20,26,32,33]. Finite element methods adapt well to different mesh
structures but often become difficult to implement as the order of approximation increases. Discontinuous Galerkin method
(DGM) is a finite element method that can use non-uniform grids and high-order basis functions. Recent studies have also
shown that discontinuous Galerkin schemes have strong super-accuracy with low dissipation and dispersion errors for wave
propagation problems [24,29].

This paper proposes a new finite difference type scheme, based on the discontinuous Galerkin method (DGM), that has
strong numerical to exact wave number agreement, high order accuracy with stable boundary closure and adaptability to
non-uniform grids [17]. DGM is chosen as the foundation of this new scheme for many reasons. DG methods are adept
for handling complicated geometries and require relatively simple treatment of boundary conditions while maintaining
high-order accuracy. Discontinuous Galerkin (DG) methods can also handle mesh adaptivity adjustments as refinements
. All rights reserved.

ando).

http://dx.doi.org/10.1016/j.jcp.2011.03.008
mailto:amfernando@nsu.edu
http://dx.doi.org/10.1016/j.jcp.2011.03.008
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


4872 A.M. Fernando, F.Q. Hu / Journal of Computational Physics 230 (2011) 4871–4898
of the grid can be taken into account without concern about maintaining continuity [14]. DGM also performs well on
non-uniform stencils, as studies on numerical reflections at a grid discontinuity reveal that the reflections are just the
non-physical or spurious wave modes which dissipate quickly [24].

The original DG method was introduced by Reed and Hill in 1973 for solving the neutron transport equation [31]. A more
formal analysis of DG as applied to ordinary differential equations was performed by LeSaint and Raviart where, if Dx is the
grid spacing, they proved a rate of convergence of (Dx)p in one variable defined on Cartesian grids where p is the order of the
basis functions [27]. On the issue of super-convergence, it was shown that the approximate solution of the DG method super-
converges at the Gauss–Radau points [2,3,9]. Fourier analysis of DGM schemes has shown that the numerical eigenvalues are
accurate to order 2p + 2 locally and therefore 2p + 1 globally for the decay of the evolution component of the numerical error
[4,22,24]. Quadrature-free implementation of the Runge–Kutta discontinuous Galerkin (RKDG) was introduced in [6]. The
extension of RKDG methods to general multi-dimensional systems was used in applications to the Euler equations of gas
dynamics [7,8], and in a series of papers by Cockburn and Shu for numerically solving hyperbolic conservation laws
[12,13,15,16]. Further review and discussion of properties of DGM for conservation laws was done by Flaherty et al. [18].

The new methods proposed in this work, DGM-FD schemes, are explicit and will be shown to possess many of the attrac-
tive features of the discontinuous Galerkin method including the ease of use on non-uniform grids, high-order accuracy, and
low dissipation and low dispersion errors. It also applies directly to higher order derivatives.

In certain aspects, a recently emerged spectral differences (SD) method has some similarities to DGM-FD. SD makes use of
Lagrange interpolating polynomials for a basis function expansion of the solution, u, and flux, f(u). However, while another
recent method, Spectral Volumes (SV) in one dimension, is equivalent to SD [1]. In [34], it is shown that for one-dimension SV
and DG are not equivalent. Therefore as DGM-FD, being equivalent to DG in one-dimension, is not equivalent to SV and
therefore, not to SD. DGM-FD employs a weak formulation of finite elements to construct the numerical derivative of the
flux, using Lax–Friedrichs formulation [24] to resolve the discontinuity at element boundaries inherent in DG formulation.
The flux spatial derivative is composed of coefficients that are from inner products (with respect to L2) of various combina-
tions of the basis functions with themselves or their derivatives. For SD, the approach for finding the derivative of the flux
polynomial could be a linear combination of the derivatives of the basis functions [1,28]. In the SD method, a linear combi-
nation of interpolating polynomials with the solution, u, at (p + 1) Gauss quadrature points as coefficients, is used to estimate
the flux at (p + 2) Gauss–Lobatto points, including element boundaries [28]. While the solution and flux variables are col-
lected at different sets of collocation points for SD, they are evaluated on the same grid points as DGM-FD.

This paper is organized as follows: in Section 2, a review of DGM is given leading to the semi-discrete form of the hyper-
bolic equation from which a finite difference formula for the first spatial derivative is constructed. Two grid structures,
referred to as Grid Structure I and II, are considered in Sections 3 and 4. Stability of the schemes is analyzed in Section 5.
Numerical wavenumber accuracy of the proposed schemes is studied in Section 6, followed by applications to the linearized
Euler equations on non-uniform grids, the Burger’s equations and the flat plate boundary layer problem governed by the
Navier–Stokes equations in Section 7. Conclusions and comments are given in Section 8.

2. Formulation of derivative expression based on DGM

In this section, we present a finite difference type derivative formula that is based on the discontinuous Galerkin method.
Consider the discontinuous Galerkin method, in one dimensional space, for
@u
@t
þ @f ðuÞ

@x
¼ 0 ð1Þ
with the spatial domain in x partitioned into elements En = [sn�1,sn], n = 0,1, . . . ,N. For the convenience of discussion, assume
that the numerical solution and flux function for x 2 [sn�1,sn] are expanded as:
un
hðx; tÞ ¼

Xp

‘¼0

un‘ðtÞ/n
‘ ðnÞ ð2Þ

f n
h ðx; tÞ ¼

Xp

‘¼0

fn‘ðtÞ/n
‘ ðnÞ ð3Þ
where x ¼ 1
2 ðsn�1 þ snÞ þ hn

2 n, hn = sn � sn�1, and /n
‘ ðnÞ are the basis functions with order p on element En, in parametric coor-

dinate n, where �1 6 n 6 1. We note that if /n
‘ ðnÞ are chosen to be some nodal based Lagrange polynomials, the expansion

coefficients will be the same as the nodal values of the numerical solution.
By a weak formulation in DGM, it is required that
Z sn

sn�1

@u
@t
þ @f
@x

� �
/n
‘0 ðxÞdx ¼ 0 ð4Þ
for ‘0=0,1, . . . ,p. Following an integration by parts and the change of variable given above that maps, for each n, En = [sn�1,sn]
to [�1,1], we get
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2

Z 1

�1

@un
h
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/n
‘0 ðnÞdnþ f �ðsn; tÞ/n
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‘0 ð�1Þ �
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�1
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h
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@n
dn ¼ 0 ð5Þ
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for ‘0 = 0,1, . . . ,p, where f⁄ denotes the flux at the end points of the element. At the interface between two elements, or at
element end points sn�1 and sn, the flux vector f⁄ is not uniquely defined and a flux formula has to be supplied to complete
the discretization process.

