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In this paper the normal-mode small-amplitude waves of high-speed jets are
investigated analytically and computationally. Three families of instability waves,
each having a distinct wave pattern and propagation characteristics, have been
found. One of the families of waves is the familiar Kelvin—-Helmholtz instability
wave. The other two families of waves do not appear to have been clearly identified
and systematically studied before. Waves of one of the new wave family propagate
with supersonic phase velocities relative to the ambient gas. They are, therefore,
referred to as supersonic instability waves. Waves of the other family have subsonic
phase velocities. Accordingly they are called subsonic waves. The subsonic waves
have the unusual property that they are unstable only for jets with finite thickness
mixing layers. They are neutral waves when calculated by a vortex-sheet jet
model.

Earlier Oertel (1979, 1980, 1982) using a novel optical technique observed in a
series of experiments three sets of waves in high-speed jets. The origin of these waves,
however, remains so far unexplained and a theory has yet to be developed. In the
present study it will be shown that the computed wave patterns and propagation
characteristics of the Kelvin—Helmholtz, the supersonic and the subsonic instability
waves match essentially those observed by Oertel. The physical mechanisms which
give rise to the three families of waves as well as some of the most salient
characteristic features of each set of waves are discussed and reported here.

1. Introduction

Recently Oertel (1979, 1980, 1982) carried out a series of experimental studies on
the instability waves of high-speed jets. In his experiments the jets were formed by
hot or cold gases issued through convergent—divergent nozzles mounted at the end
of a shock tube. Observations indicated that these shock-tube generated jets had
very uniform cores surrounded by thin mixing layers. By using a novel optical
technique, Oertel was able to identify three families of waves in his jets. Each family
of waves had its distinet characteristics and propagation speed. Pictures of these
waves are shown in figure 1. Associated with the first set of waves (labelled W) is a
strong acoustic near field. In the region immediately outside the jet the waves appear
as nearly parallel straight lines trailing the flow of the jet. This near-field wave
pattern was observed by several investigators earlier while studying the topic of
sound generation by instability waves (e.g. Lowson & Ollerhead 1968 ; Rosales 1970;
Tam 1971; Chan & Westley 1973). Tam (1971) and later Chan & Westley (1973)
suggested and showed that this near-field acoustic wave pattern was generated by
the Kelvin—-Helmholtz instability waves of the flow. By using a vortex-sheet model
they were able to calculate correctly the angle of inclination and the speed of
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Freure 1. Pictures showing the wave patterns of the three sets of waves observed by Oertel
(1980) in high-speed jets. Flow is from left to right. (Reproduced with permission.)

propagation of the wavefronts. Thus the first family of instability waves observed by
Oertel is the familiar Kelvin—Helmholtz instability.

The second family of waves observed by Oertel (labelled W in figure 1) has a near
acoustic field in which the wavefronts are almost normal to the jet boundary. Within
the range of jet flow parameters covered in Oertel’s experiment the propagation
speed of this set of waves is found to be less than that of the Kelvin—Helmholtz
instability waves. The third family of waves (labelled W” in figure 1), unlike the first
two sets of waves, appears to have no near field. The waves seem to be confined
primarily inside the jet. Within the jet the waves display a characteristic cross-
hatched pattern. To the best of our knowledge, no one has made a clear identification
or association of these last two families of waves to any known instability of high-
speed jets. One of the main objectives of this paper is to provide a theoretical
foundation to these waves. It will be shown theoretically that a high-speed jet with
thin mixing layers can support three distinct families of instability waves. These
waves exhibit near-field patterns and propagation characteristics which match those
observed by Oertel (1979, 1980, 1982) and others (in those cases of Kelvin—Helmholtz
instability).

Before embarking on an analysis of the instability wave modes of high-speed jets
it is found useful first to examine physically why these jets can support three distinct
families of waves. Earlier Ackeret (see Liepmann & Puckett 1947 ; Papamoschou &
Roshko 1986) had provided a physical explanation of the mechanism responsible for
the Kelvin—Helmholtz instability in a thin shear layer. Here it will be shown that
Ackeret’s physical argument can be extended to the case of high-speed jets to
explain why these jets can sustain three classes of waves. For the sake of
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Fioure 2. Kelvin-Helmholtz instability mechanism at subsonic Mach number. +, high pressure
region; —, low pressure region. (a) Stationary frame of reference. (b) Wave frame of reference.

completeness Ackeret’s explanation of the Kelvin—Helmholtz instability mechanism
will be briefly reviewed.

Consider a two-dimensional vortex sheet separating a fluid at rest and a fluid
moving at a subsonic velocity U. It will be assumed that the vortex sheet is deformed
by a Kelvin—Helmholtz wave with a phase velocity ¢ as shown in figure 2(a). Ackeret
suggested that one should view the flow not in the stationary frame of reference but
in a moving frame travelling with the phase velocity ¢ of the wave. In this wave frame
the flow is as shown in figure 2 (). Now for the flow above the vortex sheet, the vortex
sheet may be regarded as a wavy wall. So within a quasi-steady approximation the
flow is that of a uniform flow past a wavy wall. The solution of this problem is well
known (see e.g. Liepmann & Roshko 1957, ch. 8). At subsonic Mach number the
pressure is lowest at the crests of the wavy wall and highest at the troughs. Similar
consideration may also be applied to the flow below the vortex sheet. Again the
pressure is lowest at the crests and highest at the troughs. Since the crests and
troughs interchange on the two sides of the vortex sheet the result is that a net
pressure imbalance would exist across the thin mixing layer in the quasi-steady
approximation. This pressure imbalance is in phase with the vortex-sheet
displacement and hence would tend to increase its amplitude leading to the well-
known Kelvin—Helmholtz instability

Now suppose the Mach number of the flow is highly supersonic so that in the wave
frame of reference the flows on the two sides of the vortex sheet are supersonic as
shown in figure 3. For supersonic flow over a wavy wall it is known that the pressure
distribution is no longer in phase but rather 90° out of phase with the displacement
of the wall. This results in identical pressure distribution on both sides of the vortex
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Ficure 3. Pressure distribution on the two sides of a vortex-sheet layer at supersonic convective
Mach numbers as viewed in the wave frame of reference. +, high-pressure region; —, low-pressure
region.

sheet. The net effect is that the wave becomes neutrally stable. This is in agreement
with the prediction of Miles (1958) using hydrodynamic stability theory.

For circular jets the situation is somewhat different. The cylindrical vortex sheet
which bounds the jet also tends to reflect acoustic disturbances which impinge on it.
Thus acoustic disturbances could be trapped inside the jet bouncing back and forth
forming a periodic Mach wave system as shown in figure 4. The condition under
which such a Mach wave system can exist is that in the wave frame of reference the
flow inside the jet is supersonic. Since acoustic disturbances can propagate upstream
(the phase velocity ¢ of the wave is negative in this case) or downstream (c is positive)
relative to the flow of the jet, this type of Mach wave system exists in supersonic as
well as subsonic jets as long as u;—c is greater than the speed of sound where u; is
the jet velocity. Of course, for subsonic jets ¢ would have to be negative, namely, the
wave is an upstream propagating wave. The pressure distribution associated with a
Mach wave system inside a cylindrical wavy wall is given in the Appendix. It is easy
to see from the formula given there, equation (A 3), that depending on the
wavelength, the pressure distribution may be 180° out of phase with the radial
vortex-sheet displacement. The wave speed ¢ may, however, be subsonic or
supersonic relative to the ambient gas. Let vs first consider the case of subsonic
waves. In the wave frame of reference the ambient flow is subsonic. The pressure
distribution associated with subsonic flow outside a wavy cylinder may be found in
the Appendix, equation (A 4). Not surprisingly, the pressure is 180° out of phase with
the radial displacement of the cylindrical wavy wall. Thus, by suitable choice of the
wavelength of the Mach wave system, pressure balance on the two sides of the thin
mixing layer of the jet is possible (see figure 4a). This implies that the vortex-sheet
jet can support a family of neutral waves. For supersonic jets it will be shown later
in this paper that if the effect of finite mixing-layer thickness is included this family
of waves actually are unstable. Clearly with subsonic phase velocity relative to the
ambient gas the amplitudes of these waves must decay exponentially in the radial
direction outside the jet. In other words the disturbances associated with this family
of waves are confined mainly inside the jet. These subsonic waves are the third
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Fiaure 4. Pressure distribution on the outside surface of a cylindrical wavy vortex sheet jet as
viewed in the wave frame of reference. Also shown is a Mach wave system inside the jet. (a)
Subsonie flow outside. (b) Supersonic flow outide.

family of waves observed by Oertel (1980). To distinguish the waves of this family
from the other two they will be referred to as the subsonic (instability) waves in the
rest of this paper.

