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1. Introduction

Accurate and efficient numerical wave approximation is important in many areas of study such as computational aero-
acoustics (CAA). While dissipation and dispersion errors influence the accuracy of the method, efficiency can be assessed by
computational cost and effective adaptability to different mesh structures. Finite difference and finite element methods are
commonly used numerical schemes in CAA. Finite difference methods have the advantage of ease of use as well as high order
convergence, but often require a uniform grid, and stable boundary closure can be non-trivial. High-order finite difference
schemes optimized for such properties are widely used in CAA applications, such as compact schemes, Dispersion Relation
Preserving (DRP) schemes and many others [5,11,19,20,26,32,33]. Finite element methods adapt well to different mesh
structures but often become difficult to implement as the order of approximation increases. Discontinuous Galerkin method
(DGM) is a finite element method that can use non-uniform grids and high-order basis functions. Recent studies have also
shown that discontinuous Galerkin schemes have strong super-accuracy with low dissipation and dispersion errors for wave
propagation problems [24,29].

This paper proposes a new finite difference type scheme, based on the discontinuous Galerkin method (DGM), that has
strong numerical to exact wave number agreement, high order accuracy with stable boundary closure and adaptability to
non-uniform grids [17]. DGM is chosen as the foundation of this new scheme for many reasons. DG methods are adept
for handling complicated geometries and require relatively simple treatment of boundary conditions while maintaining
high-order accuracy. Discontinuous Galerkin (DG) methods can also handle mesh adaptivity adjustments as refinements
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of the grid can be taken into account without concern about maintaining continuity [14]. DGM also performs well on
non-uniform stencils, as studies on numerical reflections at a grid discontinuity reveal that the reflections are just the
non-physical or spurious wave modes which dissipate quickly [24].

The original DG method was introduced by Reed and Hill in 1973 for solving the neutron transport equation [31]. A more
formal analysis of DG as applied to ordinary differential equations was performed by LeSaint and Raviart where, if Ax is the
grid spacing, they proved a rate of convergence of (Ax)” in one variable defined on Cartesian grids where p is the order of the
basis functions [27]. On the issue of super-convergence, it was shown that the approximate solution of the DG method super-
converges at the Gauss-Radau points [2,3,9]. Fourier analysis of DGM schemes has shown that the numerical eigenvalues are
accurate to order 2p + 2 locally and therefore 2p + 1 globally for the decay of the evolution component of the numerical error
[4,22,24]. Quadrature-free implementation of the Runge-Kutta discontinuous Galerkin (RKDG) was introduced in [6]. The
extension of RKDG methods to general multi-dimensional systems was used in applications to the Euler equations of gas
dynamics [7,8], and in a series of papers by Cockburn and Shu for numerically solving hyperbolic conservation laws
[12,13,15,16]. Further review and discussion of properties of DGM for conservation laws was done by Flaherty et al. [18].

The new methods proposed in this work, DGM-FD schemes, are explicit and will be shown to possess many of the attrac-
tive features of the discontinuous Galerkin method including the ease of use on non-uniform grids, high-order accuracy, and
low dissipation and low dispersion errors. It also applies directly to higher order derivatives.

In certain aspects, a recently emerged spectral differences (SD) method has some similarities to DGM-FD. SD makes use of
Lagrange interpolating polynomials for a basis function expansion of the solution, u, and flux, f{u). However, while another
recent method, Spectral Volumes (SV) in one dimension, is equivalent to SD [1]. In [34], it is shown that for one-dimension SV
and DG are not equivalent. Therefore as DGM-FD, being equivalent to DG in one-dimension, is not equivalent to SV and
therefore, not to SD. DGM-FD employs a weak formulation of finite elements to construct the numerical derivative of the
flux, using Lax-Friedrichs formulation [24] to resolve the discontinuity at element boundaries inherent in DG formulation.
The flux spatial derivative is composed of coefficients that are from inner products (with respect to L) of various combina-
tions of the basis functions with themselves or their derivatives. For SD, the approach for finding the derivative of the flux
polynomial could be a linear combination of the derivatives of the basis functions [1,28]. In the SD method, a linear combi-
nation of interpolating polynomials with the solution, u, at (p + 1) Gauss quadrature points as coefficients, is used to estimate
the flux at (p +2) Gauss-Lobatto points, including element boundaries [28]. While the solution and flux variables are col-
lected at different sets of collocation points for SD, they are evaluated on the same grid points as DGM-FD.

This paper is organized as follows: in Section 2, a review of DGM is given leading to the semi-discrete form of the hyper-
bolic equation from which a finite difference formula for the first spatial derivative is constructed. Two grid structures,
referred to as Grid Structure I and II, are considered in Sections 3 and 4. Stability of the schemes is analyzed in Section 5.
Numerical wavenumber accuracy of the proposed schemes is studied in Section 6, followed by applications to the linearized
Euler equations on non-uniform grids, the Burger’s equations and the flat plate boundary layer problem governed by the
Navier-Stokes equations in Section 7. Conclusions and comments are given in Section 8.

2. Formulation of derivative expression based on DGM

In this section, we present a finite difference type derivative formula that is based on the discontinuous Galerkin method.

Consider the discontinuous Galerkin method, in one dimensional space, for
ou  of(u)

ot X

with the spatial domain in x partitioned into elements E,, = [s,,_1,5,], 1=0,1,...,N. For the convenience of discussion, assume
that the numerical solution and flux function for x € [s,_1,5,] are expanded as:

ul(x,t) = Zun; (€ (2)

-0 (1)

fry ann THE 3)

where x =3 L(Sn1 +Sn) + hy w&, hy=s, —sp_1, and ¢ (&) are the basis functions with order p on element E,, in parametric coor-
dinate & where —1 < ¢ < 1 We note that if ¢} (&) are chosen to be some nodal based Lagrange polynomials, the expansion
coefficients will be the same as the nodal values of the numerical solution.

By a weak formulation in DGM, it is required that

/ 5+ Bf] ¢ (X)dx =0 4)

for ¢=0,1,...,p. Following an integration by parts and the change of variable given above that maps, for each n, E,, = [s,_1,51]
to [-1,1], we get
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for ¢ =0,1,...,p, where f* denotes the flux at the end points of the element. At the interface between two elements, or at
element end points s,_1 and s, the flux vector f* is not uniquely defined and a flux formula has to be supplied to complete
the discretization process.