Here the Lax–Friedrichs flux formula, also known as the theta method, will be applied, namely
f � ¼ 1
2

fþ þ f� � hjkjðuþ � u�Þ½ � ð6Þ
with k being the largest eigenvalue in magnitude of the Jacobian of the flux evaluated at the element boundary point. The
superscripts + and � refer to the values at the right and left of an element boundary, respectively, as shown in Fig. 1.

The semi-discrete expression (5) can then be written explicitly as
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dn ¼ 0 ð7Þ
for ‘0 = 0,1, . . . ,p. In the above, h, 0 6 h 6 1, is a parameter that controls the upwinding effects, with h = 0 being a central
scheme and h = 1 being the fully upwinded scheme. We note that Lax–Friedrichs formula is not the only scheme that could
be used to complete the discretization process. A different flux formulation, however, might change the structure of the
resulting derivative formula as we will see later.

To derive specific finite difference type schemes, we consider a special case that the basis functions are the same for all
elements (except, perhaps, for those next to the boundary, as will be discussed later), denoted by
/n
‘ ðnÞ ¼ P‘ðnÞ ð8Þ
where P‘(n), ‘ = 0,1,2, . . . ,p, forms the basis set, and define matrices
Q ¼ q‘0‘f g ¼
Z 1

�1
P‘P‘0dn

� �
; Q 0 ¼ q0‘0‘

� �
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�1
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@P‘0
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Then, as given in [24], the semi-discrete equation (7) can be written as
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Fig. 1. A description of the location of f+, f� on an a grid with element boundary.
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where it is found that
Fig. 2.
Top: un
M� ¼ �
1
2

Bð�1;1Þ ð11Þ

M0 ¼
1
2

Bð1;1Þ �
1
2

Bð�1;�1Þ � Q 0 ð12Þ

Mþ ¼
1
2

Bð1;�1Þ ð13Þ
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1
2

Bð1;1Þ þ
1
2

Bð�1;�1Þ ð14Þ
Now by applying 2
hn

Q�1, which is assumed to exist as the basis functions span the polynomial test and trial spaces, to (10) to
get:
@~un

@t
þ 2

hn
M�

~fn�1 þM0
~fn þMþ

~fnþ1 þ hjkjðM�~un�1 þ N0~un �Mþ~unþ1Þ
n o

¼ 0 ð15Þ
where
M� ¼ Q�1M�; Mþ ¼ Q�1Mþ; M0 ¼ Q�1M0; N0 ¼ Q�1N0
By comparing the original PDE (1) with the discretized version in (15) it is clear that we get the following discretization for-
mula for the spatial derivative of the flux~f n as
@~f n

@x
¼ 2

hn
M�

~fn�1 þM0
~fn þMþ

~fnþ1 þ hjkj M�~un�1 þ N0~un �Mþ~unþ1� 	n o
ð16Þ
In particular, if we let f = au, where a is a scalar, we can also get an expression for the spatial derivative of solution variable~un:
@~un

@x
¼ 2

hn
ð1þ ahÞM�~un�1 þ ðM0 þ ahN0Þ~un þ ð1� ahÞMþ~unþ1� �

ð17Þ
where
a ¼ signðaÞ ¼
1 if a > 0
�1 if a < 0

�

Depending on the choice for the sign of a, left (a < 0) and right (a > 0) biased difference formulas are formed. Here, h is again,
the upwinding factor. The formulation given above can be applied to any chosen family of basis functions P‘(n). In particular,
when the basis functions are chosen to be the Lagrange interpolating polynomials, the expansion coefficients un‘ become the
same as the nodal values of the numerical solution at the prescribed nodes. Expressions (16) and (17) then lead to spatial
differential formulas for the flux and solution variable, like those in a finite difference method. Various finite-difference-like
schemes can be derived by the formulas given in (16) and (17) based on particular choices on the distribution of nodal points.
Two possibilities are detailed in the next two sections.
3. Grid Structure I

In this section, we present schemes with a distribution of nodal points that include the end points of the element. The
nodal points in the local coordinates will be denoted by n‘, ‘ = 0,1,2, . . . ,p and the globally ordered nodal points within
n+1

xn1 x x x xx n3 n4n0 n2

nhhn−1

hhn−1 n

n5

x(n−1)5 x(n+1)0

h

h

n+1

Schematic of a finite difference grid partitioned into elements of length hn = pDx, where Dx is the grid size and p is the order of the basis functions.
iform Dx and bottom: Chebychev–Labatto spacing.
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element En will be denoted by xn‘, ‘ = 0,1,2, . . . ,p, where p is the order of the basis functions. This will be referred to as Grid
Structure I, see Fig. 2. Specifically, the nodal points on the transformed coordinate n, �1 6 n 6 1, can be
ni ¼ �1þ 2i
p
; i ¼ 0;1;2; . . . ;p ð18Þ
for a uniformly spaced grid, or
ni ¼ � cos
ip
p