For very high-speed jets the phase velocity, ¢, of the Mach wave system may
become supersonic relative to the ambient gas. In this case the flow is supersonic both
inside and outside the jet with respect to the wave frame as shown in figure 4 (b). The
pressure distribution associated with a steady supersonic flow over a cylindrical
wavy wall has been determined in the Appendix, equation (A 6). On comparing the
pressure distribution formulae inside and outside the cylindrical vortex sheet it is
evident that pressure balance is impossible regardless of the choice of wavelength.
Hence unlike the case of subsonic waves no neutral waves are possible. Further it is
easy to show that for certain wavelengths a pressure imbalance which is in phase
with the vortex-sheet displacement is possible. The net result is that with the
internal Mach wave system a highly supersonic jet can sustain a family of instability
waves with supersonic phase velocities. With supersonic phase velocity relative to
the ambient gas the instability wave will generate a Mach-wave-like near field as
discussed by Tam (1971) and Chan & Westley (1973). In a later section of this paper
is will be shown that the calculated phase velocities of these waves are in agreement
with the measured phase velocities of Oertel’s second family of waves. Because of
their supersonic phase velocities these waves will be called the supersonic instability
waves.

In a study of the instabilities of top-hat profile jets Gill (1965) appeared to be the
first to notice that there were instability wave modes other than the well-known
Kelvin—-Helmholtz instability wave. Gill reasoned that these additional waves were
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resonances and referred to them as reflection modes. He suggested that these
resonances arose when sound waves impinged on the vortex sheet at certain critical
angles. The impingement caused the release of a large amount of energy from the thin
shear layer. Presumably, although it was never elaborated by him, the released
energy increased the amplitude of the acoustic waves and hence led to instabilities.
Recently, motivated by possible application to jet-like galactic structures, Ferrari,
Trussoni & Zaninetti (1981), Cohn (1983), Payne & Cohn (1984) and Zaninetti (1986,
1987), following the suggestion of Gill, investigated the ‘reflection modes’ of very
high-speed jets. Their studies were unfortunately somewhat restricted and except for
Payne & Cohn focused primarily on temporal instabilities. It is to be noted that in
Oertel’s experiments the observed instabilities were spatial instability waves. In
addition, their calculated results also appeared to be quite fragmentary, and confined
essentially to vortex-sheet jets. No distinctions between subsonic and supersonic
instability waves were made so that it would not be possible through these works to
deduce that high-speed jets can support three distinet families of instabilities.
Recently it was found that the Mach wave mechanism which gave rise to supersonic
instability waves in a jet also produced similar instabilities in the case of a plane
shear layer enclosed inside a rectangular channel. Extra complications, however,
arise from coupling to the intrinsic neutral acoustic modes of the channel. This
problem has now been studied and clarified by the present authors (Tam & Hu 1988).

In this paper it will be shown that high-speed jets are subjected to three families
of instabilities. One of these is the familiar Kelvin—Helmholtz instability waves. The
other two are generated by the presence of a Mach wave system inide the jet. In jets
with infinitesimally thin mixing layers the subsonic waves are neutrally stable. These
waves are unstable only if a finite-thickness shear layer is included in the
mathematical model. The wave patterns associated with the spatial instabilities of
the three families of waves will be analysed and compared with experimental
observations. It will also be shown that at sufficiently high Mach number the growth
rate of the Kelvin—Helmholtz instability decreases drastically. At still higher Mach
number this wave mode would merge with the supersonic instability waves. When
this happens the Kelvin—-Helmholtz mode can no longer be readily identified. Other
important characteristics of the three families of instability waves will be reported
in §§3-7 of this paper.

2. The three families of instability waves of high-speed jets

In the past numerous studies of the Kelvin—Helmholtz instability waves of
compressible jets have been carried out. References to some of the more recent works
can be found in Michalke (1984), Tam & Burton (1984), Zaninetti (1986, 1987)
and others. Most of these investigations, however, focused primarily on the
Kelvin—Helmholtz instability in subsonic and low supersonic jets. Here our principal
interest is on the other two families of instability waves of high-speed jets observed
by Oertel (1979, 1980, 1982). In this work a vortex-sheet jet model as well as a more
realistic jet model with continuous velocity profile and finite shear-layer thickness
will be used. Experience indicates that the simpler vortex-sheet model can usually
provide reasonably good estimates of the phase velocity of an instability wave. But
for the purpose of calculating accurately the growth rate of the wave, a finite-
thickness jet model is necessary. In later sections of this paper it will be shown that
if the vortex-sheet model of a supersonic jet is used the growth rates of subsonic
waves are found to be zero, i.e. they are neutral waves. On the other hand,
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calculations based on the more realistic finite mixing-layer thickness model reveal
that these are unstable waves with finite spatial growth rates. For this reason, all the
three families of waves will be referred to as unstable waves even in the context of
the vortex-sheet jet model.

2.1. Vortex-sheet model of high-speed jets

Consider a supersonic jet of velocity u; and radius R; bounded by a vortex sheet as
shown in figure 5. Let (r, 6, x) be a cylindrical coordinate system centred at the axis
of the jet with the x-axis pointing in the direction of the flow. On starting from the
linearized continuity, momentum and energy equations of a compressible inviscid
fluid, it is straightforward to find that the pressure associated with small-amplitude
disturbances superimposed on the mean flow inside and outside the jet, p; and p,, are
governed by the wave and convective wave equation respectively.

aaf;" a5 Vip, =0 (r= Ry, 2.1)
0 A% -
a+uja pi—a;Vép, =0 (r <R, (2.2)

where a, and a; (subscripts o and j denote physical quantities outside and inside the

jet) are the speeds of sound outside and inside the jet. Let {(6,x,t) be the radial

displacement of the vortex sheet. The dynamic and kinematic boundary conditions

at the vortex sheet r = R; are

_ _1dp, ¢ 10p, (@ 9 \2

Pi = Pos P or e’ P or = o ujé; § (23, 24, 25)
It is straightforward to find that separable solutions of the above equations and

boundary conditions which also satisfy the boundedness condition at r =0 and

r— Q0 are -
(Po) - ( . H(in,7) )ei<kx+n0—wt> (2.6)
Dy H(nl)(l%Rj) Ju(M17) /S (my By)

where 7, = (k* —w?/a2)}, 4, = ((w—u.k)2/a.2—k2)%. The branch cuts of 3, and %, are
taken to be

~In<argy,<ix, O0<argy <m.

The wavenumber and angular frequency k£ and w are related by the eigenvalue
relation

= 1% VHD Gip B — i W 3=
D(w’k)—pow2Jn(”iRJ)Hn (in, £;) o, B HP(ino Ry) J (7 Ry) = 0, (2.7)

(" = derivative).
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Equation (2.7) is not new (see e.g. Tam 1971 ; Chan & Westley 1973). Solutions of
(2.7) or the roots of D(w, k) are the wave modes of the jet. The nature of these wave
modes will be discussed in subsequent sections of this paper.

2.2. Finite-thickness shear-layer model
In a real jet the mean velocity and density profiles are continuous. Experimentally
it has been found that the flow velocity is uniform in the central part of the jet.
Surrounding this uniform core is a mixing layer with a velocity profile which can be
closely approximated by a half-Gaussian function, see e.g. Troutt & McLaughlin
(1982). Thus the mean velocity profile in the core region of the jet will be taken
as

u; (r<h),

u; eXp [—(ln2)(7‘l;k)2} (r=h), (2.8)

in the present calculation. In (2.8) & is the radius of the uniform core and b is the half-
width of the jet mixing layer. The parameters % and b are related by the condition of
conservation of momentum flux

u =

J putrdr = §p;u} RS (2.9)
0

The mean density p is related to the mean velocity # by the Crocco’s relation (Prandtl
number is assumed to be unity).

It is easy to show starting from the linearized equations of motion for an inviseid,
non-conducting compressible fluid that the equation governing the perturbation
pressure p is (sec e.g. Tam & Burton 1984)

p(r, 0,2, t) = p(r) exp [iI(kx+nl— wi)], (2.10)

d*p [1 1dp 2k dz|dp [(w—ak)® n»® .
L [_ ]5 o k| p =0, 2.11)

r pdr w—akdr a

where @ = (yp,/p)!. The locally parallel flow approximation has been invoked in
deriving (2.11). This equation together with the boundedness condition at » = 0 and
r— oo form an eigenvalue problem for w = w(k) or k = k(w). The eigenvalue can be
determined by integrating this equation numerically. Details of the numerical
procedure may be found in Tam & Burton (1984) and will not be elaborated here. To
initiate the iteration cycle of the numerical procedure the solution of the vortex-sheet
jet model has been used throughout this paper.