Here the Lax-Friedrichs flux formula, also known as the theta method, will be applied, namely

fr = g ol ) 6)

with 2 being the largest eigenvalue in magnitude of the Jacobian of the flux evaluated at the element boundary point. The
superscripts * and ~ refer to the values at the right and left of an element boundary, respectively, as shown in Fig. 1.
The semi-discrete expression (5) can then be written explicitly as

hn u n ! v n
5 Z a;t[ /7 ¢/(§ d)(’ dC +5 {anéd’z + anﬂ é¢p )+ 0|4 (Zu n+1 /d’/ Zunéf{b( >}¢g’(l)

(=0
1 p )4 )4
Z{an lé(/’/ +ané¢[ +9V~| <Zuné¢?( Zun léd)/ )}d);(l)
=0 =0 =0
N 09O
> [ oo™ ae—o (7)

for ¢ =0,1,...,p. In the above, 0, 0 < 0 <1, is a parameter that controls the upwinding effects, with 0 =0 being a central
scheme and 0 = 1 being the fully upwinded scheme. We note that Lax-Friedrichs formula is not the only scheme that could
be used to complete the discretization process. A different flux formulation, however, might change the structure of the
resulting derivative formula as we will see later.

To derive specific finite difference type schemes, we consider a special case that the basis functions are the same for all
elements (except, perhaps, for those next to the boundary, as will be discussed later), denoted by

¢; (&) =Py(&) 8)
where P/(¢), £=0,1,2,...,p, forms the basis set, and define matrices
1 3 , , 1 oP,
Q=)= { [ Preach @ =(a) = { [ POrach Bay—(bo) = Pr@Po) B
and vectors
Uno an
0 Um f” fnl
u" = , =
Unp Jop

Then, as given in [24], the semi-discrete equation (7) can be written as
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Fig. 1. A description of the location of f*, f~ on an a grid with element boundary.
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where it is found that

1
1 1 /
M, = 53(1.1) - jB(—l,%) -Q (12)
1
M. :jB(l‘—l) (13)
1 1
No = jB(l,]) +§B(71,71) (14)

Now by applying ,%HQ’l, which is assumed to exist as the basis functions span the polynomial test and trial spaces, to (10) to
get:

or 2
ot hy

where

{M,f'ﬂ*’ + Mof™ + ML 4 02/ (M_a"™ ! + Nou® — Mj““)} =0 (15)

M. =Q'M, M,=Q 'M., M=Q My, No=Q 'No

By comparing the original PDE (1) with the discretized version in (15) it is clear that we get the following discretization for-
mula for the spatial derivative of the flux f" as

a_2
ox  h,

In particular, if we let f = au, where a is a scalar, we can also get an expression for the spatial derivative of solution variable ii":

{M_fH + Mof™ + ML 4 0] (M_a™" + Noti® — mﬁ"“)} (16)

oir 2

= /T{“ +a)M_t™ ! + (Mo + 0t0Ng)u™ + (1 — )Mt} (17)
n
where
s n(a)—{ 1 ifa>0
MY dfa<o

Depending on the choice for the sign of g, left (a < 0) and right (a > 0) biased difference formulas are formed. Here, 0 is again,
the upwinding factor. The formulation given above can be applied to any chosen family of basis functions P,(¢). In particular,
when the basis functions are chosen to be the Lagrange interpolating polynomials, the expansion coefficients u,, become the
same as the nodal values of the numerical solution at the prescribed nodes. Expressions (16) and (17) then lead to spatial
differential formulas for the flux and solution variable, like those in a finite difference method. Various finite-difference-like
schemes can be derived by the formulas given in (16) and (17) based on particular choices on the distribution of nodal points.
Two possibilities are detailed in the next two sections.

3. Grid Structure I

In this section, we present schemes with a distribution of nodal points that include the end points of the element. The
nodal points in the local coordinates will be denoted by &, ¢=0,1,2,...,p and the globally ordered nodal points within

,
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Fig. 2. Schematic of a finite difference grid partitioned into elements of length h, = pAx, where Ax is the grid size and p is the order of the basis functions.
Top: uniform Ax and bottom: Chebychev-Labatto spacing.
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element E, will be denoted by x,,, £=0,1,2,...,p, where p is the order of the basis functions. This will be referred to as Grid
Structure I, see Fig. 2. Specifically, the nodal points on the transformed coordinate ¢ —1 < £ < 1, can be

éi:_]+a7 i:071727"'7p (18)
p
for a uniformly spaced grid, or
g“,-:—cos(%), i=0,1,2,...,p (19)

for a grid based on the Chebychev-Lobatto points [10]. After the nodal points have been chosen, the basis functions as given
by (8) are

7 ., (8= &)

P,(&) =
=, @8

(20)

Then the DGM-FD scheme can be derived by substituting (20) into formulation (16) or (17) where the matrices My, Np, M.
are computed according to (9) and (11)-(14).

In this grid structure, nodal points overlap at element end points, namely, X,p, = X(n+1)0. Discontinuity of the solution at the
end points is allowed thus, the solution is double valued at element end points.

We note that since element length, h,, needs not be a constant from element to element, the grid which is made up of
many such elements can be non-uniform, with no changes to scheme coefficients. This is a feature of the current scheme
distinct from most existing finite difference schemes, where grid spacing is required to be constant.

3.1. Interior scheme

An example of a fifth-order (p = 5) scheme with uniformly distributed points (18) is shown below. Third and fourth order
schemes are given in the appendix. By (16) the difference formula for the flux function on a set of six grid points is of the
form

Mo ] Mfin-1)0 [fro ] [fins1)0] Un-1)0 Uno [Unr1)o]

fm f(n—m fm f(n+1)1 Un-1)1 Un1 U
o | fn2 2 f(n—l)z 2 |fa 2 f(n+l)2 2 — [ Umn-1)2 2 — | Un2 2 o |Ums2
S =M Mo | [ ML OV o 0Ne | " = 0LiM,

X fa3 n f(n—l)3 n f3 n f(n+1)3 n Un-1)3 n Un3 n Un+1)3
fra f(n—l)4 fra f(n+l)4 Un-1)4 Una Umni1)a
Lfas _f(n—l)S_ Lfas _f(n+1)5_ LUn-1)5 ] L Uns | LUn+1)5