 �
; i ¼ 0;1;2; . . . ;p ð19Þ
for a grid based on the Chebychev–Lobatto points [10]. After the nodal points have been chosen, the basis functions as given
by (8) are
P‘ðnÞ ¼
Pp

i¼0;i–‘ðn� niÞ
Pp

i¼0;i–‘ðn‘ � niÞ
ð20Þ
Then the DGM-FD scheme can be derived by substituting (20) into formulation (16) or (17) where the matrices M0; N0; M�

are computed according to (9) and (11)–(14).
In this grid structure, nodal points overlap at element end points, namely, xnp � x(n+1)0. Discontinuity of the solution at the

end points is allowed thus, the solution is double valued at element end points.
We note that since element length, hn, needs not be a constant from element to element, the grid which is made up of

many such elements can be non-uniform, with no changes to scheme coefficients. This is a feature of the current scheme
distinct from most existing finite difference schemes, where grid spacing is required to be constant.
3.1. Interior scheme

An example of a fifth-order (p = 5) scheme with uniformly distributed points (18) is shown below. Third and fourth order
schemes are given in the appendix. By (16) the difference formula for the flux function on a set of six grid points is of the
form
@

@x
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fn4
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2666666666664
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For a uniformly spaced nodal distribution, given by (18), the coefficient matrices can be easily computed by (11)–(14). They
are
M� ¼

0 0 0 0 0 �9

0 0 0 0 0 7611
6250

0 0 0 0 0 � 2274
3125

0 0 0 0 0 1773
6250

0 0 0 0 0 57
3125

0 0 0 0 0 3
2

26666666666664

37777777777775
; M0 ¼
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24

25
2 � 25

2
25
3 � 25

8 2

� 5368
3125 � 65

24 5 � 5
2

5
6 � 2669

25000

21317
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4 � 5
6

5
2 � 5

8
13763
37500
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5
8 � 5

2
5
6

5
4 � 21317
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25000 � 5

6
5
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24
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�2 25
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3
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2 � 79
22
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N0 ¼
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� 7611
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3125 0 0 0 0 � 7611
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� 3
2 0 0 0 0 9

26666666664

37777777775
; Mþ ¼

� 3
2 0 0 0 0 0

� 57
3125 0 0 0 0 0
� 1773

6250 0 0 0 0 0
2274
3125 0 0 0 0 0
� 7611
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9 0 0 0 0 0
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Since only values of end points at the neighboring elements are needed, the difference formula (21) can also be expressed
more concisely as follows:
@

@x

fn0

fn1

..

.

fnp

266664
377775 ¼ 2

hn
D

fðn�1Þp

fn0

fn1

..

.

fnp

fðnþ1Þ0

26666666664

37777777775
þ 2

hn
hjkjD0

uðn�1Þp

un0

un1

..

.

unp

uðnþ1Þ0

26666666664

37777777775
ð22Þ
Here p = 5 for the current example. The entries for D and D0 matrices can easily be found according to (21). Specifically that
the first column of D is the last column of M�, its last column is the first one from Mþ, with the remaining entries being from
M0. Likewise, the first column of D0 is also the last one from M� and therefore identical to the first column of D, the last col-
umn is the opposite of the first one from Mþ and therefore the opposite of the last column from D, and the middle columns
are identical to those in N0. D and D0 for the current scheme are given explicitly below:
D¼

�9 79
24

25
2 � 25

2
25
3 � 25

8 2 � 3
2

7611
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and D0 ¼
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3
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3
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It is also straight forward to derive the difference formula for solution variable u from (22), which yields
@

@x

un0

un1

..

.

unp

266664
377775 ¼ 2

hn
½D� hD0�

uðn�1Þp

un0

un1

..

.

unp

uðnþ1Þ0

26666666664

37777777775
ð23Þ
where a + or � sign is taken when @f
@u > 0 or @f

@u < 0, respectively, giving a left or right biased scheme.

3.2. Boundary closures

Forming a boundary closure is accomplished by assuming that variables in the boundary grid point are single-valued, as
illustrated in Fig. 3. Grid points near the boundary are show in Fig. 3 where a left boundary is closed one order down for
added stability [11]. To illustrate the boundary schemes, let element index be n = 0 for the element at the left boundary.
Using the formulation outlined in (23) as an example, the left boundary closure involves adjusting the coefficients for the
first collocation point at the boundary of the first element and by adding the first two columns of the D and D0 matrices thus
created. This produces boundary closure matrices, Dcl and D

0 ,cl:
1hh

boundary point

0

Fig. 3. Schematic of grids at the boundary, p = 4.
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1
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3
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With which the derivative formula for solution variable would be
@

@x

un0

un1

..

.

unðp�1Þ

266664
377775 ¼ 2

hn
½Dcl � hD0;cl�

un0

un1

..

.

unðp�1Þ

uðnþ1Þ0

266666664

377777775 ð24Þ
for n = 0 at the left boundary.
Closure for the right side follows similarly. The above scheme gives coefficients for computing a spatial derivative and

these can be used to incorporate forcing terms or boundary conditions as applicable. We note that, when the boundary value
is given, the derivative formula for the boundary point may not be used.

4. Grid Structure II

In this section, a second choice for the nodal points is studied, where nodal points lie inside the element. By choosing
nodal points all in the interior of the element, it is possible to generate a grid system without double-valued nodes as shown
in Fig. 4. In this case, the nodal points on the transformed coordinate n, �1 6 n 6 1, are
ni ¼ �
p

pþ 1
þ 2i

pþ 1
; i ¼ 0;1;2; . . . ;p ð25Þ
for a uniformly spaced grid or
ni ¼ � cos
ð2iþ 1Þp

2pþ 2


 �
; i ¼ 0;1;2; . . . ;p ð26Þ
for a grid based on Chebychev–Gauss points [10].
This will be referred to as Grid Structure II. Since this scheme does not require double grid points, it resembles, more clo-

sely, a traditional finite difference scheme, when uniform grids are used.
With the given choices of the grid points, the difference formula can again be easily derived by substituting (20) into for-

mulation (16) or (17) where the matrices are computed according to (9) and (11)–(14).

