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Resonant instability of ducted free supersonic
mixing layers induced by periodic Mach waves
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It is known that the mixing or spreading rate of free mixing layers decreases with an
increase in the convective Mach number of the flow. At supersonic convective Mach
number the natural rate of mixing of the shear layers is very small. It is believed that
the decrease in mixing rate is directly related to the decrease in the rate of growth
of the instabilities of these flows. In an earlier study (Tam & Hu 1989) it was found
that inside a rectangular channel supersonic free shear layers can support two
families of instability waves and two families of acoustic wave modes. In this paper
the possibility of driving these normal acoustic wave modes into resonant instability
by using a periodic Mach wave system is investigated. The Mach waves can be
generated by wavy walls. By properly choosing the wavelength of the periodic Mach
wave system mutual secular excitation of two selected acoustic wave modes can be
achieved. In undergoing resonant instability, the acoustic modes are locked into
mutual simultaneous forcing. The periodic Mach waves serve as a catalyst without
actually being involved in energy transfer. The resonant instability process is
analysed by the method of multiple scales. Numerical results indicate that by using
wavy walls with an amplitude-to-wavelength ratio of 11% it is possible to obtain a
total spatial growth of e® folds over a distance of ten channel heights. This offers
reasonable promise for mixing enhancement. The results of a parametric study of the
effects of flow Mach numbers, temperature ratio, shear-layer thickness, modal
numbers as well as threc-dimensional effects on the spatial growth rate of the
resonant instability are reported and examined so as to provide basic information
needed for future feasibility analysis.

1. Introduction

Recent investigations by Ikawa & Kubota (1975), Bogdanoff (1983), Papamoschou
& Roshko (1986, 1988) and Chinzei et al. (1986) have established experimentally that
the mixing or spreading rate of supersonic shear layers decreases as the convective
Mach number increases. Papamoschou & Roshko were the first to demonstrate that
there is a strong correlation between their measured spreading rate data (normalized
by the incompressible flow value) and the theoretical maximum growth rate of the
instability waves of the shear layer. Since then the theoretical instability wave
growth curve has been recomputed and its good correlation with the experimental
measurements reconfirmed by Ragab & Wu (1989), Zhuang, Kubota & Dimotakis
(1988), and Jackson & Grosch (1989) using unconfined mixing-layer models. A more
recent calculation by Zhuang, Kubota & Dimotakis (1989) using a shear-layer model
enclosed at the top and bottom by solid walls essentially reproduces similar results.
The implication of these works is that flow instability is the principal mechanism
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Ficure 1. Free shear layer inside a rectangular channel.

responsible for the mixing and spreading of high-speed shear layers. Further, the
decrease in the spreading rate of a supersonic mixing layer is due directly to the
decrease in the growth rate of the inherent instability waves of the flow. In many
practical problems such as shear flows inside the supersonic combustors of jet engines
it is essential to have a large mixing rate. In the light of the recent experimental
results it becomes apparent that the required mixing rate cannot be achieved by the
natural instability and mixing processes. The primary objective of this paper is to
investigate the feasibility of using a new mixing enhancement scheme. This scheme
uses a periodic Mach wave system generated by a slight waviness of the enclosure
surfaces. It will be shown below that the presence of a suitably chosen periodic Mach
wave system induces the natural wave modes of the ducted shear flow to undergo
resonant instability. Numerical results indicate that large enough instability growth
rates can be realized, giving rise to the possibility of achieving a greatly enhanced
rate of mixing.