7.2

2.3. Existence of three families of wave solutions

The branch points of the function iy, and #; of (2.7) for a given real value of & in the
1 -pl e,
complex w-plane ar w=tha, ©=kau/at1), (2.12)
respectively. The branch cuts of these functions are shown in figure 6. The
significance of the branch points is that regions of the complex w-plane to the left-
hand branch point represents waves for which the flow has supersonic convective
Mach number. Convective Mach number is defined as the Mach number of the flow
measured in the moving frame of the wave. It is straightforward to show that for
every point in this region of figure 6(b) the supersonic convective Mach number
relationship u;—w,/k > a; holds (w = w,+iw,), where subscripts r and i denote real
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Ficure 6. Branch cuts of (a) i, and (b) #, in the complex w-plane for a supersonic jet. Shaded
areas are regions with supersonic convective Mach number.
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and imaginary parts. Similarly for every point to the left of the left-hand branch
point of iy, in figure 6(a) which is for the static environment outside the jet the
inequality |w /k| > a, applies.

It is also easy to show that points in the region of the complex w-plane to the right
of the right-hand branch points in figure 6 again represent waves for which the
convective Mach number of the flow is supersonic. In this case the inequalities
e o fk—w, > a, o /k>a,
inside and outside the jet respectively. The remaining region of the complex w-plane,
namely, the vertical strip between the two branch points represents waves having
subsonic convective Mach numbers.

According to the instability mechanism described in the previous section,
supersonic instability waves exist in a jet only if the convective Mach numbers (for
the flow inside and outside the jet) are supersonic. In terms of the complex w-plane
this is possible only if the jet Mach number is highly supersonic such that the left-
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FicurE 7. Zeros of the dispersion function D(w,k) in the complex w-plane. M; = 4.0, cold jet,
kR, = 15.0, n = 0 mode. , Re(D) =0; ~——, Im (D) = 0. 1, right-hand branch point of iz, },
left-hand branch point of 5,. A, Kelvin—Helmholtz instability; @, supersonic instabilities; W,
subsonic wave modes.

hand branch point of figure 6(b) lies to the right of the right-hand branch point of
figure 6(a), In other words,

uy > a;+a,. (2.13)
The vertical strip between the two branch points satisfies the supersonic convective
Mach numbers criterion.

Now for a vortex-sheet supersonic jet the instability wave modes are given by the
zeros of the dispersion function, D(w, k), of (2.7). To locate the zeros in the complex
w-plane for a given value of k, the following grid-search method has been found
useful. To implement this method the region of interest in the w-plane is first
subdivided into small subregions by a rectangular grid. The value of the dispersion
function D(w,k) of equation (2.7) are calculated at each grid point. A plotting
subroutine is then called which performs a two-dimensional interpolation of this set
of values and constructs the two families of curves Re (D) = 0 and Im (D) = 0. The
intersection of these curves provide a first estimate of the locations of the zeros of D.
These values are then refined by applying Newton’s iteration method.

Figure 7 shows a typical example of the zeros of the dispersion function D(w, k)
found by the grid-search method for a highly supersonic jet. In this example the
axisymmetric waves (n =0) of a Mach number 4.0 cold jet are considered. The
wavenumber kE;, has been set to be equal to 15.0 in the calculation. It is evident in
this figure that there are three families of zeros, or wave modes. The isolated zero
with the largest temporal growth rate is the familiar Kelvin—Helmholtz instability.
Immediately below the Kelvin—-Helmholtz zero is a family of zeros lying in the
vertical strip (with Im (w) > 0) between the right-hand branch point of iy, and the
left-hand branch point of 7;. These are the supersonic instability waves. To the left
of the supersonic instability waves is another family of zeros. These zeros lie on the
real w-axis between the two branch points w/k = +a,. These waves, therefore, have
subsonic phase velocity relative to the ambient speed of sound. They are the subsonic
waves. For non-axisymmetric wave modes with n = 1,2, 3, ..., maps similar to figure
7 have been constructed by the grid-search method. Again they exhibit three sets of
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wave modes resembling those in figure 7. The above results apply to hot jets as well.
For hot jets the supersonic instability wave modes exist even at much lower
supersonic Mach number. When condition (2.13) is not satisfied, only the
Kelvin—-Helmholtz and the subsonic waves could be found. Experimentally Oertel
(1979, 1980, 1982) found that his second set of waves (the W waves) exist only when
u; > a;+a,, independent of Mach number and the type of gas used to form the jet.
This is in total agreement with condition (2.13). Further comparisons between
computed wave characteristics and experimental measurements of the three families
of waves of high-speed jets will be reported later.

2.4. Relationship between Kelvin—Helmholtz instability and swpersonic instability
waves at high-jet Mach number

It has been known since the early work of Miles (1958) that the growth rate of the
Kelvin-Helmholtz instability decreases as the flow Mach number increases. Thus at
higher jet Mach number one would expect the Kelvin-Helmholtz zero in figure 7
to move towards the real w-axis. However, between the real w-axis and the
Kelvin—Helmholtz zero are the supersonic instability wave modes. An interesting
question, therefore, arises as to whether the Kelvin-Helmholtz zero would pass
through the supersonic instability wave modes to reach the w-axis. To answer this
question a series of maps similar to figure 7 has been calculated with a fixed
wavenumber but increasing jet Mach number. Attention is focused on the trajectory
of the Kelvin-Helmholtz zero in the complex w-plane as the jet Mach number
increases. It is found that when the Mach number reaches a certain critical value the
Kelvin—Helmholtz zero blends itself into the supersonic instability wave modes. At
still higher jet Mach number the Kelvin-Helmholtz mode seems to lose its identity
and cannot be readily singled out. The wave mode merging phenomenon is illustrated
in figure 8. In this example the calculations are for the axisymmetric mode (n = 0)
and kE; = 15.0. Figure 8(a) shows the curves Re(D) =0 and Im (D) =0 in the
complex w-plane at jet Mach number 4.4. The zero of D(w, k) with the largest
imaginary part is the Kelvin—-Helmholtz mode. Figure 8 (b) shows a similar map at
jet Mach number 4.6. Now as Mach number increases from 4.4 to 4.6 drastic changes
of the curves Re (D) = 0 and Im (D) = 0 take place around 4.5. As a result it is no
longer possible to single out readily which is the Kelvin—-Helmholtz mode in figure
8(b). Figure 8 (c) gives the locations of the supersonic instability wave modes at Mach
number 5.0. No trace of a distinct Kelvin—Helmholtz mode can be found. In other
words, the merging of the Kelvin-Helmholtz mode with the supersonic instability
wave modes is complete. An examination of the eigenfunctions of the wave modes
seems to reinforce this conclusion. At Mach number above a critical value all the
eigenfunctions exhibit similar characteristics whereas at lower Mach numbers the
eigenfunction of the Kelvin—Helmholtz wave is distinctly different from those of the
supersonic instability waves. Typical eigenfunction distribution will be provided
later.

Extensive numerical computations indicate that the critical Mach number, M,
above which the Kelvin—Helmholtz mode blends itself completely with the supersonic
instability wave modes is insensitive to the azimuthal wavenumber » and the axial
wavenumber k. (Note: M, does not have a sharply defined value but can be narrowed
down to a very narrow range.) It turns out that M, is affected mainly by the jet
temperature. Figure 9 shows the dependence of M, on the jet to ambient temperature
ratio. In constructing this graph the ratios of the specific heats of the gases inside and
outside the jet have been assumed to be the same. As can be seen M, decreases with
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Ficure 9. Critical Mach number above which the Kelvin—-Helmholtz instability wave can no
longer be identified as a function of jet to ambient temperature ratio (7}/T).

an increase in jet temperature. It appears that the curve tends to an asymptote as
the temperature ratio becomes very large.