4.1. Interior scheme

A fourth-order (p = 4) scheme is given below as an example. The difference formula by (16) for a set of five grid points, as
illustrated in Fig. 4, is of the form
n4

Δx1

(Δx1
+Δx2

)1
2

hhn−1 n

2Δx

x x x x xn0 n1 n2 n3

Schematic of a finite difference non-uniform grid partitioned into elements of length hn = (p + 1)Dx, where Dx is the grid size and p is the order of the
nctions.
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266666664
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By using (25) and (20) as the nodal points and basis functions, the coefficient matrices are readily computed by (11)–(14) as
follows:
M� ¼

�29141
102400

37467
25600

�786807
256000

87423
25600

�262269
102400

22379
102400

�28773
25600

604233
256000

�67137
25600

201411
102400

�525
4096

675
1024

�2835
2048

1575
1024

�4725
4096

�3941
102400

5067
25600

�106407
256000

11823
25600

�35469
102400

12299
102400

�15813
25600

332073
256000

�36897
25600

110691
102400

26666664

37777775

M0 ¼

�97037
38400

38191
6400

�5007
1600

8227
19200

9479
12800

�33669
12800

14153
19200

3117
3200

2149
6400

�13693
38400

1895
1536

�1955
768 0 1955

768
�1895
1536

13693
38400

�2149
6400

�3117
3200

�14153
19200

33669
12800

�9479
12800

�8227
19200

5007
1600

�38191
6400

97037
38400

26666664

37777775

N0 ¼

24997
10240

�7161
2560

227367
128000

�57
2560

�1631
2048

�19747
10240

6207
2560

�248913
128000

339
512

1309
10240

2625
2048

�1125
512

2835
1024

�1125
512

2625
2048

1309
10240

339
512

�248913
128000

6207
2560

�19747
10240

�1631
2048

�57
2560

227367
128000

�7161
2560

24997
10240

26666664

37777775

Mþ ¼

�110691
102400

36897
25600

�332073
256000

15813
25600

�12299
102400

35469
102400

�11823
25600

106407
256000

�5067
25600

3941
102400

4725
4096

�1575
1024

2835
2048

�675
1024

525
4096

�201411
102400

67137
25600

�604233
256000

28773
25600

�22379
102400

262269
102400

�87423
25600

786807
256000

�37467
25600

29141
102400

26666664

37777775

Similarly, by letting f = au, where a is a scalar, a difference formula for any solution variable u can be obtained as
@

@x
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un2

un3

un4
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37777775 ¼
2
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37777775þ
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M0 � hN0
� 	

un0

un1

un2
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un4

26666664

37777775þ
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ð1� ð�hÞÞMþ
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uðnþ1Þ4

26666664

37777775 ð28Þ
where a + or � sign should be taken when @f
@u > 0 or @f

@u < 0, respectively.
A central difference scheme is obtained by letting h = 0 in (28). On the other hand, a choice of h = 1 will yield upwind

schemes with a stencil bias indicated by the coefficient sign of ± preceding the h.
It is also straight forward to show that the difference scheme is applicable to a grid of non-uniform spacings, provided

that between grids of spacings Dx1 and Dx2, there is a transitional grid of length 1
2 ðDx1 þ Dx2Þ, i.e., the average of the two

grid spacings, as shown in Fig. 4.

4.2. Boundary closures

For this grid structure, the nodal points are on the interior of the elements, and yet implementation of boundary condi-
tions often requires the boundary to be on a collocation point. In such cases, the first and last element structures are adjusted
so that each begins or ends on a nodal point. As the nodal points for the basis functions at the boundary element are adjusted
to include the boundary point, as shown in Fig. 5, the basis polynomials generated by these nodal points will be different
than the ones on the interior elements, and, therefore scheme coefficients need to be re-derived to complete the boundary
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boundary point

h1h

Fig. 5. Schematic of grids at the boundary, showing adjustment of element sizes. p = 4.
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closures. In addition, the order of basis functions will be lowered for stability of the schemes [11]. The adjustment of element
length with the lower order closure is also shown in Fig. 5.

Here are the general boundary closures, for any h, for the first and last two elements to be used with the interior scheme
shown in Section 4.1:

For the first element at the left boundary, E0, the third order flux derivative formula is:
@
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where
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For the second element at a left boundary, E1, the 4th order flux derivative formula is:
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where
Mb
� ¼
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þ ¼
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� 201411
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For the last two elements at a right boundary of the domain, we make use of anti-symmetry relationships for deriving the
coefficients. More details are given in the appendix, including the coefficients for second and third order schemes.
5. Stability and super-accuracy properties

5.1. Stability

To study the stability of the scheme with boundary closure, we perform an eigenvalue analysis when the scheme is ap-
plied to the advection equation
@u
@t
þ @u
@x
¼ 0; x 2 ½0;1� ð31Þ
with a given boundary condition at the left boundary, x = 0.
Let uh denote the global vector that contains all nodal values, except the one at the left boundary, then the semi-discrete

equation for (31) can be written as
duh

dt
þ eDuh ¼ s ð32Þ
where s is a source term created by the boundary condition. The discretization is stable if all of the eigenvalues of eD have
positive real parts [11].

For Grid Structure I, as described in Section 3, the eigenvalues for the fifth-order scheme and the boundary closure pre-
sented in the previous sections with N = 30 elements are shown in Fig. 6, left. Stability of the eigenvalues is observed. The
eigenvalue plots for a higher order scheme p = 9, with Chebychev–Lobatto points, show stability in Fig. 6, right, with
N = 30. The eigenvalues were computed for many values of N, as low as N = 5 and as high as N = 200. The uniform grid shows
an eigenvalue close to zero. This value is, like the others, is repeated and as N is increased and no new distinct eigenvalues
appear. For p > 5, the scheme showed instability with a uniform grid. Therefore, for p > 5, Chebychev–Lobatto should be used.