(21)

dare

00000 -97 B R -
00000 &g 3 . 5 <3 &
N R R AR
" loooo0o0 um| | mm s _s s 5 _abw
6250 37500 8 2 6 4 25000
00000 4 By 203 5 8
00000 3§ L2 3 33 % -3l
9 0000 -3 -3 00000
-8 0000 —33% 200000
N,_ | 0000 -8B L |35 00000
g3 0000 et T @ 00000
755 00 00 -5 -¥1 00000
| -2 0000 9 | 9 00000
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Since only values of end points at the neighboring elements are needed, the difference formula (21) can also be expressed
more concisely as follows:

[fin-1p ] [Uin-1)p ]
fno fro Uno
o fnl 2 fnl 2 , Uni
x 7h—nD +h_,10u|D (22)
fnp fnp Unp
Lftns170 4 L Uns1)0 |

Here p = 5 for the current example. The entries for D and D’ matrices can easily be found according to (21). Specifically that
the first column of D is the last column of ML_, its last column is the first one from M, with the remaining entries being from
Mo,. Likewise, the first column of D’ is also the last one from M_ and therefore identical to the first column of D, the last col-
umn is the opposite of the first one from M, and therefore the opposite of the last column from D, and the middle columns
are identical to those in No. D and D’ for the current scheme are given explicitly below:

r 79 25 25 25 25 3 A - 3 3
-9 24 3T -3 3 -5 2 —32 -9 9 0000 —3 2
7611 538 _65 5§ _5 5 _ 2669 _ 57 7611 _7611 0 9 0 0 —5Z 57
6250 3125 24 2 6 25000 ~ 3125 625 6250 3125 3125
2274 21317 _5 _5 5 _5 13763 _ 1773 _24 2 g0 0 0 173 1713
D_ | 3175 25000 2 6 2 8 37500 6250 | ind D= | 315 3B 6250 6250
T | 173 _137183 5 _5 5 5 _21317 2274 Tl _1m g oo o0 2 _un
6250 37500 8 2 6 4 25000 3175 6250 250 3125 3125
57 2660 _5 5 _5 65 5368 _ 7611 57 _57. 00 0 0 —I611 7611
3125 25000 6 2 24 3125 6250 3125 3125 6250 6250
3 25 25 25 25 79 3 3
L 2 % -3 % -3 - 9 L3 —2 0000 9 -9
It is also straight forward to derive the difference formula for solution variable u from (22), which yields
[ Un-1)p |
Uno Uno
o Un1 2 Un1
— =—[D+0D . (23)
0x hy, :
Unp Unp
L U<n+1)0 i

where a + or — sign is taken when g—i >0or (j—ﬁ < 0, respectively, giving a left or right biased scheme.

3.2. Boundary closures

Forming a boundary closure is accomplished by assuming that variables in the boundary grid point are single-valued, as
illustrated in Fig. 3. Grid points near the boundary are show in Fig. 3 where a left boundary is closed one order down for
added stability [11]. To illustrate the boundary schemes, let element index be n =0 for the element at the left boundary.
Using the formulation outlined in (23) as an example, the left boundary closure involves adjusting the coefficients for the
first collocation point at the boundary of the first element and by adding the first two columns of the D and D’ matrices thus
created. This produces boundary closure matrices, D and D"

boundary point

h, h,

Fig. 3. Schematic of grids at the boundary, p = 4.
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25 8 7 5 5 5
-5 8 6 3 -1 1 0000 3 -3
1 5 511 85 85 85
1 -2 =3 3 -1 3% —sp ’ 0000 —55 3535
Cl 1 4 4 61 15 /ol 15 15
1 5 741 485 485 485
-5 1 -3 3 55 -3 0000 —-55 353
1 8 25 25 25 25
; -3 6 -8 - 2 0000 2 -2
With which the derivative formula for solution variable would be
Uno
Uno
u 2 Uny
8 nl 1 !
— =_—_[D“ + 6D"" : 24
Unpp-1
Un(p-1) "y
Umni1)0

for n =0 at the left boundary.

Closure for the right side follows similarly. The above scheme gives coefficients for computing a spatial derivative and
these can be used to incorporate forcing terms or boundary conditions as applicable. We note that, when the boundary value
is given, the derivative formula for the boundary point may not be used.

4. Grid Structure II

In this section, a second choice for the nodal points is studied, where nodal points lie inside the element. By choosing
nodal points all in the interior of the element, it is possible to generate a grid system without double-valued nodes as shown
in Fig. 4. In this case, the nodal points on the transformed coordinate &, —1 < ¢ < 1, are

p 2i

Ei:7m+m7 1207]:2:---717 (25)

for a uniformly spaced grid or
o i+ 1)m .
6,—7c05<—2p+2 , 1=0,1,2,...,p (26)

for a grid based on Chebychev-Gauss points [10].

This will be referred to as Grid Structure II. Since this scheme does not require double grid points, it resembles, more clo-
sely, a traditional finite difference scheme, when uniform grids are used.

With the given choices of the grid points, the difference formula can again be easily derived by substituting (20) into for-
mulation (16) or (17) where the matrices are computed according to (9) and (11)-(14).

4.1. Interior scheme

A fourth-order (p = 4) scheme is given below as an example. The difference formula by (16) for a set of five grid points, as
illustrated in Fig. 4, is of the form

Xn() an Xn2 Xn3 Xn4

h o+ o+ h o+ o+ ho o
7 t tH 7 t tH H———¢—¢—¢ it
Ax, - Ax,
1
(AX, +AX)
hn—l hn

Fig. 4. Schematic of a finite difference non-uniform grid partitioned into elements of length h, = (p + 1)Ax, where Ax is the grid size and p is the order of the
basis functions.
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fro f(n—l)O fro f(n+1)0 Un-1)0 Uno Un+1)0
[ f(n—l)l S f(n+1)1 Umn-1)1 Uny Un+1)1
1o} 2 — 2 2 2 — 2 — 2 -
x f2 :h—M, fin-1)2 +lTMo f2 +FM+ S +1T9\/1|M7 Un-1)2 +F9\2|No Upp *h*9|/u\M+ Uni1)2
n n n n n n
f3 f(n—l)3 fr3 f(n+1)3 Un-1)3 Up3 Un+1)3
na (n-1)4 n4 (n+1)4 Un-1)4 Ung Umni1)a
(27)

By using (25) and (20) as the nodal points and basis functions, the coefficient matrices are readily computed by (11)-(14) as
follows:

—29141 37467 —786807 87423 —262269

102400 25600 256000 25600 102400

22379 —28773 604233 -67137 201411

102400 25600 256000 25600 102400

M — =525 675 —2835 1575 —4725

- 4096 1024 2048 1024 4096

—3941 5067 —106407 11823 —35469

102400 25600 256000 25600 102400

12299 —15813 332073 —36897 110691

102400 25600 256000 25600 102400

—97037 38191 5007 8227 9479

38400 6400 1600 19200 12800

—33669 14153 3117 2149 —13693

12800 19200 3200 6400 38400

M, = 1895 —1955 0 1955 —1895
0 1536 768 768 1536
13693 —2149 3117 -14153 33669

38400 6400 3200 19200 12800

—9479 8227 5007 38191 97037

12800 19200 1600 6400 38400

24997 —7161 227367 —57 —1631
10240 2560 128000 2560 2048
—19747 6207 —248913 339 1309
10240 2560 128000 512 10240

N — 2625 —1125 2835 —1125 2625

0= 2048 512 1024 512 2048
1309 339 —248913 7 —19747
10240 512 128000 2560 10240
—1631 —57 227367 —7161 24997
2048 560 128000 2560 10240

—110691 36897  -332073 15813 —12299
102400 25600 256000 25600 102400
35469 —11823 106407 —5067 3941
102400 25600 256000 25600 102400
4725 —1575 2835 —675 525
4096 1024 2048 1024 4096
—201411 67137  -604233 28773 —22379
102400 25600 256000 25600 102400
262269 —87423 786807 —37467 29141
102400 25600 256000 25600 102400

Similarly, by letting f= au, where a is a scalar, a difference formula for any solution variable u can be obtained as

=l
£
I

Uno Um-1)0 Uno Um+1)0
P Uny 2 Un-1)1 2 Uny 2 U1y
— | U | =+ (] + O)M, Un-12 | +3— (Mo + (}No) Up | +3 (1 — (:I:()))MJr Umns1)2 (28)
6X hn hn hl‘l

Up3 Un-1)3 Up3 Un+1)3

Ung Un-1)4 Ung Un+1)4

where a + or — sign should be taken when g—ﬁ >0 or (j—{t < 0, respectively.

A central difference scheme is obtained by letting 0 = 0 in (28). On the other hand, a choice of 0 =1 will yield upwind
schemes with a stencil bias indicated by the coefficient sign of + preceding the 0.

It is also straight forward to show that the difference scheme is applicable to a grid of non-uniform spacings, provided
that between grids of spacings Ax; and Ax,, there is a transitional grid of length J (Ax; + Ax,), i.e., the average of the two

grid spacings, as shown in Fig. 4.

4.2. Boundary closures

For this grid structure, the nodal points are on the interior of the elements, and yet implementation of boundary condi-
tions often requires the boundary to be on a collocation point. In such cases, the first and last element structures are adjusted
so that each begins or ends on a nodal point. As the nodal points for the basis functions at the boundary element are adjusted
to include the boundary point, as shown in Fig. 5, the basis polynomials generated by these nodal points will be different
than the ones on the interior elements, and, therefore scheme coefficients need to be re-derived to complete the boundary
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boundary point

Fig. 5. Schematic of grids at the boundary, showing adjustment of element sizes. p = 4.

4879

closures. In addition, the order of basis functions will be lowered for stability of the schemes [11]. The adjustment of element
length with the lower order closure is also shown in Fig. 5.
Here are the general boundary closures, for any 6, for the first and last two elements to be used with the interior scheme

shown in Section 4.1:

For the first element at the left boundary, Eo, the third order flux derivative formula is:

fio
fOO fOO
fu| 2 | 2o |
o |Jo1 — — 01 —
— o o o
M —F(M10+M20) M| fi2
foz 0 foz 0 f
13
f03 f03
fia
where
_ 23 105
4 0 0 O = o
_24 2209 -23
MY — 49 000 M 2352 16
W= a4 g0 0ol 20 — 59 ~109
49 2352 112
_16 17
9 0 O 0 2352 112
69 _21 3 _35
16 16 16 16
_489 9  _15 15
N 784 16 16 16
0~ | 8 _ 8 145 _ 145
784 112 112 112
51 123 _ 205 205
784 112 11 112
_315 105  -189 45 =35
128 32 4 32 128
135 —45 81 =135 15
Mm _ 128 32 64 224 128
+ | _1305 435 _ 783 1305 145
896 224 448 1568 896
1845  _ 615 1107 _ 1845 205
896 224 448 1568 896

2 .
+. O (Mo + M3)
0

—a ol
A 15
3 m|w Oﬁ\l

|
g =
oy N

-
]

133
48

=59
48

631
336
463
336

For the second element at a left boundary, E,, the 4th order flux derivative formula is:

"fio]
fin

9] 2 —

N V 1

1524 f12 _h1M7
fi3
Lfia |

foo
for
for
fos

iy

s
Mg

-f]o-
fun
f12
f13

Ty

Lf1a ]

=
M+

-fz() -
fa
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where
4163  _ 87423 29141 _ 29141
6400 32000 6400 6400
_ 3197 67137  _ 22379 22379
6400 32000 6400 6400
M = 75 _ 315 225 225
- 256 256 256 256
563 _ 11823 3941 _ 3941
6400 32000 6400 6400
_ 1757 36897  _ 12299 12299
6400 32000 6400 6400
97037 38191  _ 5007 8227 9479
38400 6400 1600 19200 12800
_ 33669 14153 3117 2149 13693
12800 19200 3200 6400 38400
M = 1895 _ 1955 0 1955 __ 1895
1536 768 768 1536
13693 _ 2149 3117 _ 14153 33669
38400 6400 3200 19200 12800
_ 9479 _ 8227 5007  _ 38191 97037
12800 19200 1600 6400 38400
24997  _ 7161 227367 57 __ 1631
10240 2560 128000 2560 2048
_ 19747 6207  _ 248913 339 1309
10240 2560 128000 512 10240
N = 2625 1125 2835 _ 1125 2625
2048 512 1024 512 2048
1309 339 _ 248913 6207  _ 19747
10240 512 128000 2560 10240
_ 1631 _ 57 227367 7161 24997
2048 560 128000 2560 10240
_ 110691 36897  _ 332073 15813  _ 12299
102400 25600 256000 25600 102400
5469 _ 11823 106407 __ 5067 3941
102400 25600 256000 25600 102400
M = 4725 __1575 2835 _ 675 525
+ 4096 1024 2048 1024 4096
_ 201411 67137  _ 604233 28773  _ 22379
102400 25600 256000 25600 102400
262269  _ 87423 786807  _ 37467 29141
102400 25600 256000 25600 102400

For the last two elements at a right boundary of the domain, we make use of anti-symmetry relationships for deriving the
coefficients. More details are given in the appendix, including the coefficients for second and third order schemes.