3. Spatial instability

In this work the primary interest is the spatial instability wave modes. These,
rather than the temporal instabilities, are the waves observed in Oertel’s (1979, 1980,
1982) experiments. For spatial instability waves v is real. However, it is known that
in determining these waves it is not sufficient to set w to a real number and look for
the zeros or poles of D(w, k) in the complex k-plane. One must recognize that waves
can propagate in the positive or negative x-direction. Such a distinction is absolutely
necessary. Failure to do so may erroneously treat an evanescent wave as a spatially
amplifying wave and vice versa. Here the criterion for distinguishing between an
evanescent and a spatially amplifying wave established by Briggs (1964) will be
followed. According to Briggs, if one is interested in spatial instability waves of
frequency £ one should start calculating the roots of the dispersion function by
setting the real part of w equal to £2 and the imaginary part of @ to be a large positive
value. Zeros of D(w, k) lying in the upper half k-plane represent waves propagating
in the positive z-direction while those in the lower half k-plane represent waves
propagating in the negative x-direction. Figure 10 shows a typical example. Here the
calculation is for a cold jet of Mach number 4.0 with wR;/u; = 2.6 +1.5i. The zeros
of D(w, k) in the k-plane are located by the grid-search procedure described above. In
figure 10 these zeros are denoted by open circles. Also shown in this figure are the
branch cuts of 7, and 7; denoted by double thin lines. The branch points of 3, and
7; in the complex k-plane are +w/a, and w/(u;ta;) respectively. Now to obtain the
normal mode solutions the point @ must be pushed towards the real axis. Here real
w is kept fixed in the complex w-plane throughout the entire contour deformation
process. Numerically this is carried out by reducing the imaginary part of w by small
increments until it is equal to zero (solid circles). For each intermediate value of w
the grid-search procedure is implemented. In this way the movement of all the zeros
of D(w, k) can be traced as Im (w) > 0%. The trajectories of the zeros are shown in figure
10. The final locations of the zeros, i.e. when w is real, are denoted by solid circles and
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Fieure 10. Trajectories of the zeros of D(w, k) in the complex k-plane as Im (w) >0 showing
the Kelvin—Helmholtz instability wave (4)., the supersonic instability waves (B), and the subsonic
waves (C). Cold jet, Mach number 4.0, n = 0.

the branch cuts by solid black lines. Some of the zeros in the vertical strip between
the right-hand branch points of #; and 7, crossed into the lower half k-plane as v is
pushed toward the real axis. These are the spatial supersonic instability wave modes.
The isolated zero of D(w, k) with the largest negative imaginary part which crosses
into the lower half k-plane is the Kelvin—Helmholtz instability wave. In addition to
the supersonic instablity wave modes and the Kelvin—-Helmholtz mode there are two
families of zeros lying on the real k-axis; one to the left-hand branch point of 5, and
the other to the right of the right-hand branch point of 3,. They are the subsonic wave
modes. Some zeros remain in the upper half k-plane and some in the lower half plane.
They represent spatially evanescent waves. It is to be noted that all the zeros of the
dispersion function which originate from the upper half k-plane represent waves
propagating in the downstream direction whereas those which originate from the
lower half plane represent waves propagating in the upstream direction. When
condition (2.13) is not satisfied, as in the case of a cold jet at 1.5 Mach number, there
is no supersonic instability wave mode. In this case the trajectories of the zeros of
D(w, k) are shown in figure 11. In this figure only the zero of D(w, k) corresponding to
the Kelvin—Helmholtz instability wave crosses the real k-axis into the lower half
plane. The subsonic wave zeros can be found along the real k-axis. But there is
definitely no supersonic instability zero.

3.1. Relationship between subsonic and supersonic wave modes

In the previous section it was demonstrated that the Kelvin—Helmholtz instability
wave is related to the supersonic instability waves. At high-jet Mach numbers the
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Fieure 11. Trajectories of the zeros of D{w, k) in the complex k-plane as Im (w) - 0* showing the
Kelvin—Helmholtz instability wave (4) and the subsonic waves (C). Cold jet, Mach number 1.5,
n = 0.
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Freure 12. Dispersion relations, Re(k) as a function of w, ———, of the Kelvin—-Helmholtz
instability wave; ——, the supersonic instability waves; —-—-, The subsonic waves; and 3

the upstream propagating subsonic waves. Cold jet, jet Mach number 4.0, n = 0.

two sets of waves merge to form a single family. It turns out that the subsonic and
supersonic waves, although seemingly different in that the former are neutral waves
(in the context of the vortex-sheet model) while the latter are unstable waves, are
also related. A clue to their relationship may be found in figure 10. For Im (w) large
and positive the zeros of the supersonic instability waves and the subsonic waves
form a family of zeros located near the right-hand branch cut of 5,. A more direct way
of seeing that the two famlies of waves are related is to examine their dispersion
relations. Figure 12 shows the relationship k.(w), where k, is the real part of the axial
wavenumber k, of the Kelvin—Helmholtz instability, the supersonic instability waves
and the subsonic waves for a cold jet at Mach number 4.0. It is readily seen that the
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Ficure 13. Dispersion relations, k.(w), of ———, the Kelvin—Helmholtz instability wave; —-—-,

the subsonic waves;
1.5, n=0.

. and the upstream propagating subsonic waves. Cold jet, Mach number

dispersion relations of the subsonic waves with positive k. continue into the
dispersion relations of the superonic instability waves. Thus they may technically be
regarded as a single wave family exhibiting different characteristics in subsonic and
supersonic conveetive Mach numbers.

At lower jet Mach number when condition (2.13) is not satisfied the supersonic
instability waves do not exist. Figure 13 shows typical dispersion relations of the
subsonic waves and the Kelvin—Helmholtz instability waves in this case. It is to be
noted that the real part of the axial wavenumber, k., of the supersonic instability
wave as well as that of the Kelvin—Helmholtz instability wave are smaller than those
of the subsonic waves. This is evident in figure 10. This implies that the subsonic
waves have the slowest phase velocities of the three families of waves. This result is
consistent with the measurements of Oertel (1980).

3.2. Upstream propagating waves of supersonic jets

In a supersonic flow all small-amplitude disturbances propagate downstream. 1t is,
therefore, natural to expect the intrinsic wave modes of a supersonic jet to propagate
in the downstream direction. However, according to dispersion relation (2.7) a
supersonic jet can support neutral upstream propagating wave modes. This finding
is surprising but not unphysical. Outside the jet the ambient gas is stationary so it
is possible for waves to propagate upstream but still be attached to the jet. The
upstream propagating neutral waves, however, do not exist for all frequencies. Their
existence is confined to very narrow frequency bands.
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Ficure 14. Trajectories of the zeros of D{w, &) in the complex %-plane as Im (w) > 0* showing the
upstream propagating subsonic wave marked by ‘X’. Cold jet, Mach number 1.5, n = 0.

Experimentally it is known that supersonic jets operating at off-design condition
normally would exhibit the phenomenon of screech during which strong discrete
frequency sound waves are emitted. The screech is produced by a feedback loop (see
Powell 1953 ; Davies & Oldfield 1962; Tam, Seiner & Yu 1986). Part of the feedback
loop consists of strong acoustic disturbances propagating upstream immediately
outside the jet toward the nozzle exit. It is not clear at this time whether these
feedback acoustic disturbances of jet screech are associated with the upstream
propagating wave modes found in this study or not.

To show the existence of upstream propagating wave modes for supersonic jets
consider the trajectories of the zeros of the dispersion function D{(w, k) of (2.7) in the
complex k-plane as shown in figure 14. In this figure the calculations are for a cold
Mach 1.5 supersonic jet with Re (wR;/u;) = 3.45. The trajectories are formed as w is
pushed from Im (wR;/%;) = 0.2 to the real axis in the w-plane according to Briggs’
(1964) contour deformation criterion. As can be seen the trajectory X of the zero of
D(w, k) which begins in the lower half &-plane ultimately reaches the real k-axis when
Im (w) - 0*. Since this zero comes from the lower half plane it represents an upstream
propagating neutral wave. Extensive numerical computation reveals that this zero
reaches the real k-axis only for a narrow range of frequencies. At slightly higher
frequencies this zero comes close to the real k-axis but remains in the lower half
plane so that it is an upstream propagating evanescent wave. The spatial damping
rate increases rapidly with frequency. Typical dispersion relations of the upstream
propagating subsonic wave modes are shown in figure 13. The group velocity,
Ow/0k,, is close to —a,; a, is the ambient speed of sound. Hence in the (k,, w)-plane the
dispersion relations of these waves lie very close to the straightline w/k, =—a
Typical eigenfunctions of these waves will be given later.