For Grid Structure II, the eigenvalues for a third-order central scheme and a fourth order upwind scheme, with coefficients
calculated as described in Section 4, are shown in Fig. 7 for N = 30. This was repeated for N = 5–200 for each p, where stability
was confirmed for each case.
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Table 1
Convergence rate data p = 3, 4, 5 for Grid Structure I.

h = 1

N p = 3 p = 4 p = 5

Error Rate Error Rate Error Rate

25 7.2867E�3 3.9357 3.2545E�4 7.24280 7.9646E�6 10.0658
30 2.9879E�3 4.8897 7.4643E�5 8.07610 1.1685E�6 10.5270
35 1.2548E�3 5.6280 2.0024E�5 8.53570 2.2870E�7 10.5812
40 5.5270E�4 6.1402 6.2671E�6 8.69908 – –
45 2.5812E�4 6.4644 2.2300E�6 8.77340 – –
50 1.2800E�4 6.6575 – – – –

Table 2
Convergence rate data p = 2, 3, 4 for Grid Structure II.

h = 1

N p = 2 p = 3 p = 4

Error Rate Error Rate Error Rate

25 – – – – 3.2675E-4 –
30 – – 1.1546E�2 – 7.4374E�5 8.1181
35 – – 6.1181E�3 4.1199 1.9982E�5 8.5260
40 8.4202E�4 – 3.2212E�3 4.8040 6.2433E�6 8.7123
45 4.7652E�4 4.8335 1.7098E�3 5.3779 1.3989E–6 8.7984
50 2.8463E�4 4.8908 9.2492E�4 5.8315 – –
55 1.7800E�4 4.9250 5.1363E�4 6.1708 – –
60 1.1576E�4 4.9453 2.9398E�4 6.4133 – –
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5.2. Super-convergence

In recent Fourier analyses of the discontinuous Galerkin method, it was found that the propagation errors reduce at a
super-convergent rate [4,24] To demonstrate the strong super-accuracy for wave propagation problems for DGM-FD, for
both Grid Structures I and II, Eq. (31) is solved in a domain of 0 6 x 6 1 with periodic boundary condition and an initial
condition
u0ðxÞ ¼ uðx;0Þ ¼ e�
lnð2Þ

0:04812 x�1
2ð Þ

2

ð33Þ
First, using the upwind schemes given in Sections 3 and 4 with periodic closure, the numerical solution is calculated, from
t = 0 to t = 51. The exact solution for the computational domain is the repeated initial condition at t = n where n is an integer.
To demonstrate the super-accuracy for propagation errors, the solutions at t = 1 and t = 51 are compared and the L2 norm of
the error, kuh(x,51) � uh(x,1)k2, is shown in Fig. 8, Tables 1 and 2 as a function of total number of grid points in the grid refine
studies for each scheme. We compare uh(x,51) to uh(x,1) rather than to the initial condition, as one advection period would
dampen the non-physical mode of the numerical wave in the projected initial condition [24]. Convergence orders close to 5,
7 and 9 are observed even though the order of the basis function is p = 2,3,4, respectively, matching approximately the the-
oretical rate of convergence for the propagation error of order 2p + 1. This convergence is suggested for linear wave propa-
gation specifically and it is unknown what kind of convergence can be seen in non-linear problems.

6. Numerical wave number accuracy

In this section, the numerical wave number accuracy of the DGM-FD method is examined and then compared to other
finite difference schemes such as the DRP [32] and compact schemes [26]. Although the numerical wavenumbers of the
DG method have been studied in the literature [4,22,24], we present a new way of computationally determining the numer-
ical wavenumber accuracy. The method described below is easy to implement and quite general. It can be applied straight-
forwardly to many other numerical schemes.

First, the advection equation (31), is solved in a domain �50 6 x 6 450, using Dx = 1, with the initial condition
u0ðxÞ ¼ e�
lnð2Þ
32 x2

ð34Þ
until a final time, e.g., T = 400. The exact solution at time T is
uexactðx; TÞ ¼ u0ðx� TÞ ð35Þ
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The spatial Fourier transform of the exact solution is
ûexactðk; TÞ ¼ e�ikT û0ðkÞ ð36Þ
where a hat indicates the transformed function and k is the wave number. Here û0ðkÞ is the discrete Fourier transform of the
initial condition on the computational grid.

Second, let the numerical solution at t = T be u⁄(x,T) and its discrete Fourier transform denoted by û�ðk; TÞ. The numerical
wavenumber k⁄ can be inferred from û�ðk; TÞ if we express it as
û�ðk; TÞ ¼ e�ik�T û0ðkÞ ð37Þ
By comparing (37) with (36), an estimate of the difference k⁄ � k can be obtained as
k� � k ¼ � ln½û�ðk; TÞ=ûexactðk; TÞ�
iT

: ð38Þ
6.1. Dissipation and dispersion errors of DGM-FD schemes

For both Grid Structures I and II, we first study the numerical wave number accuracy for the upwind (h = 1) schemes for
varying orders.

The numerical wave number accuracy, both for dispersion errors, Real(k⁄ � k), and dissipation errors, Imag(k⁄ � k), are
shown in Figs. 9 and 10. The numerical solution becomes better resolved as the order, p, increases for the upwind scheme.
In Fig. 9, the lowest value for p for Grid I of interest is assumed to be 3.
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Fig. 9. DGM-FD, Grid I. Top: Real(k⁄ � k) upwind, p = 3,4,5; Bottom: Imag(k⁄ � k) upwind, p = 3,4,5.
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For the central scheme (h = 0) in Grid II, the numerical wave number accuracy is shown in Fig. 11. The accuracy for p = 3
appears to have a better numerical wave number resolution than for p = 4. The imaginary part of the numerical wave number
is zero for the central schemes.
6.2. Comparison of DGM-FD with other FD schemes

Now we turn to comparing the performances of DGM-FD Grids I and II, with conventional finite difference schemes on the
accuracy of numerical wave numbers. The advection equation (31) will be solved. First we compare their numerical solu-
tions, then the numerical wave number accuracy followed by a comparison in their numerical wave number convergence
rates.