5. Stability and super-accuracy properties

5.1. Stability

To study the stability of the scheme with boundary closure, we perform an eigenvalue analysis when the scheme is ap-

plied to the advection equation

ou
ot

ou

ox

-0,

x€[0,1]

with a given boundary condition at the left boundary, x = 0.

Let u" denote the global vector that contains all nodal values, except the one at the left boundary, then the semi-discrete

equation for (31) can be written as

ar "

Du'=s

where s is a source term created by the boundary condition. The discretization is stable if all of the eigenvalues of D have
positive real parts [11].

For Grid Structure I, as described in Section 3, the eigenvalues for the fifth-order scheme and the boundary closure pre-
sented in the previous sections with N = 30 elements are shown in Fig. 6, left. Stability of the eigenvalues is observed. The
eigenvalue plots for a higher order scheme p =9, with Chebychev-Lobatto points, show stability in Fig. 6, right, with
N = 30. The eigenvalues were computed for many values of N, as low as N = 5 and as high as N = 200. The uniform grid shows
an eigenvalue close to zero. This value is, like the others, is repeated and as N is increased and no new distinct eigenvalues
appear. For p > 5, the scheme showed instability with a uniform grid. Therefore, for p > 5, Chebychev-Lobatto should be used.

For Grid Structure II, the eigenvalues for a third-order central scheme and a fourth order upwind scheme, with coefficients
calculated as described in Section 4, are shown in Fig. 7 for N = 30. This was repeated for N = 5-200 for each p, where stability
was confirmed for each case.
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Table 1

Convergence rate data p = 3, 4, 5 for Grid Structure I.
0=1
N p=3 p=4 p=5

Error Rate Error Rate Error Rate

25 7.2867E-3 3.9357 3.2545E-4 7.24280 7.9646E—6 10.0658
30 2.9879E-3 4.8897 7.4643E-5 8.07610 1.1685E-6 10.5270
35 1.2548E-3 5.6280 2.0024E-5 8.53570 2.2870E-7 10.5812
40 5.5270E-4 6.1402 6.2671E-6 8.69908 - -
45 2.5812E-4 6.4644 2.2300E-6 8.77340 - -
50 1.2800E—-4 6.6575 - - - -

Table 2

Convergence rate data p = 2, 3, 4 for Grid Structure II.
0=1
N p=2 p=3 p=4

Error Rate Error Rate Error Rate

25 - - - - 3.2675E-4 -
30 - - 1.1546E-2 - 7.4374E-5 8.1181
35 - - 6.1181E-3 4.1199 1.9982E-5 8.5260
40 8.4202E-4 - 3.2212E-3 4.8040 6.2433E-6 8.7123
45 4.7652E—-4 4.8335 1.7098E-3 5.3779 1.3989E-6 8.7984
50 2.8463E-4 4.8908 9.2492E-4 5.8315 - -
55 1.7800E—4 4.9250 5.1363E-4 6.1708 - -
60 1.1576E-4 49453 2.9398E-4 6.4133 - -

5.2. Super-convergence

In recent Fourier analyses of the discontinuous Galerkin method, it was found that the propagation errors reduce at a
super-convergent rate [4,24] To demonstrate the strong super-accuracy for wave propagation problems for DGM-FD, for
both Grid Structures I and II, Eq. (31) is solved in a domain of 0 < x < 1 with periodic boundary condition and an initial
condition

-2 1)?
U()(X) = U(X, O) = e o004812\" 2 (33)

First, using the upwind schemes given in Sections 3 and 4 with periodic closure, the numerical solution is calculated, from
t=0to t=>51. The exact solution for the computational domain is the repeated initial condition at t = n where n is an integer.
To demonstrate the super-accuracy for propagation errors, the solutions at t =1 and t =51 are compared and the L2 norm of
the error, ||u"(x,51) — u"(x,1)||2, is shown in Fig. 8, Tables 1 and 2 as a function of total number of grid points in the grid refine
studies for each scheme. We compare u(x,51) to u”(x,1) rather than to the initial condition, as one advection period would
dampen the non-physical mode of the numerical wave in the projected initial condition [24]. Convergence orders close to 5,
7 and 9 are observed even though the order of the basis function is p = 2,3,4, respectively, matching approximately the the-
oretical rate of convergence for the propagation error of order 2p + 1. This convergence is suggested for linear wave propa-
gation specifically and it is unknown what kind of convergence can be seen in non-linear problems.

6. Numerical wave number accuracy

In this section, the numerical wave number accuracy of the DGM-FD method is examined and then compared to other
finite difference schemes such as the DRP [32] and compact schemes [26]. Although the numerical wavenumbers of the
DG method have been studied in the literature [4,22,24], we present a new way of computationally determining the numer-
ical wavenumber accuracy. The method described below is easy to implement and quite general. It can be applied straight-
forwardly to many other numerical schemes.

First, the advection equation (31), is solved in a domain —50 < x < 450, using Ax = 1, with the initial condition

In(2),2

Up(X) = e 32 (34)
until a final time, e.g., T=400. The exact solution at time T is
Uexact (X, T) = Up(x — T) (35)
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The spatial Fourier transform of the exact solution is
llexace (k, T) = e *Tiig (k) (36)

where a hat indicates the transformed function and k is the wave number. Here iy (k) is the discrete Fourier transform of the
initial condition on the computational grid.

Second, let the numerical solution at t = T be u*(x,T) and its discrete Fourier transform denoted by ii*(k, T). The numerical
wavenumber k* can be inferred from " (k, T) if we express it as

o (k, T) = e *Tily (k) (37)
By comparing (37) with (36), an estimate of the difference k* — k can be obtained as

_ Infir (k, T) /Gexace (k. T)]

kK — k= T (38)

6.1. Dissipation and dispersion errors of DGM-FD schemes

For both Grid Structures I and II, we first study the numerical wave number accuracy for the upwind (0 = 1) schemes for
varying orders.