It is now known that ducted free shear layers behave differently from their
unconfined counterparts at high speeds. When housed inside a rectangular channel
(see figure 1) the motion of a supersonic shear layer is invariably coupled to the
acoustic modes of the duct. This coupled motion was studied recently by a number
of investigators including Zhuang et al. (1989), Greenough et al. (1989), Mack (1989)
and the present authors (Tam & Hu 1989). In our work an extensive search of the
normal wave modes of the coupled motion was carried out. It was found that because
of the coupling to the acoustic modes a thin shear layer which is known to become
neutrally stable at high supersonic convective Mach number (see Miles 1958)
remained unstable in the confined environment. Systematie calculations showed that
for ducted supersonic shear layers there are two basic families of instability waves
(the A and B modes). Each wave mode within each family is characterized by two
integer mode numbers (m, n). The m-number is related to the number of reflections
off the two sidewalls. The n-number is related to the number of reflections off the top
and bottom walls of the channel. For clarity, members of the two families of
instability waves are designated as 4,,, and B,, (m=20,1,2,...; n=1,2,3,...)
respectively. Typical dispersion relations for a few of the lower-order modes of these
instabilities at M, (Mach number of the fast stream) = 3.5 and M, (Mach number of
the slow stream) = 1.2 with sound speed ratio e,/a, = 1.2 are shown in figure 2. For
reference, the growth rates (—k; H, where H is the channel height) of the 4, mode
at different ratios of the shear-layer vorticity thickness to channel height (J,/H) as
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Ficurre 2. Dispersion relations (k, H versus wH/#,) of instability and acoustic wave modes of a
supersonic shear layer inside a rectangular channel. M, =35, M,=12,4a,/2,=12,y, =y, =14,
H =H,=05H, §/H=005. ——, w/k=u,~a,; —x—x—, w/k=4—a,; —————
w/k=1u,+a0,;, —@—@—, w/k=1u,+a,.

functions of the non-dimensional angular frequency are provided in figure 3. It is
readily seen from this figure that in a channel of fixed height the growth rate of the
instability wave decreases rapidly with increase in shear-layer thickness. Over a
reasonably long propagation distance, say ten channel heights, the total ampli-
fication of the instability waves is quite small; insufficient to bring about an
adequate rate of mixing.

In addition to the two families of instability waves, two families of neutral acoustic
modes were also identified (referred to as the C'and D modes). The members of these
two families of waves are also specified by two integer mode numbers (m, n) as in the
case of the unstable waves. Again the m-number is related to the number of
reflections off the sidewalls and the n-number is related to the number of reflec-
tions off the top and bottom walls. Typical dispersion relations of these C,,, and
D,,m=0,1,2,...;n=1,2,3,...) acoustic modes are shown in figure 2. It is to be
noted that although the wavenumbers of the D, modes are negative at low
frequencies they, like the C,,, modes, are downstream-propagating waves (see Tam
& Hu 1989 for details).

We will now outline the basic idea of using a periodic Mach wave system to drive
the natural wave modes of the flow into resonant instability. Since the flow is
supersonic it is easy to introduce a periodic Mach wave system into the channel flow
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Fioure 3. Growth rate of the A4, instability wave at different vorticity thicknesses. M, = 3.5,
M,=12,a,/a,=12,y, =y,=14, H =H,=0.5H.

by making the top and bottom channel walls slightly wavy as shown in figure 4.
Without loss of generality let us consider resonant instability involving a C,,,, wave
and a D, . wave of the same frequency . For illustration, it will be assumed for the
time being that all the waves are one-dimensional (the complete three-dimensional
wave mode analysis is given in §3). The C,,, and D,,,. waves as well as the Mach
waves may be represented mathematically by

Oei(kcz—mt)’ D ei(chz—wt)’ A cos (kM x) — %A(eik""x +e—ikMz)’

where ' and D are the wave amplitudes of the propagating waves and A4 is the
amplitude of the standing periodic Mach waves. k. and k, are the wavenumbers of
the C,,, and D,,,. waves respectively and k,, is the wavenumber of the Mach waves.
Suppose the wavenumber of the Mach waves is chosen so that the resonance
condition

kC_kD=kM (1)

is satisfied. As the C,,, and D,,,. waves propagate downstream through the Mach
wave field they will invariably interact with the periodic wave system (through the
nonlinear terms of the flow equations) giving rise to a set of non-homogeneous terms.
Some of these terms arising from the interaction between the C,,, wave and the Mach
waves have the form

Cei(kcx—wt)A e—ichz — ACei(ka—wt) : (2)

(2) is in the form of a D,,,. wave. Similarly the interaction of the D,,,. wave and the
Mach waves gives rise to product terms of the form,

Dei(knz—wt)A eichz =AD ei(kcx—wt)’ (3)

which is in the form of a C,,, wave. The nonlinear product terms provide a forcing
on the respective waves. Since the forcing functions have the same frequency and
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FicUure 4. Periodic Mach waves generated by wavy walls inside a rectangular channel.

wavelength as the natural wave modes, resonance would occur. In the present
context, the periodic Mach waves act as a catalyst allowing the €', wave to force the
D, wave and vice versa. In this way, as will be shown later, under mutual forcing
the two waves grow exponentially as they propagate downstream, exhibiting the
phenomenon of resonant instability.