0°

3.3. Wave pattern

One way to identify the waves of high-speed jets predicted by the vortex-sheet or the
finite shear-layer thickness jet models of §2 with those observed experimentally by
Oertel (1980) is to compare the calculated and measured wave patterns. Consider the
first two families of unstable waves, namely, the Kelvin—-Helmholtz instability wave



464 C.K.W.Tam and F. Q. Hu

OO

u

T

Ficure 15. Lines of constant phase in the near field of a supersonic jet associated with the
Kelvin—Helmholtz or supersonic instability waves.

and the supersonic instability waves. Outside the jet (r > R;) the eigenfunction is
given by (2.6) or )
Po(r, 0,2, 8) = AHP (i, r) eitkztno-od (3.1)

where 4 is an arbitrary constant. For high-frequency waves, the wavelength is small
compared to the diameter of the jet so that the argument of the Hankel function in
(3.1) is large. It is, therefore, permissible to replace the Hankel function by its
asymptotic form to obtain

Ppolr,0,2,8) ~ A (im? r)iexp {—n,r+ilkx+nl—wt—}n+3)n]}. (3.2)

r > Ry [

Here k and 7, are complex. Let
keo=ke+iky, 9= oo+ 190r. (3.3)
Substitution of (3.3) into (3.2) leads to the following formula for p,,.

3
Po~A (mj T) exXp (—or 7 — ky @) exp il — oy 7 + by 2+ nO—wt—Mn+ H 7] (3.4)
r> R o
Consider a plane, § = constant, which passes through the centreline of the jet.
According to (3.4) on such a plane the curves of constant phase are straight lines. The
equation of these lines ig
k. x— 9 r—wt = constant. (3.5)

This represents a set of parallel straight lines. These straight lines make an angle ¢
with the boundary of the jet as shown in figure 15. The angle ¢ is equal to

¢ = tan™! [ﬁ] (3.6)
ot
The wave pattern of figure 15 is the same as the wave pattern of the first set of waves
in figure 1. In §4, (3.6) will be used to calculate the angle ¢ for the Kelvin—Helmholtz
instability waves over a wide range of jet Mach number. There it will be shown that
the calculated angles compared very favourably with experiments.
For supersonic instability waves the spatial growth rate is small. As a result 9, is
fairly small compared to k.. ¢ as computed by (3.6) is, therefore, very close to 90°.
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Ficure 16. Lines of constant phase forming a cross-hatched pattern inside a supersonie jet
associated with the subsonic waves.

This is consistent with the wavefront angle of the second set of waves shown in figure
1.

In the case of the neutral subsonic waves 7, is real. Outside the jet the pressure
distribution is given by

2\ ,
Do~ A ( ) exp (— 79, r)exp [i(k, x +nb — vt —¥n+1in))] (3.7)
r> Ry 11”]0 r
It is readily seen from (3.7) that the pressure distribution decays exponentially
outward in the near field in all directions. In other words, the predicted wave pattern
is confined inside the jet. This absence of a near-field wave pattern is the same as that
of the third set of waves of figure 1.

Inside the jet pressure eigenfunction of the subsonic waves is given by (2.6). That
is

pi(r, 0, 2,8 ~ J, (g, 7) exp [i(kx + nf —wt)]. (3.8)

For high-frequency waves [g|r is large except near the jet axis. Under this
circumstances one may again replace the Bessel function in (3.8) by its asymptotic

form, hence

t ‘4
P, 0,,0) ~ S50 o (1 — b + D) exp (il + b — wt))

(mi7)z
~ c"(Lt‘;“t [exp (i(n, 7+ kx + 16— wt —Yn+1) 1))
n:7)?
+exp (i(—pr+kr+nb—wt+in+in)]. (3.9)

Now according to (3.9) the wave pattern in the plane 6 = constant consists of two sets
of propagating waves with curves of constant phase again in the form of parallel
straight lines. The equations of the two families of straight lines are

7,7+ kx — wt = constant, (3.10)
and — ;7 + kxr— wt = constant. (3.11)

These two sets of parallel straight lines form a cross-hatched pattern inside the
supersonic jet as shown in figure 16. The angle i between the straight lines and the
jet boundary is given by

¥ = tan™ [ﬁ] = sin'l[ % ] (3.12)
i U5 —Cpn

where ¢, = w/k is the phase velocity of the waves. This wave pattern is identical to

that of the third set of waves observed by Oertel (1980) and labelled as the W” waves

in figure 1.
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Fiaure 17. Comparison between calculated and measured dispersion relation of the Kelvin-
Helmholtz instability wave in a cold 2.1 Mach number jet (n =1). , calculated; Q.
experiment of Troutt & McLaughlin (1982).

The identification of the wave patterns of the three sets of waves observed by
Oertel as the Kelvin-Helmholtz instability wave, the supersonic instability waves
and the subsonic waves found in the present analysis is now complete. In the
following sections special characteristics of each set of waves will be discussed.
Comparisons with experiments will be made whenever possible.

4, Wave pattern and other characteristics of Kelvin—-Helmholtz instability

The Kelvin-Helmholtz instability wave has been studied by numerous investi-
gators before. Michalke (1984) has provided an excellent review of this instability
in subsonic jets. Here only the important features of this instability wave in
supersonic jets will be presented. Emphasis will be on comparisons with experiments.
Some of the characteristic features of the Kelvin-Helmholtz waves will also be
described. This is for the purpose of providing a basis for comparison with the
supersonic instability waves in the next section.

Measurements of pressure and velocity disturbances in supersonic flows are
difficult to perform. As a result there is only a limited number of experiments on
Kelvin—-Helmholtz instability waves in supersonic jets. By comparing the calculated
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Ficure 18. Comparison between calculated and measured wave speed of the Kelvin—-Helmholtz
instability wave in a cold 2.1 Mach number jet (n = 1). ——, calculated ; O, experiment of Troutt

& McLaughlin (1982).

60 |-

a0l
¢ (degrees)
30

20}

]

o
50  w Mot o ©° %0%0%0 Zgopt—2

2.0

Jet Mach number

25 3.0

Fioure 19. Comparison between calculated and observed angle of the wavefronts of the

Kelvin—-Helmholtz instability waves outside a supersonic nitrogen jet.

, calculation (high

frequency); experiment: O, Rosales (1970); l, Lowson & Ollerhead (1968).

results with these measurements it appears that linear stability theory can provide
reasonably good estimates of the wave speed and near-field pattern. However, the
calculated growth rate is quite inaccurate. This situation is similar to that for
subsonic jets as reported by Moore (1977) and others. Figure 17 shows the calculated
dispersion relation of the Kelvin—Helmholtz instability wave (equation (2.7)) for a
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Ficure 21. Pressure eigenfunction distribution of the Kelvin—Helmholtz instability waves.
Mach 1.6 cold jet, axisymmetric mode (r = 0). (@) wR,/a, = 11.0, (b} 5.0.

2.1 Mach number cold jet for the n = | wave mode. Plotted in this figure also are the
measurements of Troutt & McLaughlin (1982). Figure 18 shows a comparison of the
calculated and measured wave speed over the Strouhal number range of 0.1-0.9. As
can be seen there is good agreement between theory and experiment over nearly the
whole range of Strouhal number.

Prior to the work of Oertel (1979), Lowson & Ollerhead (1968) and Rosales (1970)
had carried out extensive observations of the near-field wave pattern of the
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Kelvin-Helmholtz instability waves in supersonic jets. These data can now be used
to compare with the calculated wave pattern discussed in §3.3. Figure 19 shows the
observed wave-front angle of cold supersonic nitrogen jets as a function of jet Mach
number. The full curve in this figure is the calculated angle based on (3.6) at high
frequency. The agreement with measurements is excellent. The difference between
theoretical values and measurements is well within expected experimental un-
certainty. Figure 20 is a similar comparison between calculated and observed wave-
front angles for supersonic helium jets. Because of the not insignificant difference in
the ratio of specific heats of the gas inside and outside the jet the wave-front angle
reduces greatly from figure 19 to figure 20. This is correctly calculated by (3.6). The
good agreements found between theory and experiment tend to reinforce the belief
that the near wave field of the first set of waves observed by Oertel (1980) is indeed
associated with the Kelvin—Helmholtz instability wave.

Figure 21 shows the pressure eigenfunction associated with the Kelvin—-Helmholtz
instability wave in a cold Mach number 1.6 supersonic jet. It is evident from this
figure that the pressure fluctuations are confined to the region immediately adjacent
to the shear layer of the jet. There is very little pressure fluctuation near the jet
centreline. The instability wave distribution is similar to that of a plane two-
dimensional shear layer. The axisymmetric geometry of the jet mixing layer seems
to be unimportant. This is in sharp contrast to the supersonic instability waves which
owe their existence to nearly complete reflection of acoustic disturbances at the shear
layer of the jet.