In Fig. 12, the solution at t = 400, for DGM-FD Grid II of p = 4, the 4th and 6th order compact and the DRP schemes are
shown with the initial condition given in (34). DGM-FD Grid II (p = 4) performs similarly with 6th order compact scheme
and better than both 4th order and DRP.

In Fig. 13 the dispersion properties are examined. For the given tolerance of 10�3, the difference between numerical and
theoretical wave numbers, k⁄ � k, is comparable for DGM-FD, 6th order compact, and DRP, with kDx 6 1. Fig. 14 shows the
rate of convergence of the numerical wave number (slope in figures) for DGM-FD as higher than 4th, 6th and 8th order com-
pact and DRP for the given range of Real(kDx 6 1).

We conclude this discussion of numerical wave number properties for Grid II with a recommendation for upwind param-
eter, h for Grid II. With the central scheme (h = 0), the results in Fig. 11 show no dissipation. With full upwinding (h = 1) the
results in Fig. 10 show better dispersion properties than for the central scheme, but with more numerical dissipation. We



0 0.2 0.4 0.6 0.8 1 1.2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

R
ea

l(k
* 

Δ 
x 

−
 k

 Δ
 x

)

k Δ x

2 3

4p=2
p=3
p=4
exact

0 0.2 0.4 0.6 0.8 1 1.2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

Im
ag

(k
* 

Δ 
x 

−
 k

 Δ
 x

)

k Δ x

2 3 4

p=2
p=3
p=4
exact

Fig. 11. DGM-FD, Grid II. Top: Real(k⁄ � k) central, p = 2,3,4; Bottom: Imag(k⁄ � k) central, p = 2,3,4.

370 380 390 400 410 420 430
−0.1

0

0.1

0.2

0.3

0.4

0.5

x

u

Compact 4th
DRP
DGM−FD p=4
Compact 6th
exact

370 380 390 400 410 420 430
−0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

p=3
p=4
p=5
exact

Fig. 12. Gaussian profile, left: Compact Schemes 4th, 6th order, DRP, and DGM-FD Grid II p = 4, DRP; right: DGM-FD Grid I p = 3,4,5.

A.M. Fernando, F.Q. Hu / Journal of Computational Physics 230 (2011) 4871–4898 4885
look to balance both in Fig. 15. Numerical wave number errors for h = 0.50, 0.75 and 1 are plotted. By these results, h = 0.75 is
recommended as the dispersion and dissipation errors are of similar magnitude.
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7. Numerical examples

In this section, we show numerical examples of the scheme presented in this paper. As the applications are two dimen-
sional, the spatial derivatives are performed with DGM-FD in each dimension. In all the examples, method of lines is em-
ployed with five stage Runge–Kutta as the time integration scheme [21].

7.1. Linear waves in free space

We solve the linearized Euler equations rewritten as:
@U
@t
þ A

@U
@x
þ B

@U
@y
¼ 0 ð39Þ
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where A and B are the coefficient matrices:
A ¼

Mx 1 0 0
0 Mx 0 1
0 0 Mx 0
0 1 0 Mx

26664
37775; B ¼

My 0 1 0
0 My 0 0
0 0 My 1
0 0 1 My

26664
37775; U ¼

q
u

v
p

26664
37775
In the above, q is density, u and v are velocities in x and y directions, respectively, p is pressure and Mx and My are constant
mean flow Mach numbers in the x and y directions, respectively. The computational domain is [�110,110] � [�110,110]
with the Perfectly Matched Layer absorbing condition applied for the 10 grid points around the boundary [23]. For the exam-
ple, Mx = 0.5, My = 0. Grid I scheme of p = 5 given in Section 3 is applied in this example.

For this linear problem A, B can be decomposed into sums of matrices with positive and negative eigenvalues. In this way,
we rewrite (39) as:
@U
@t
¼ � ðAþ þ A�Þ @U

@x
þ ðBþ þ B�Þ @U

@y

� �

or
@U
@t
¼ �½ðAþDþx þ A�D�x ÞUþ ðB

þDþy þ B�D�y ÞU�
where:
Aþ ¼

Mx ðMx þ 1Þ=2 0 ð1�MxÞ=2
0 ðMx þ 1Þ=2 0 ðMx þ 1Þ=2
0 0 Mx 0
0 ðMx þ 1Þ=2 0 ðMx þ 1Þ=2

26664
37775; A� ¼

0 �ðMx � 1Þ=2 0 ðMx � 1Þ=2
0 ðMx � 1Þ=2 0 �ðMx � 1Þ=2
0 0 0 0
0 �ðMx � 1Þ=2 0 ðMx � 1Þ=2

26664
37775
Bþ ¼

My 0 ðMy þ 1Þ=2 ð1�MyÞ=2
0 My 0 0
0 0 ðMy þ 1Þ=2 ðMy þ 1Þ=2
0 0 ðMy þ 1Þ=2 ðMy þ 1Þ=2

26664
37775; B� ¼

0 0 �ðMy � 1Þ=2 ðMy � 1Þ=2
0 0 0 0
0 0 ðMy � 1Þ=2 �ðMy � 1Þ=2
0 0 �ðMy � 1Þ=2 ðMy � 1Þ=2

26664
37775
The derivative formula in terms of the solution variable u, (17), is used where a = 1 for Dþx , Dþy and a = �1 for D�x , D�y operators,
respectively.