It is worthwhile to point out that there are other examples in the literature
involving strong resonances arising from the interaction of wave trains and a
stationary periodic field. However, these resonances do not always lead to
instabilities. Recently Mei and coworkers (Mei 1985; Mei, Hara & Naciri 1988)
studied the resonance between water waves incident on periodic longshore sandbars.
The phenomenon is analogous to Bragg reflection in crystallography. Strong
resonant reflection was found. But there was no instability. On comparing the
resonance mechanisms described by Mei and the above discussion it is noted that
resonant instability could occur when two wave trains with matching wavenumbers
with respect to the stationary periodic field are present. When there is one incident
or forced wave train only resonant reflection could occur. The condition for resonant
reflection is that the difference between the wavenumbers of the incident and the
reflected waves is equal to that of the scatter field.

In §2 of this paper the mean flow profile and the periodic Mach wave field used in
the instability analysis will be discussed. In §3 resonant instability of two normal
wave modes of a ducted shear flow in the presence of a periodic Mach wave system
if analysed using the method of multiple scales (see e.g. Nayfeh 1973). Typical
numerical results are reported in §4. It turns out that the spatial growth rate of the
resonant instability is dependent on a number of factors. They include the Mach
numbers and the temperature ratio of the flow streams, the shear-layer thickness and
the wave modes involved. The results of a parametric study of these effects are
reported in §5. Finally a short discussion of the feasibility of using periodic Mach
waves to induce resonant instability for mixing enhancement is given in the last
section of this paper.

2. Mean flow and the periodic Mach waves

We will consider a two-dimensional shear layer inside a rectangular channel of
height H and width B as shown in figure 1. For simplicity we will assume that the
gases on the two sides of the mixing layer are the same and are inviscid and non-heat
conducting. The fast stream on the top will be labelled by a subscript 1 and the slow
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stream on the bottom will be labelled by a subseript 2. The continuity, momentum
and encrgy equations for such a flow are

p -
2tV o) =0, (4)
v
i =-V
p(at +v Vv) P, (5)
0
§+U-Vp+ypv-v=0, (6)

where 7 is the ratio of the specific heats of the gas. The time-independent solution of
the above system of equations which satisfies the boundary conditions at the walls
of the channel is

v=u(y)é, p=ply). p=p=const, (7)

where €, is the unit vector in the a-direction. In all the numerical work of this paper
the mean velocity and density will be assumed to have hyperbolic tangent profiles.
Specifically we will use

1 2

7= 5[171 +11,+ (1, — ) tanh (;y)] (8)
1 2

p= §|:ﬁl +py+ (py—py) tanh ((S_y)] 9)

In (8) and (9) &, is the vorticity thickness of the shear layer. It is to be noted that
with constant mean pressure the mean temperature distribution is proportional to
the inverse of the density distribution. The hyperbolic tangent velocity profile (8) is
a reasonably good approximation of the velocity profiles measured by Papamoschou
(1986). Up to the present time there is a lack of measured density profiles: the
authors are unable to find any in the literature. The reason for the choice of (9) is its
simplicity but it should be replaced by a more realistic distribution whenever such
information becomes available.

Now consider a periodic Mach wave system generated by a slightly wavy bottom
surface (with wavenumber k,,) of the channel as shown in figure 4. To the right of the
first Mach wave the wavy wall surfaces are given by the formula

Bottom wall Yy = —H2+%Esin (kpr ), (10)
M
Top wall y=H1+2]T;£sin(kMx+¢). (11)
M

It will be assumed that €, the ratio of the maximum vertical displacement of the
bottom wavy wall to the wavelength, is much smaller than 1 (say no more than
1.5%): € being very small provides a natural parameter for perturbation analysis
later. In figure 4 it is implied that the Mach wave system is generated by the bottom
wall. The Mach wave system passes through the shear layer upward to reach the top
wall where, for simplicity, a no-reflection condition is imposed. This is done by an
appropriate choice of the amplitude and phase parameters « and ¢ of (11). In this
way a well-defined periodic Mach wave system, except for the weak reflected wave
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off the shear layer, is imposed on the confined supersonic shear layer. With e € 1 a
linear Mach wave solution will suffice. For clarity, we will use a subscript M to denote
the physical variables associated with the Mach wave system. By linearizing (4)—(6)
it is easy to find that the governing equation for the pressure, p,,, associated with the
Mach wave is