5. Characteristics of supersonic instability waves

As discussed in §1, supersonic instability waves are sustained by continuous
reflection of acoustic disturbances at the mixing layer of the jet. The entire wave
family consists of infinitely many modes. These wave modes can be classified by
designating each mode by two integer numbers (n, m). The » number is the azimuthal
mode number from the exp (inf) (n = 0,1,2,...) dependence of the wave solution.
The m number (m = 1,2, 3, ...) is the radial mode number characterizing the number
of anti-nodes (maximum oscillation points) of the presure distribution of the wave
in the radial direction. As an illustration figures 22 and 23 show the pressure
eigenfunction distribution of the (0, 1), (0,2), (0, 3), (1,1), (1,2) and (1, 3) supersonic
instability wave modes of a cold Mach number 3.0 jet. The number of antinodes is
well defined so that the m number assigned to a mode is unambiguous. For all
axisymmetric modes (n = 0) the first antinode is located at the centre of the jet. On
the other hand for the higher-order modes (» = 1,2,3,...) the centre of the jet is a
node as shown in figure 23. It is interesting to compare the pressure eigenfunctions of
figures 22 and 23 with those of the Kelvin—-Helmholtz instability wave shown in
figure 21. The antinodes and quasi-nodes (minimum oscillation points) of the
eigenfunctions of supersonic instability waves are characteristics of waves generated
by continuous reflection. There are no such features in the eigenfunctions of the
Kelvin-Helmholtz instability waves. The distinct differences between figures 21 and
22 or 23 reflect simply the different physical mechanisms which drive these two
familes of instabilities.

Typical dispersion relations, Re (k) as a function of w, of the supersonic instability
waves are shown in figure 12. Once the dispersion relation of a wave mode is known
the phase velocity ¢, = w/Re (k) can easily be determined. The spatial growth rate
of a supersonic instability wave varies with the frequency of the wave. Figure 24



470

(@ 20

0.4

0

C.K.W.Tam and F. Q. Hu

®)

© 20

1.6

&~

0.8

0.4

1

1.0
lrl

Ficure 22. Pressure eigenfunction distributions of supersonic instability waves. Cold jet, Mach
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Fiaurze 23. Pressure eigenfunction distributions of supersonie instability waves. Cold jet, Mach
number 3.0. —, (1,1) mode; ———, (1,2) mode;; —-—-— , (1,3) mode. (a) wR,/a, = 16.1, (b) 10.1,
(c) 3.0.

provides the spatial growth rates of the first six axisymmetric modes (n = 0,m = 1,
2,3,...,8) of a cold Mach number 4.0. These waves are typical of the entire family of
supersonic instability waves. Each wave mode is unstable over a certain frequency
band and attains maximum growth rate at a particular frequency. In figure 24 the
most unstable frequencies for the first five radial modes, i.e. m =1,2,3,4,5, are
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Ficure 24. Spatial growth rate of supersonie instability waves. Cold jet, Mach number 4.0,
axisymmetric mode (n = 0). O, maximum growth rate of the wave mode.
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Ficure 25. Phase velocities of supersonic instabilty waves. Cold jet, Mach number 4.0,
axisymmetric mode (r = 0}). O, wave with maximum spatial growth rate; —~—, most probable
wave speed.

denoted by a circle. The phase velocities corresponding to the waves of figure 24 are
shown in figure 25 as functions of wR,/a,. The phase speeds of the wave of each mode
with maximum spatial growth rates are indicated by circles. It is important to
observe that the phase velocities of the most amplified wave of various modes are
nearly equal. The averaged numerical value is indicated by the dotted line in the
figure. Since this is the phase velocity of the most amplified wave it is, therefore, the
most likely observed wave speed. As suggested by figure 25 this wave speed is largely
independent of frequency, jet radius and radial mode number m. It turns out that
it is also independent of the azimuthal mode number n and jet Mach number.
Extensive numerical computations have been carried out to determine the parameter
which would correlate with this calculated most probable wave speed. It has been
found that this wave speed is a function of jet to ambient speed of sound. The
parameter which correlates with all the computed results is (1+a;/a,)™"; assuming
that the specific heat ratios inside and outside the jet are the same. Figure 26 shows
that the calculated most probable wave speed of the supersonic instability waves is
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Ficure 26. Correlation of the phase velocity of supersonic instability wave at maximum
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directly proportional to this parameter. Since the computed points lie almost exactly
on the 45° line it is concluded that the most likely observed phase velocity, ¢, of the
supersonic instability waves is given by the formula

Cn__ 1

w,  l4a/a, (8-1)
Equation (5.1) is identical to an empirical formula derived by Oertel (1980) based on
his extensive experimental measurements. 1t correlates a large body of his measured
data. The perfect agreement between calculated results and experiments leaves little
room for doubt that the second set of waves (see figure 1) observed by Oertel are,
indeed, the supersonic instability waves. It is worth mentioning that Papamoschou
& Roshko (1986) in their study of large turbulence structures in high-speed two-
dimensional shear layers derived an equation identical to (5.1) using simple quasi-
steady flow argument. It appears, therefore, that (5.1) might be applicable even to
disturbances of moderately large amplitude.

Equation (5.1) is independent of the radius of the jet. By using this information it
is possible to derive this equation from the dispersion relation (2.7). Since the most
probable wave speed is independent of jet radius R;, one can let Rk~ o0 in (2.7). In
this limit the entire family of the supesonic instability waves reduces to a single
neutral wave. If the ratio of the specific heats of the gas of the jet, v;, differs only
slightly from that of the ambient gas, y,, i.e. (y;/y,—1) < 1 then it is straightforward
to show that the phase speed of the limiting neutral wave, to order (y,/y,—1)?, is

2 (2’_1_ 1.) a; 04§ — (a;+a,)°]
o Yo (a;+a,)? [u} —2(a;+ a,)?)

When y; and vy, are equal, (5.2) reduces to (5.1).

(5.2)
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Fieure 27. Pressure eigenfunctions of subsonic waves. Cold jet, Mach number 1.5, kR, = 15.0.
() (0,1) mode, (b) (0,3) mode, (¢) (0,5) mode.

6. Characteristics of subsonic waves

As has been pointed out in §3, at high frequencies the subsonic waves continues
into the supersonic instability waves. The major differences between these two
families of waves are that the former are neutral waves (within the framework of the
vortex-sheet jet model) with subsonic phase velocities relative to the ambient gas
while the latter are spatially amplifying waves travelling with supersonic phase
velocities. In addition, supersonic instability waves exist only when condition (2.13)
is satisfied. On the other hand subsonic waves exist regardless of the jet Mach
number and velocity. As in the case of supersonic instability waves, subsonic waves
can be classified into modes by two integers (n,m). Again » is the azimuthal
wavenumber and m is the radial wavenumber which is equal to the number of
antinodes the pressure eigenfunction has. Figure 27 shows the pressure eigenfunction
of the (0,1), (0,3) and (0, 5) subsonic wave modes of a cold Mach number 1.5 jet at
kR; = 15.0. The antinodes are well defined so that no ambiguity could arise in
assigning the m numbers. The eigenfunction distributions in figure 27 are typical of
this entire family of waves. The disturbance decays quickly in the radial direction
outside the jet so that the waves are essentially confined inside the jet flow. This is
in complete agreement with the third set of waves observed by Oertel (1980), see
figure 1.

Subsonic waves exist in subsonic as well as in supersonic jets. One important
difference being that for a given frequency there is only a finite number of subsonic
modes in a subsonic jet whereas there are infinitely many such wave modes in a
supersonic jet. As an illustration, figure 28 provides the dispersion relations of these
waves for a subsonic jet of Mach number 0.6. For subsonic jets all the waves of this
wave family propagate upstream. There is no downstream propagating subsonic
waves. Being upstream propagating waves, they have negative group velocities. In
other words, the slopes of the dispersion relations of figure 28 are negative. For
supersonic jets there are upstream as well as downstream propagating subsonic
waves. This point was discussed in §3 using the complex k-plane. Another way of
seeing the existence of both upstream and downstream propagating subsonic waves
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Ficure 28. Dispersion relations of subsonic waves for a cold Mach number 0.6 jet. All waves
propagate upstream.
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Freure 29. Dispersion relations of subsonic waves for a cold Mach number 1.5 jet. , upstream
propagating waves; ——, downstream propagating waves; axisymmetric mode (n = 0).
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Ficure 30. Dispersion relations of subsonic waves for a cold Mach number 1.5 jet. )
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, downstream propagating waves; helical mode (n = 1).
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Ficure 31. Pressure eigenfunctions of upstream propagating subsonic waves. Cold jet, Mach
number 1.5. (@) (0,1) mode, kR, = 0.7, (b) (0,3) mode, kR, = 3.0, (c) (0,5) mode, kR, = 5.5

is to examine their dispersion relation. Figures 29 and 30 are typical dispersion
relations of these waves for a supersonic jet. For each wave mode the dispersion
relation exhibits a minimum slightly to the right of the line w/k = —a,. To the left
of the minimum the waves have negative group velocities and, therefore, propagate
upstream. To the right of the minimum the slope of the curve or group velocity is
positive. Hence these waves propagate in the same direction as the jet flow. At the
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minimum point the two wave modes coalesce. In other words there is a double zero
in the k-plane. For frequencies lower than the minimum the double zero moves off the
real k-axis to become a complex conjugate pair. They are, therefore, spatially
evanescent waves propagating in opposite directions.