The numerical wave number accuracy, both for dispersion errors, Real(k* — k), and dissipation errors, Imag(k* — k), are
shown in Figs. 9 and 10. The numerical solution becomes better resolved as the order, p, increases for the upwind scheme.
In Fig. 9, the lowest value for p for Grid I of interest is assumed to be 3.
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Fig. 9. DGM-FD, Grid I. Top: Real(k* — k) upwind, p = 3,4,5; Bottom: Imag(k* — k) upwind, p = 3,4,5.
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For the central scheme (6 = 0) in Grid II, the numerical wave number accuracy is shown in Fig. 11. The accuracy for p=3
appears to have a better numerical wave number resolution than for p = 4. The imaginary part of the numerical wave number
is zero for the central schemes.

6.2. Comparison of DGM-FD with other FD schemes

Now we turn to comparing the performances of DGM-FD Grids I and II, with conventional finite difference schemes on the
accuracy of numerical wave numbers. The advection equation (31) will be solved. First we compare their numerical solu-
tions, then the numerical wave number accuracy followed by a comparison in their numerical wave number convergence
rates.

In Fig. 12, the solution at t = 400, for DGM-FD Grid II of p = 4, the 4th and 6th order compact and the DRP schemes are
shown with the initial condition given in (34). DGM-FD Grid II (p = 4) performs similarly with 6th order compact scheme
and better than both 4th order and DRP.

In Fig. 13 the dispersion properties are examined. For the given tolerance of 1073, the difference between numerical and
theoretical wave numbers, k* — k, is comparable for DGM-FD, 6th order compact, and DRP, with kAx < 1. Fig. 14 shows the
rate of convergence of the numerical wave number (slope in figures) for DGM-FD as higher than 4th, 6th and 8th order com-
pact and DRP for the given range of Real(kAx < 1).

We conclude this discussion of numerical wave number properties for Grid Il with a recommendation for upwind param-
eter, 0 for Grid Il. With the central scheme (6 = 0), the results in Fig. 11 show no dissipation. With full upwinding (0 = 1) the
results in Fig. 10 show better dispersion properties than for the central scheme, but with more numerical dissipation. We
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Fig. 12. Gaussian profile, left: Compact Schemes 4th, 6th order, DRP, and DGM-FD Grid II p = 4, DRP; right: DGM-FD Grid I p = 3,4,5.

look to balance both in Fig. 15. Numerical wave number errors for 0 = 0.50, 0.75 and 1 are plotted. By these results, 0 = 0.75 is
recommended as the dispersion and dissipation errors are of similar magnitude.
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7. Numerical examples

In this section, we show numerical examples of the scheme presented in this paper. As the applications are two dimen-
sional, the spatial derivatives are performed with DGM-FD in each dimension. In all the examples, method of lines is em-
ployed with five stage Runge-Kutta as the time integration scheme [21].

7.1. Linear waves in free space
We solve the linearized Euler equations rewritten as:

U oU _oU
ot A B, =0 (39)
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where A and B are the coefficient matrices:

M 1 0 0 M, 0 1 0 p
: M
A |0 M0 T 10 M0 0
0 0 M, 0 0 0 M 1 v
0 1 0 M, 0 0 1 M, p

In the above, p is density, u and v are velocities in x and y directions, respectively, p is pressure and M, and M, are constant
mean flow Mach numbers in the x and y directions, respectively. The computational domain is [-110,110] x [-110,110]
with the Perfectly Matched Layer absorbing condition applied for the 10 grid points around the boundary [23]. For the exam-
ple, My = 0.5, M, = 0. Grid I scheme of p =5 given in Section 3 is applied in this example.

For this linear problem A, B can be decomposed into sums of matrices with positive and negative eigenvalues. In this way,
we rewrite (39) as:

ou N _.ou " . ou
Vi (A" +A )a—k(B +B )O_y
or
88—? =—[(A'D] +A™D,)U + (B*Dy+ + B’Dy’)U}
where:
My (My+1)/2 0 (1-M,)/27 (0 —(My—1)/2 0 (My—1)/2 ]
At — 0 (My+1)/2 0 (My+1)/2 A — 0 My-1)/)2 0 —(My-1)/2
~]0 0 M, 0 ’ |0 0 0 0
L0 (My+1)/2 0 (My+1)/2] 10 —(My—-1)/2 0 (My—1)/2 |
M, 0 M,+1)/2 (1-M,)/2] o o -M,-1)/2 M,—-1)/2 7
B — 0 M, 0 0 B — 00 0 0
o o0 My+1)/2 (My+1)/2| ) My -1)/2 —-M,-1)/2
Lo 0 M+1)2 (My+1)/2] [0 0 —(My—1)/2 (My—1)/2 ]

The derivative formula in terms of the solution variable u, (17), is used where a = 1 for D], D; and a = —1 for D;, D, operators,
respectively.

Fig. 16 shows the computational domain with variable grid spacings. For grids in x direction, grid spacing starts with
Axy =1 (with element width h = pAx; = 5). Two sub-regions with Ax, =1, and h=pAx, = 1 are introduced as shown. The grids
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Fig. 16. Computational domain with variable grid sizes.

in the y-direction are similarly structured. The total number of collocation points on each direction is 315. The initial con-
dition is the following:

(x-67)2+y2

p(oy,0) — el )] 4016l m0 ()] yx . 0) - 0.0apel mo2]
D(x,y,0) = —0.04(x - 67)e[1@(=%)] )]
This is a Benchmark problem in Computational Aeroacousitics (CAA). It includes an acoustic pulse, vorticity wave and entro-

py wave. Density contours and a comparison with the exact solution are shown in Figs. 17 and 18. The numerical solution
appears to be smooth at grid interfaces and agrees very well with the exact solutions.

x24y2
9

p(x,y,0) = el

7.2. Acoustic pulse reflection by a wall

In this example, an acoustic pulse is the reflected by a solid wall. The computational domain is [-110,110] x [0,220]. A
solid wall is located at y = 0. The PML absorbing condition is applied for the 10 grid points on the left and right and 20 grid
points on the top boundary of the computational domain [23]. The fourth order Grid Il scheme, given in Section 4, will be
applied in this example with following initial condition:

X2 +(y-25)72 il
5

p(x7y7 0) = p(x7y7 0) = e[ilrL(z)( ? u(X1y7 O) = U(X?y7 0) = 0

Density contours are shown in Fig. 19. A good comparison with the exact solution is found.
7.3. Burger’s equation

To demonstrate the ability of the scheme for treating higher order derivatives, we show an example of the Burger's equa-
tion. The governing equation is:
ou 10w du

at "2 ax ox?

where v is taken to be 0.02.
The equation admits an exact solution:

ux,t)=1- tanh<%;_t>, X =5

where x, is the location of the wave front at t = 0. The boundary and initial conditions are given below. As the wave front
changes rapidly over a small region in the domain, the grid size changes from Ax =0.2 in the coarse part of the grid to
Ax =0.025 in the refined region [30]. The initial and boundary conditions are:

IC: u(x,O):l—tanh(X;va>, X =5

BC: u(0,t)=2, u(co,t)=0
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Fig. 18. Comparison of pressure with exact solution along y = 0 using Grid Structure I, p = 5.