Fig. 16 shows the computational domain with variable grid spacings. For grids in x direction, grid spacing starts with
Dx1 = 1 (with element width h = pDx1 = 5). Two sub-regions with Dx2 = 1

5, and h=pDx2 = 1 are introduced as shown. The grids
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in the y-direction are similarly structured. The total number of collocation points on each direction is 315. The initial con-
dition is the following:
qðx; y;0Þ ¼ e �lnð2Þ x2þy2

9

� 	� 

þ 0:1e �lnð2Þ ðx�67Þ2þy2

25

� 	� 

; uðx; y;0Þ ¼ 0:04ye �lnð2Þððx�67Þ2þy2

25 Þ
� 


vðx; y;0Þ ¼ �0:04ðx� 67Þe �lnð2Þ ðx�67Þ2þy2

25

� 	� 

; pðx; y;0Þ ¼ e �lnð2Þ x2þy2

9

� 	� 


This is a Benchmark problem in Computational Aeroacousitics (CAA). It includes an acoustic pulse, vorticity wave and entro-
py wave. Density contours and a comparison with the exact solution are shown in Figs. 17 and 18. The numerical solution
appears to be smooth at grid interfaces and agrees very well with the exact solutions.

7.2. Acoustic pulse reflection by a wall

In this example, an acoustic pulse is the reflected by a solid wall. The computational domain is [�110,110] � [0,220]. A
solid wall is located at y = 0. The PML absorbing condition is applied for the 10 grid points on the left and right and 20 grid
points on the top boundary of the computational domain [23]. The fourth order Grid II scheme, given in Section 4, will be
applied in this example with following initial condition:
pðx; y;0Þ ¼ qðx; y; 0Þ ¼ e½�lnð2Þðx
2þðy�25Þ2

25 Þ�; uðx; y;0Þ ¼ vðx; y;0Þ � 0
Density contours are shown in Fig. 19. A good comparison with the exact solution is found.

7.3. Burger’s equation

To demonstrate the ability of the scheme for treating higher order derivatives, we show an example of the Burger’s equa-
tion. The governing equation is:
@u
@t
þ 1

2
@ðu2Þ
@x
¼ m

@2u
@x2
where m is taken to be 0.02.
The equation admits an exact solution:
uðx; tÞ ¼ 1� tanh
x� xc � t

2m


 �
; xc ¼ 5
where xc is the location of the wave front at t = 0. The boundary and initial conditions are given below. As the wave front
changes rapidly over a small region in the domain, the grid size changes from Dx = 0.2 in the coarse part of the grid to
Dx = 0.025 in the refined region [30]. The initial and boundary conditions are:
IC : uðx;0Þ ¼ 1� tanh
x� xc

2m

� �
; xc ¼ 5

BC : uð0; tÞ ¼ 2; uð1; tÞ ¼ 0
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Grid II, as given in Section 4, is used. The flux, f ¼ 1
2 u2 and the value of k in the difference formula (27) is taken to be 1. The

second derivative for u was evaluated using (D+)(D�) where D± is the difference formula given in (28) with corresponding +
and � sign, respectively.

Time integration is again the five stage Runge–Kutta [21] where Dt is conservatively chosen to be 0.025 times the small-
est Dx, 0.02 or Dt = 0.000625.
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Fig. 20 shows the numerical and exact solution at t = 30 as well as the computational domain with a variable grid that is
more refined in the area supporting the wave front. One such grid is shown below. Note the close up of the numerical solu-
tion and the good agreement between the numerical and exact solutions.

The computational domain is initially [0,40]. In order to verify the accuracy and stability over a longer time period, with a
final time of 420, a moving grid frame is used. For the adaptive grid, the code checks to see if the wave front is moving too far
away from the center of the refined region and then, if so, refines a unit on the right of the region while coarsening a unit on
the left. As the wave front is still well within the refined region this results in refining an area of the solution that is constant,
through interpolation, and coarsening an area that is also constant through interpolation. In this way the adaptive grid is
dynamic.

The shape of the numerical solution remains nearly constant for time from 0 to 420 and the numerical solution is stable as
shown in Fig. 21. Again we note the strong agreement between numerical and exact solutions.

7.4. Flat-plate boundary layer problem

In this example, we apply the DGM-FD scheme shown in (16) to the computation of a steady-state boundary layer profile
formed by a uniform flow over a flat plate. The governing equations are the Navier–Stokes equations [25]
@U
@t
þ @E
@x
þ @F
@y
¼ 0 ð40Þ
where
U ¼

q
qu

qv
qe

26664
37775



0 5 10 15 20 25 30 35 40

−0.5

0

0.5

1

1.5

2

2.5

x

y

DGM−FD Grid II, t=30
exact

34 34.5 35 35.5 36
1.85

1.9

1.95

2

2.05

x

y

DGM−FD Grid II, t=30
exact

Fig. 20. Burger’s equation, DGM-FD Grid II, p = 4, 8:1 refinement, log of error = �2.4470; top: plot of exact and numerical solution at t = 30 and bottom:
zoom at t = 30 of exact and numerical solution.

A.M. Fernando, F.Q. Hu / Journal of Computational Physics 230 (2011) 4871–4898 4891
and flux vectors
E ¼

qu

qu2 þ p� sxx

quv � sxy

ðqeþ pÞu� usxx � vsxy þ qx

26664
37775

F ¼

qv
quv � sxy

qv2 þ p� syy

ðqeþ pÞv � usxy � vsyy þ qy

26664
37775
with viscous stress terms written as
sxx ¼
Mx

ReN
2l @u

@x
� kð@u

@x
þ @v
@y
Þ

� �
; syy ¼

Mx

ReN
2l @v

@y
� k

@u
@x
þ @v
@y


 �� �
k ¼ 2

3
l; sxy ¼

Mx

ReN
l @u

@y
þ @v
@x


 �
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and heat transfer terms
qx ¼ �
Mx

ðc� 1ÞPrReN
l @T
@x
; qy ¼ �

Mx

ðc� 1ÞPrReN
l @T
@y
where viscosity, l, non-dimensionalized by a reference value, l1, is assumed to be unity. The equation of state and the en-
ergy function are
cp ¼ qT; e ¼ u2 þ v2

2
þ p
ðc� 1Þq
In the above, u and v are the velocity components in the x and y directions, respectively, p is the pressure, q the density, and T
is the temperature, the Prandtl number, Pr is 0.708 and c the specific heats ratio. The velocity is non-dimensionalized by a
reference speed of sound, a1, density by q1 and pressure by q1a2

1. The Reynolds number, ReN, is q1U1L1/l1 where U1 is a
characteristic flow velocity and L1, a length scale. As E and F are composed of the primitive variables, q, u, v, and p, the deriv-
atives of each are computed using (16). In this way expressions sxx, sxy and syy, which are made up of derivatives of the prim-
itives with respect to x or y, are evaluated. The spatial derivatives in (40) are computed using (16) with h = 0.5 and Grid II
coefficients are applied. The magnitude of the largest eigenvalue over the domain of U of the Jacobians of E, F is taken to
be k = 1.1 and included in (40).