For supersonic jets the range of frequencies over which upstream propagating
subsonic waves are possible is restricted to narrow frequency band, see figures 29 and
30. In these figures it is observed that the dispersion relations of these waves lie very
close to the line w/k = —a,. Thus the phase speeds of these waves are equal to
—a,. Figure 31 shows the pressure eigenfunctions associated with the upstream
propagating subsonic waves. One important characteristic difference between these
eigenfunctions and those of the downstream propagating waves, see figure 27, is that
they extend well outside the jet flow. This is, of course, necessary, for unless the main
part of the wave propagates outside the jet it would be swept downstream by the
supersonic jet flow. The dispersion relations of upstream propagating subsonic waves
terminate on the line w/k = —a,. The limiting behaviour of the dispersion relation at
this line can be found directly from (2.7). In the limit w/k-—>—a,, 7, of (2.7) goes to
zero. By means of the asymptotic formula for Hankel functions with small argument
it is easy to show that (2.7) becomes, in the case of n =0,

) e o)
1 > =) Ji(n,Ry) =0, 6.1
kR, In (0, B)) " py  (ao/a, +M)E  \g \(n ;) (6.1)
where M; = u;/a; is the jet Mach number.
There are two types of solution to (6.1)

(@) w/k——a,,k * 0. This corresponds to the (0,m), m = 2,3, 4, ..., subsonic wave
modes. In this case (6.1) reduces to

Ji(n By) = 0, (6.2)

so that R, =0,_,(m=2,3,4,...) where o,_, are the zeros of J,. From this
relationship it is straightforward to find the limiting frequencies to be

lim P, —Tma K/l 1 (m=2,34,..). (6.3)

a, §

These limiting frequencies are the starting point of the dispersion curves in figure
29.

(b) w/k——a,, k— 0 simultaneously. This corresponds to the (0, 1) subsonic wave
mode. In this special case the solution of (6.1) has the form

w/k—>—a,+pe ¥, (6.4)

where 8 and u are positive real constants. This form of the solution makes the term
kln (g, R;) - finite instead of infinite as w/k ——a,in (6.1). For this particular solution
the dispersion relation passes through the origin as shown in figure 29. It is to be
noted that such a special solution does not exist for non-axisymmetric modes.
For n % 0, (2.7) in the limit w/k—>—a, reduces to
azn B,

Po %Ml o0 by
an(”iRj)'*'pj (ao+uj)2 Jn(anJ) 07 (65)

this equation determines the limiting value of 7;R; from which the limiting
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Ficure 32. Spatial growth rates of supersonic instability waves as functions of Strouhal number.

,b/Ry=0; ——,b/R;, =002; ———, b/R;=0.1; —-—-—, b/R, =0.2. Cold jet, Mach
number 4.0. 8t = 2fR /u,.

frequencies can be easily found. These limiting frequencies are shown as the starting
points of the dispersion curves in figure 30.

7. Jets with finite thickness mixing layer

In Oertel’s experiments the shock-tube facility was able to produce jets with
relatively thin mixing layers so that a vortex-sheet jet model is a good first
approximation. To investigate the effects of finite mixing-layer thickness on the
three families of waves the jet model of §2.2 is used. For the Kelvin-Helmholtz
instability waves the finite thickness effects are well known. At a fixed Strouhal
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Freure 33. Dependence of the spatial growth rates of subsonic waves on the half-width of the
mixing layer of a cold Mach number 2.0 jet at different Strouhal numbers. ———, St = 0.2;
St=04;, ——— 8t=08, ——— St=12;, —x—x—, 8t = 1.6.
-

number the spatial growth rate of the wave decreases with increase in mixing-layer
thickness. The wave speed is, however, only slightly affected by shear-layer
thickness. In this section, therefore, attention will be focused mainly on the
supersonic and subsonic waves.

According to the vortex-sheet model the supersonic waves of a high-speed jet are
unstable. It turns out that by increasing the thickness of the shear layer of the jet
the maximum spatial growth rate of each mode would generally be reduced. Figure
32 shows the change in the spatial growth rates of these waves in a Mach 4.0 cold jet
as the half width of the shear layer increases. As can be seen the change depends on
the wave mode and the Strouhal number. For jets with thicker mixing layers the
maximum growth rate occurs at lower Strouhal number. In fact, the spatial growth
rate at the low-frequency range may actually increase. On the other hand the growth
rates of high-frequency waves do decrease with increase in mixing-layer thickness.
Another interesting observation of figure 32 is that for jets with thin mixing layers
the higher-order modes (both higher azimuthal and or radial mode number) have
larger growth rates. Whereas for jets with realistic thickness the growth rates of the
lower-order supersonic modes tend to be relatively larger, although they are smaller
in an absolute sense. Unlike spatial growth rates, extensive numerical computations
indicate that the phase velocities of supersonic instability waves are almost
unaffected by mixing-layer thickness. This behaviour is similar to the Kelvin—
Helmbholtz instability waves. Thus as long as the jet mixing layer is fairly thin the
phase velocity formulae of (5.1) and (5.2) are applicable.

The effects of finite mixing-layer thickness on the subsonic waves of a high-speed
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Fioure 34. Effect of radial mode numbers on the growth rate of subsonic instability waves.
Cold jet, Mach number 2.0, axisymmetric modes. ,St=04; —— St=0.2.

jet are quite unusual and unexpected. For supersonic jets with zero-thickness mixing
layers the vortex-sheet model suggests that they are neutral waves. However,
calculations based on the finite shear-layer thickness jet model of §2.2 reveal that the
downstream propagating modes are unstable waves. Figure 33 shows the spatial
growth rates of a few of the low-order subsonic wave modes of a Mach 2.0 cold jet
at several Strouhal numbers as functions of mixing-layer thickness. At a fixed
Strouhal number a subsonic wave is unstable over a range of thicknesses. However,
unlike the Kelvin—-Helmholtz or the supersonic instability waves the maximum
spatial growth rate does not occur at zero thickness. Instead, for each frequency
there is an optimal thickness for maximum growth. Figure 34 provides basic
information regarding the dependence of the growth rate on radial mode number. It
is clear from this figure that higher-order radial wave modes tend to be less unstable.
The same is true for higher-order azimuthal mode number. In other words, the low-
order modes are the most unstable and hence they are most likely to be observed in
experiments.

Numerical studies indicate that the phase velocity of a subsonic wave is unaffected
by the thickness of the shear layer over the range of /R, up to 0.5. This aspect of
the subsonic waves is similar to that of the Kelvin—Helmholtz and the supersonic
instability waves. For upstream propagating subsonic waves of supersonic jets the
present investigation indicates little or no finite mixing-layer-thickness effect. The
waves appear to remain neutral. The reason why finite mixing-layer thickness has
different effects on upstream and downstream propagating waves is not clear.
Although one major difference between upstream and downstream propagating
waves is that the former has no critical layer whereas the latter does. However,
whether this is, indeed, the reason for the absence of finite mixing-layer-thickness
effect on upstream propagating subsonic waves remains an open question at this
time.