100

Grid II, as given in Section 4, is used. The flux, f = Ju? and the value of 7 in the difference formula (27) is taken to be 1. The
second derivative for u was evaluated using (D+)(D—) where Dz is the difference formula given in (28) with corresponding +

and — sign, respectively.

Time integration is again the five stage Runge-Kutta [21] where At is conservatively chosen to be 0.025 times the small-
est Ax, 0.02 or At=0.000625.
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Fig. 20 shows the numerical and exact solution at t = 30 as well as the computational domain with a variable grid that is
more refined in the area supporting the wave front. One such grid is shown below. Note the close up of the numerical solu-
tion and the good agreement between the numerical and exact solutions.

The computational domain is initially [0,40]. In order to verify the accuracy and stability over a longer time period, with a
final time of 420, a moving grid frame is used. For the adaptive grid, the code checks to see if the wave front is moving too far
away from the center of the refined region and then, if so, refines a unit on the right of the region while coarsening a unit on
the left. As the wave front is still well within the refined region this results in refining an area of the solution that is constant,
through interpolation, and coarsening an area that is also constant through interpolation. In this way the adaptive grid is
dynamic.

The shape of the numerical solution remains nearly constant for time from 0 to 420 and the numerical solution is stable as
shown in Fig. 21. Again we note the strong agreement between numerical and exact solutions.

7.4. Flat-plate boundary layer problem

In this example, we apply the DGM-FD scheme shown in (16) to the computation of a steady-state boundary layer profile
formed by a uniform flow over a flat plate. The governing equations are the Navier-Stokes equations [25]

%_‘;+g_f+g_§:o (40)
where
p
u- |
pv
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and flux vectors
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with viscous stress terms written as

o Mfy o ov)  Mfy ov o ov
™ Rey Fox —“ox ay’l” ™ " Rey “ay \ox ' oy
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=3k x}'_ReNM ay ' ox
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Fig. 21. Burger’s equation, DGM-FD Grid II, p =4, 10:1 refinement with moving frame, dynamic grid. Top: t = 110.0 log norm error = —2.3929; Bottom:
ts =420.0 log norm error = —2.3929.

and heat transfer terms

M o _ M ar
S = T DPRey fox YT T - 1)PrRen My

where viscosity, i, non-dimensionalized by a reference value, .., is assumed to be unity. The equation of state and the en-
ergy function are
u? + v? p

Y = =+t —

L N )
In the above, u and v are the velocity components in the x and y directions, respectively, p is the pressure, p the density, and T
is the temperature, the Prandtl number, Pr is 0.708 and y the specific heats ratio. The velocity is non-dimensionalized by a
reference speed of sound, a.,, density by p., and pressure by p_ a? . The Reynolds number, Rey, is poUsoLoo/ ttoo Where U, is a
characteristic flow velocity and L, a length scale. As E and F are composed of the primitive variables, p, u, #, and p, the deriv-
atives of each are computed using (16). In this way expressions T, Ty and t,,, which are made up of derivatives of the prim-
itives with respect to x or y, are evaluated. The spatial derivatives in (40) are computed using (16) with 6 =0.5 and Grid II
coefficients are applied. The magnitude of the largest eigenvalue over the domain of U of the Jacobians of E, F is taken to
be 2 =1.1 and included in (40).

This application is shown with Reynolds number of 5000. A schematic of the domain is shown in Fig. 22. The incoming

flow is uniform in the direction of the x-axis with Mach number, M = U_/a., = 0.1. Numerical calculation starts with an ini-
tialization of all variables in the physical domain by the uniform incoming flow:
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Fig. 22. Top: Schematic of domain. In particular are grid lines where dx and dy change and boundary condition locations, Rey = 5000 with dashed lines for
PML boundaries with grid, left to right, is dx = 0.0083, 0.0042, 0.0007, 0.0042, 0.0083 and, bottom to top, dy = 0.0006, 0.0012, 0.0024.
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Fig. 23. Top: Boundary layer of stream-wise velocity Rey = 5000 at t = 20.00 including borders of PML region; Bottom: Similarity velocity profile at x = 0.50,
0.65, 0.75, 0.90. Horizontal variable is y (1./(vx))'/> and u, is the exterior stream-wise velocity, 0.1.
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px,y,00=1, u(x,y,0)=u,=0.1, »(x,y,0)=0.0, p(x,y,0) :%, y=14
The variable grid structure has three distinct regions with respect to the y-axis as greater refinement is needed on the region
closest to the plate (see Fig. 22). For the y-axis the refined region starts with a 4:1 ratio then transitions to a 2:1 ratio and
finally to the non-refined portion. Likewise, with respect to the x-axis a 2:1, 12:1 then 2:1 refinement is shown and there are
five regions here where the third region, 12:1, includes the plate leading edge where extra refinements are necessary be-
cause of the high Reynolds number. PML boundary conditions of [25] are used at the three boundaries where the pseudo
mean flow is adjusted after each Runge-Kutta time loop. Dashed lines in Fig. 22 indicate the PML interfaces.

Fig. 23, top, shows the contours of the u-velocity in the whole computational domain with borders of PML region and
Fig. 23, bottom, shows the normalized stream-wise velocity profile where the stream-wise velocity is plotted as a function
of a similarity variable, y/u./(vx), with % = 5000, at x = 0.50, 0.65, 0.75, and 0.90. The similarity solutions, again, show good
agreement.