This application is shown with Reynolds number of 5000. A schematic of the domain is shown in Fig. 22. The incoming
flow is uniform in the direction of the x-axis with Mach number, M = U1/a1 = 0.1. Numerical calculation starts with an ini-
tialization of all variables in the physical domain by the uniform incoming flow:
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qðx; y;0Þ ¼ 1; uðx; y;0Þ ¼ ue ¼ 0:1; vðx; y;0Þ ¼ 0:0; pðx; y;0Þ ¼ 1
c
; c ¼ 1:4
The variable grid structure has three distinct regions with respect to the y-axis as greater refinement is needed on the region
closest to the plate (see Fig. 22). For the y-axis the refined region starts with a 4:1 ratio then transitions to a 2:1 ratio and
finally to the non-refined portion. Likewise, with respect to the x-axis a 2:1, 12:1 then 2:1 refinement is shown and there are
five regions here where the third region, 12:1, includes the plate leading edge where extra refinements are necessary be-
cause of the high Reynolds number. PML boundary conditions of [25] are used at the three boundaries where the pseudo
mean flow is adjusted after each Runge–Kutta time loop. Dashed lines in Fig. 22 indicate the PML interfaces.

Fig. 23, top, shows the contours of the u-velocity in the whole computational domain with borders of PML region and
Fig. 23, bottom, shows the normalized stream-wise velocity profile where the stream-wise velocity is plotted as a function
of a similarity variable, y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ue=ðmxÞ

p
, with ue

m ¼ 5000, at x = 0.50, 0.65, 0.75, and 0.90. The similarity solutions, again, show good
agreement.

8. Conclusions

Numerical schemes for computational aeroacoustics problems require low dissipation and low dispersion errors along
with high order accuracy, flexibility with variable grid refinements, and then preferably, ease of use. There are many meth-
ods that do some of these things well, at the expense of others. The method introduced in this research, DGM-FD, is an at-
tempt to formulate a spatial derivative scheme as one that achieves some of requirements of effective numerical schemes for
CAA. DGM-FD is a finite difference type method that has high-order convergence with strong accuracy for numerical wave
numbers and is adaptive to non-uniform grids. Inherited from DGM, the proposed scheme retains super-accuracy for wave
propagations. Of the two grid structures presented, the Grid Structure I has a shortened stencil for the derivative scheme,
with some grid points being double-valued. The Grid Structure II uses directly a finite difference type grid and is, again, adap-
tive for non-uniform grid spacings regions. For non-linear applications the general flux finite difference formula (16) is pre-
sented where no explicit upwind and downwind split of the flux is required. The schemes achieve stable boundary closures
while retaining the formal and wave number super-accuracy for wave propagation problems. Good results in the numerical
examples demonstrate the effectiveness of the new schemes.
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Appendix A. Third order coefficients for Grid Structure I

Third and fourth order (p = 3,4) scheme for interior points are presented. Recall that hn is the element length and that for
interior elements, hn = pDx. To be used for (22) and (24).

Third order coefficients with second order closure:
D ¼

�4 5
4

9
2 � 9

4
3
2 �1

17
27 � 61

54 � 3
4

3
2 � 59

108
8

27

� 8
27

59
108 � 3

2
3
4

61
54 � 17

27

1 � 3
2

9
4 � 9

2 � 5
4 4

26664
37775 and D0 ¼

�4 4 0 0 �1 1
17
27 � 17

27 0 0 8
27 � 8

27

� 8
27

8
27 0 0 � 17

27
17
27

1 �1 0 0 4 �4

26664
37775

Dcl ¼
� 3

2 2 � 5
4

3
4

� 1
2 0 7

8 � 3
8

1
2 �2 � 3

4
9
4

264
375 and D0;cl ¼

0 0 3
4 � 3

4

0 0 � 3
8

3
8

0 0 9
4 � 9

4

264
375
Appendix B. Fourth order coefficients for Grid Structure I

Fourth order coefficients with third order closure:
D ¼

� 25
4

25
12 8 �6 8

3 � 7
4

5
4

485
512 � 741

512 � 5
3 3 �1 511

1536 � 85
512

� 15
32

61
96 � 4

3 0 4
3 � 61

96
15
32

85
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1536 1 �3 5
3

741
512 � 485

512

� 5
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4 � 8
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12
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4

26666664

37777775 and D0 ¼
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Dcl ¼

� 11
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9
2 � 9
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Appendix C. Second order coefficients for Grid Structure II

The second and third order (p = 2,3) scheme for interior points is presented. Recall that hn is the element length and that
for interior elements, hn = (p + 1)Dx.

Then by (16), the finite difference formula for a set of three grid points, second order, is given by
@

@x

fn0

fn1

fn2
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where using (25) and (20), it is found that
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For the first element:
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For the second element, the 2nd order flux scheme:
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Appendix D. Third order coefficients for Grid Structure II

For the third order scheme, again by (16), the finite difference formula for a set of four grid points is given by
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where using (25) and (20), it is found that
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For the first element:
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For the second element, the 3rd order flux scheme:
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Appendix E. Grid Structure II, boundary closure, last two elements

For the last two elements we make use of the following relationships. Define W⁄ for a matrix as:
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For the (N � 1)th element:
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and for the Nth element:
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