8. Summary of numerical results

Extensive computations on the growth rates and propagation characteristics of the
Kelvin—Helmholtz, the supersonic and the subsonic instability waves at various jet
Mach numbers, jet to ambient temperature ratios and mixing-layer thicknesses have
been carried out. Here the essence of these different results will be summarized with
the aim of providing a unifying perspective. At low supersonic Mach numbers, jets
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will support only the Kelvin—Helmholtz and the subsonic instability waves. Within
this Mach number range the Kelvin—Helmholtz instability waves have large growth
rates and are the dominant instability of the jet flow. Supersonic instability waves
exist only when the jet flow velocity exceeds the sum of the jet and ambient speed
of sound, ie. u; > a;+a, (equation (2.13)). Unlike Kelvin-Helmholtz instability
which has a single wave mode for cach azimuthal wave number, supersonic
instability waves consist of a family of wave modes for the same azimuthal
wavenumber. For clarity, therefore, each supersonic instability wave mode is
designated by an azimuthal and a radial mode number. The relative dominancy of the
Kelvin—Helmholtz instability and the supersonic instability is a function of the jet
Mach number and the jet to ambient temperature ratio. Figure 9 shows the critical
Mach number for a given temperature ratio below which the Kelvin-Helmholtz
instability waves, having the largest growth rate, is the dominant instability. The
critical Mach number arises because the spatial growth rates of the Kelvin-Helmholtz
instability and the supersonic waves have exactly opposite jet Mach number
dependence. It is well known that the Kelvin—Helmholtz instability becomes less and
less unstable as the jet Mach number increases. On the other hand, numerical results
obtained in the present investigation reveal that the maximum growth rate of the
supersonic instability waves increases steadily with Mach number (at least up to
M; = 5.0). The same is true for jet temperature. The effect of increasing the mixing-
layer thickness of the jet, in general, is to reduce the spatial growth rates of the
instability waves. For jets with reasonably thick shear layer (b/E; = 0.1 to 0.2) the
growth rates of the higher-order supersonic instability waves are greatly reduced so
that only the low-order wave modes are important. When restricted to cold jets with
Mach number up to 5.0 the Strouhal number of the most unstable wave lies in the
range 0.25-0.55. The maximum spatial growth rate per jet diameter is 0.2-0.4. On
comparing with the spatial growth rate of instability waves of subsonic jets these are
relatively weak instabilities. One of the most interesting findings of the present
numerical study is that the phase or convection velocity of the most unstable
supersonic instability wave non-dimensionalized by the jet velocity, as given by
equation (5.1) (or equation (5.2) if the specific heat ratio of the gas of the jet is
different from that of the ambient gas), is a function of the jet to ambient
temperature ratio alone. That is to say, formula (5.1) is valid regardless of jet Mach
number, mode number and mixing-layer thickness (say for b/R; less than 0.3).
According to the work of Papamoschou & Roshko (1986) there is also reason to
believe that this formula is applicable even to moderately large-amplitude waves.
The subsonic waves of supersonic jets are unstable only if the mixing layer has a
finite (but small) thickness. The growth rates of these waves are very small. They are
the least unstable waves. It is found, somewhat unexpectedly, that there is a branch
of these waves which can propagate upstream following the jet even when the jet flow
is supersonic. How important these waves are is not clear at this time. Further work
is needed to clarify whether these waves play any role in the feedback cycle of a
screeching imperfectly expanded jet or an impinging jet directed at a wall.

9, Discussion

In this paper three families of waves with distinet wave patterns and propagation
characteristics have been identified in high-speed jets. They are the Kelvin—-
Helmbholtz instability waves, the supersonic and the subsonic instability waves. At
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subsonic speeds jets are subjected to only one type of instability, namely, the
Kelvin—-Helmholtz instability. For these jets it has been found that the Kelvin—
Helmholtz instability waves are responsible for the formation of large turbulence
structures in the jet flow. These large structures control the dynamics and mixing of
the jet fluid. For supersonic jets at low to moderate supersonic Mach number
experimental observations suggest that the flow is dominated by similar dynamical
processes. Recently Lepicovsky, Ahuja & Brown (1987) provided photographic
evidence of the existence of Kelvin—-Helmholtz instabilty waves in these jets at
Reynolds number of 10° and higher. In addition to being a key factor in the dynamics
and mixing processes of moderately supersonic jets, Kelvin—Helmholtz instability
waves have also been recognized to be the dominant source of jet mixing noise (see
Troutt & McLaughlin 1982; Tam & Burton 1984). For imperfectly expanded jets the
presence of a shock cell structure inside the jet flow leads to the radiation of
additional noise. The additional noise consists of two components. One has discrete
frequency and the other is broadband. They are generally referred to as screech tones
and broadband shock associated noise (see Powell 1953; Davies & Oldfield 1962;
Tam et al. 1986 ; Tam 1987). It has been shown that the additional noise components
are generated by the interaction of the downstream propagating Kelvin-Helmholtz
instability waves and the quasi-periodic shock cell structure (as the former pass
through the latter). Thus the Kelvin-Helmholtz instability waves are important
entities of a jet flow not only with respect to the dynamics and mixing processes but
also in relation to the mechanisms of noise generation.

Now in this paper it has been found that at high supersonic Mach number a jet can
support two other types of instability waves. What role then would these new
instability waves play in the turbulence dynamics, mixing processes and noise
generation of these jets ? Furthermore, it was found in §2.4 that beyond the critical
Mach number the Kelvin—Helmholtz instability waves would merge with the
supersonic instability waves and that the supersonic instability waves were actually
the dominant instabilities. What then would this imply concerning the spreading
rate and the noise spectrum of a jet as the jet Mach number increases and passes the
critical value ? These are challenging questions which, however, are beyond the scope
of the present investigation.

This paper was supported by NASA Grant NAG 1-421 and ONR Grant No 0014-
07-J-1130 and the Florida State University through time granted on its Cyber 205
Supercomputer. The authors wish to thank Professor H. Oertel and the Directors of
the Institute Franco-Allemand De Recherches De Saint-Louis for their generous
cooperation and permission to reproduce figure 3 of ISL Report R 110/82.

Appendix. Flow over a wavy cylindrical wall

In this Appendix the flow over a cylindrical wavy wall as shown in figure 4 is
considered. The flow inside is solved first. Then the flow outside with subsonic and
supersonic velocity will be analysed.

A.1. Supersonic flow inside a cylindrical wavy wall

Let the jet Mach number be M; and the radius of the cylindrical wall be R;. Suppose
the cylindrical surface is deformed radially into a wavy surface with radial
displacement r = esinaz(sinnf or cosnd] where (r,8,x) are the cylindrical coordi-
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nates with the z-axis coinciding with the axis of the cylinder. On starting from the
linearized equations of motion the steady-state equation governing the perturbation
pressure p(r, 0, ) is easily found to be,

op

M}@—-V%JZO. (A 1)

The boundary condition on the wavy wall is

WB_ o o sin nd A2
3 P smax{cos nﬂ}‘ (A 2)
The solution of (A 1) satisfying boundary condition (A 2} is
eap;ut J,(M2—1)ar) | {sinnﬁ}
A Red] 0 = ! ] i Py A 3
plr.z.9) (M?—l)%J;((MJ?—l)faRj)smax cosnf (43)

where J, () is the Bessel function of order =.

A.2. Subsonic flow outside a cylindrical wavy wall

On proceeding as above it is easy to find that the pressure p,(r,6,x) outside a
cylindrical wavy wall at subsonic flow Mach number, M, is given by

(A4)

2 T 1l
po(7, 6, %) = eap,ul K, (1—Miyar) . {smn }’

(A—DEJE,(T—M)faR) " \cosnf
where K, () is the nth order modified Bessel function.

From (A 3) and (A 4) the pressure imbalance at the surface of a wavy cylindrical
vortex-sheet jet is

Ap = po(Rj’ 07 x)—pi(Rj’ 0’ CL‘)
_ [ Pt K, (1—MEEaR)

L —MEK, (1 — M2 aR)
pyuiJ, (MF—1)taR))

J

sin né
YA 1>%aRj)]8m ‘”{eosne}‘ (45)

If & 1s chosen such that the terms inside the square brackets of (A 5) cancel each other
then a wave with arbitrary amplitude ¢ becomes possible. For these a there are
neutral wave modes. The existence of unstable modes is possible but not guaranteed
since the unsteady effects of the flow have not been included in the model.

A.3. Supersonic flow outside a cylindrical wavy wall
For M, > 1 similar consideration as above gives the following expression for the

perturbation pressure .
eap, ul Im{ HYP(M:—1):ar) em} {sin nﬁ}
A2~ 1)F " \HY (M2 — 1)) cosnb)’
where HP() is the nth order Hankel function of the first kind and Im{} = the
imaginary part of. It is straightforward to show that at r = R, the pressure given by

(A 6) cannot balance that of (A 3). Therefore, at supersonic convective Mach
number no neutral waves are possible.

Po(r,0,2) = (A 6)
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