8. Conclusions

Numerical schemes for computational aeroacoustics problems require low dissipation and low dispersion errors along
with high order accuracy, flexibility with variable grid refinements, and then preferably, ease of use. There are many meth-
ods that do some of these things well, at the expense of others. The method introduced in this research, DGM-FD, is an at-
tempt to formulate a spatial derivative scheme as one that achieves some of requirements of effective numerical schemes for
CAA. DGM-FD is a finite difference type method that has high-order convergence with strong accuracy for numerical wave
numbers and is adaptive to non-uniform grids. Inherited from DGM, the proposed scheme retains super-accuracy for wave
propagations. Of the two grid structures presented, the Grid Structure I has a shortened stencil for the derivative scheme,
with some grid points being double-valued. The Grid Structure II uses directly a finite difference type grid and is, again, adap-
tive for non-uniform grid spacings regions. For non-linear applications the general flux finite difference formula (16) is pre-
sented where no explicit upwind and downwind split of the flux is required. The schemes achieve stable boundary closures
while retaining the formal and wave number super-accuracy for wave propagation problems. Good results in the numerical
examples demonstrate the effectiveness of the new schemes.
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Appendix A. Third order coefficients for Grid Structure I

Third and fourth order (p = 3,4) scheme for interior points are presented. Recall that h,, is the element length and that for
interior elements, h,, = pAx. To be used for (22) and (24).
Third order coefficients with second order closure:

5 9 9 3
-4 3 3 -3 3 -1 -4 4 00 -1 1
17 _el _3 3 _59 8 7 11090 & _3
D= 27 54 4 2 108 27 and D/ _ 27 27 27 27
|8 5 _3 3 & _1z |8 8 00 -1z 1
27 108 2 4 54 7 27 27 27 27
3 9 9 5
3 5 3 3 3
1 -3 2 -3 i ’ 00 3 -3
Cl 1 7 3 /.l 3 3
1 3 9 9 9
3 2 -3 1 00 37 -3
Appendix B. Fourth order coefficients for Grid Structure I
Fourth order coefficients with third order closure:
25 25 8 7 5 25 25 5 5
—% 12 8 6 3 —3 1 -2 % 000 3 %
485 741 5 511 85 485 485 85 85
53 —s2 —3 3 1 535 —sm s s 00 0 -5 55
_ 15 61 4 4 61 15 / 15 15 15 15
D=1-3 & -3 0 5 -G 5 | adD=|-5 5 000 » -3
85 511 5 741 485 85 85 485 485
530 1 1 3 3 s Thn s sz 00 0 —53 55
5 7 8 25 25 5 5 25 25
-2 1 —3 6 -8 -3 % -2 3 000 2 -2
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Appendix C. Second order coefficients for Grid Structure II
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The second and third order (p = 2,3) scheme for interior points is presented. Recall that h,, is the element length and that
for interior elements, h, = (p + 1)Ax.

Then by (16), the finite difference formula for a set of three grid points, second order, is given by

fao

fo-1y0

fro

S

5 5 5 ) Un-1)0 Uno Un+1)0
X fu1 =h—m7 fo1n +h—mo fu1 +h—m+ S +h—9).m, Up-1)1 +h—97No Uny h—mm+ Uni1)
n n n n n n

fr2 fo-12 fo for12 Ugn-1)2 Uy Ugni1)2
(C.1)
where using (25) and (20), it is found that
_23 15 _115 71 5
64 96 4 16 4 16
M — 9 15 45 M. — 21 21
M=-'g -3 & My=|-%5 0
1 _ 5 5 S5 _7 7
64 96 64 16 4 16
57 _5 9 5 5 1
32 48 32 64 96 64
N. — 27 15 27 M O — 45 15 9
No=|-% ® -5 Mi=|-8 % -wu
9 _5 57 15 _ 115 23
32 3 32 64 9% 64
For the first element:
o [f 2 [f; 2 fio 2 u 2 o
00 — — 00 — _ _ 00 _
— =— (M5, + M;, — M* —02(M%, + M5, ——0M* |u C2
% LM} h0< To + M3) for +h0 I fu +h0 (M7, + M3,) LOJ ho +Un (C2)
) fi2 23D
[ 3
Mqo: {_] O} m%o* 0 7}
1
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For the second element, the 2nd order flux scheme:
5 fio 5 £ 2 fio f20 2 u 2 Uqo 2 Upo
—. | Joo — — — 00 — _
a f]] = h—M/i |: :| +h—Mg f]] +h_M£fr f21 + h—e/uM/i |: —+ h—H/LNg U | — h—H}Mﬁ Uy (C3)
1 for 1 1 1 Uy 1 1
fi2 f12 fa2 Uqp U
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1 1 5 _7 7
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32 48 32 64 6 64
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For the third order scheme, again by (16), the finite difference formula for a set of four grid points is given by

fno S0 fno foninyo Umn-1)0 Upo Umni1)0
9 |fm 2 — | fo-1n — | fm 2 — | farimn 2 — |Up-1n 2 = |Un 2 — | Unin
— =—M_ +—Mp +—M, +-—06M_ +-—0/Ny ——0iAM,
X | fr2 hy fin-1)2 h, f2 h, fin1y2 hy Un-1)2 h, Unz h, Uni1)2
n3 (n-1)3 n3 (n+1)3 Un-1)3 Up3 Umni1)3
(D.1)
where using (25) and (20), it is found that
2865  _ 12033 20055  _ 20055 _ 14051 13257  _ 4119 _ 2563
8192 8192 8192 8192 12288 4096 4096 12288
_ 1685 7077  _ 11795 11795 _ 25337 1035 5831 _ 5401
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-~ | 365 1533 2555 _ 2555 | 0= 5401 _ 5931 1035 25337
8192 8192 8192 8192 12288 4096 4096 12288
615 _ 2583 4305 _ 4305 2563 4119 _ 13257 14051
8192 8192 8192 8192 12288 4096 4006 12288
1215 _ 273 483 45 4305 _ 4305 2583  _ 615
512 128 512 45 8192 3192 8192 3192
_ 95 833  _ 301 265 2555 _ 2555 1533 _ 365
N, — 64 512 256 512 M. = | 8% 8192 8192 8192
0= | 265 _ 301 83 _95|° + 7= | _11795 11795  _ 7077 1685
512 256 512 64 8192 8192 8192 8192
45 483 _ 273 1215 20055  _ 20044 12033  _ 2865
256 512 128 512 8192 8192 8192 8192
For the first element:
fro Uqo
oo 5 foo 2 f 2 Ugo 5
0 — — | Ju Jp— — — 1
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fi3 13K}
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For the second element, the 3rd order flux scheme:
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Appendix E. Grid Structure II, boundary closure, last two elements

For the last two elements we make use of the following relationships. Define W* for a matrix as:

-i -h -g a b c
W=|—-f —e —-d|, whereW=|d e f (E.1)
- -b -a g h i
For the (N — 1)th element:
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and for the Nth element:
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where

M‘f = (Mi)*v M(fo = (m%)*7 mtzyo = (Mgo)*7 _((J)J = (ﬁg)
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