(ﬂ_z_l)asz_pr Ed_ﬂapzu ld_ﬁapM -0 (12)
a? dx? Oyt wdy oy pdy oy

where a = (yp/p)? is the speed of sound. The shear layer as given by (8) and (9) is
effectively confined within the region —d <y < d; ¢ = 34,. Outside this region (12)
can be integrated readily which, together with the boundary condition on the wavy
wall, gives

D, U3 2mea 1
Py = /’(—_}w;_ oF cos by —ky M= y=11)+9) O<y<Hy).  (13)
1
p, Uz 2Me 1
Py = —Zflzil)%cos(kMx—kM(Mz— 1 y+H,) (—Hy,<y<-—9). (14)
2

In addition to the Mach waves give by (14) there is also a weak reflected wave (off
the shear layer) in the lower uniform region. The reflected wave solution is

pR=/)’ecos(chx+kM(M§—1)%y+¢), (15)

where £ and  are as yet unknown constants.

To find the Mach wave solution inside the shear layer one may use (13) as the
starting solution at y =& and integrate equation (12) until y = 0 is reached. To
simplify the integration, the cosine function in (10) can first be written in exponential
form and the exp (ik,, x) and exp (—ik,, x) factors be separated out. Now one uses the
linear combination of (14) and (15) as the starting solution at y = — & and integrates
(12) up to y = 0. Again the x-dependence in the form exp (ik;, x) and exp (—ik,, )
may be first separated out. The solutions are then joined at y = 0. The requirements
of continuity of solution and its first derivative provide four conditions by which the
four unknowns «, ¢, # and ¥ can be determined.

3. Analysis of resonant instability by the method of multiple scales

We will now consider small-amplitude wave disturbances (denoted by a prime)
superimposed on the mean flow and the periodic Mach wave system. Let

p Pl [pu] [P
pl=|P|+|Pul+|? | (16)
v 7 Uy v

mean Mach unsteady
flow waves disturbance

To show the explicit dependence of the Mach waves on the small parameter ¢ we will

define
Pm Pu
Pm|=¢|Pu]. (17)
Uy By,
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The governing equations for the unsteady disturbances can be found easily by
substituting (16) into (4)—(6). To lincar order these equations are

o) _0p AP _o ., . Vo ea . f g oA
5 ﬂ£+v £+pV-v = —¢|by Vo' + 0 -Vpy +p,, V-0'+p'V-0,,], (18)
] av’+ a—v+v dﬁe‘ +Vyp’
Plas T e T8 @y TP
o’ Ov’ da, ,_0by ., du,
=—¢€|py—> ot +pby V' +py +/’Aﬂ dyez+Pv Vi, +pa—= o +P1’Md“yex )
(19)
ap/ _ap' , A ’ ’ A A ’ ’ a ¢
o +u o7 = —¢|by-Vp +0 VP, +vpy, V- '+ yp'V-1,,], (20)

where (u, v, w) are the velocity components in the (2. y, z)-directions. The linearized
boundary conditions on the top, bottom and sidewalls are

1 v’
v = 2mea [cos (kppx+ @) u' ——sin (ky, x+¢)w] at y=H,, (21)
kyy dy
’ , 1 . a'l/'/
v’ = 2ne| cos (ky, 2y’ —-—sin (ky, x) at y=—H,, (22)
kyy oy
w =0 at z=411B. (23)

3.1. Multiple-scale expansion

Anticipating spatial resonant instability that occurs over distances of several
wavelengths we will introduce a slow variable s = ex. With (2, y, 2, 5. ) as independent.
variables (18)—(20) become

' 0" dp
at+ua +v dy

_ap, _au/ A , , A A ’ ’ a 2
= —¢|u " +p¥+vﬂ,-Vp +v ‘VpM+pMV'U +p V'v‘w +0(6 )s (24)

_o op, . v o, du, .
= —elpt 3 + o5 e,t Py +pvw Vo' +p,, @ 6x+pM?: d—ye1+pv -V,
du
+p Md :|+0(€2), (25)

op’ op’ _ , 0 ou’ S e a
5 u£+ypv-v ———eliu£+yp PP Dy VP +0 -V,

+ P V-0 +yp'V- 5M] + 0(e?).  (26)
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We will seek a solution of the above equations in the form of a multiple-scale
expansion with ¢ as the small parameter:

P Po Pr Pa
P =|po|+e|l P |+e2|pe |+.... (27)
v’ v, v, v,

Substitution of (27) into (24)—(26) and boundary conditions (21)—(23) we find upon
partitioning terms according to powers of e the following system of equations:

0 _6 dp ;
Order ¢° §°+ ap°+voa£+pv v, =0, (28a)
% 7%y, 4%,
[at +@ P +vod J+Vp0 0, (28b)
0 0
SR yPV v, = 0, (28¢)
y=H, v,=0, (28d)
y=—H, v,=0, (28¢)
2= +1B, w,=0; (28/)
Ry 9, _9py dp =
Order ¢ o —1+u . +vldy+ﬁv v, =1, (29)
oo, 0, du
Vp, = 30
[at+ - +v1d }+ P, =%, (30)
0 0
%+E%+’ypv v, =K, (31)
y=H, v,=2 ~ L ) Lo,
y=H, v, =2na|cos(kyx+ep)u, For sin (ky z+¢) o | (32)
- _ R eCH
y=—H, v, =2n|cos(ky x)u, sin (ky, x) , (33)
kp Qy
z=2+1B, w,=0. (34)

The non-homogeneous terms I, J;, K, are given by the terms inside the brackets on
the right-hand sides of (24)—(26) with the primed quantities replaced by the order-
€ solution. The order-¢® problem defined by (28a—f) is identical to the small-
amplitude normal mode problem of a two-dimensional mixing layer inside a
rectangular channel (in the absence of the periodic Mach waves). This problem has
been studied and analysed by the present authors (Tam & Hu 1989). It has been
found that there are four families of wave solutions. Two of them, the 4,,, and B,,,
(m=0,1,2,...;2=1,2,3,...) modes, are unstable waves. The other two families, the
C..,and D, modes, are neutral acoustic waves. Typical dispersion relation of these
waves are given in figurc 2.

Let us now consider two waves with the same angular frequency w and m number.
Without loss of generality let them be a C,,, and D,,,. wave. We will denote the
wavenumbers of these waves as k. and k, and identify their eigenfunctions by
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subscripts €' and D respectively. Suppose that these are the waves that we wish to
drive to resonant instability. For this purpose we will choose the wavenumbers of the
Mach wave system, k,,, to satisfy the resonance criterion

ky =ke—kyp. (35)

Because the problem is linear, a linear combination of the (',,, and D, . wave
solutions is also a solution of (28). Thus let

Po pcly.2) oy, 2)
Po|= Au(s)| Pely.2) |elEer=ed 4 4, (s)| Pply. 2) [eltkne—wd) (36)
Uy vy, ?) vply. 2)

In (36) k., kp, and the eigenfunctions are known from the solution of the €® problem.
Aq(s) and Ap(s) are the amplitudes of the (',,, and D,,,. waves. They are functions
of the slow variable s. These wave amplitudes are unknown at this stage. In the
following it will be shown through the mechanism of mutual forcing that they grow
exponentially with s, leading to resonant instability.

3.2. Solvability condition and the growth rate of resonant instability

By substitution of (36) into the non-homogeneous terms of the order-¢ problem it is
easy to find that there are two types of terms which lead directly to spatial resonance.
One group of terms resonates with the D, wave. They come from the product terms
of wave C,,, and the Mach wave system and also the s-derivative terms of the D, ..
wave. The product terms have z-, z- and t-dependence of the form

sin (2mnz/B) sin (2mmnz/B)
or ei(lccz—wt) e ikyr — or ei(k,)zﬂut). (37)
cos (2mmnz/B) cos (2mmz/B)

Another group of terms resonates with the C',,, wave. They come from the product
terms of the 1),,,,- wave and the periodic Mach waves and also the s-derivative terms

of the (’,,, wave. The product terms have x-, z- and {-dependence of the form
sin (2mmnz/B) sin (2mnz/B)
or ei(k,)z—mt) e—iler —_ or ei(k(-z—mt). (38)
cos (2mmnz/B) cos (2mmnz/B)

Taking into account the different types of non-homogeneous terms we will make
use of the linearity of the e-order problem to divide the solution into a linear
combination of several particular solutions. We will label the particular solution
specifically for non-homogeneous terms with z-, z- and ¢-dependence in the form of
(37) by a subscript D (they resonate with the D, wave). Similarly we will label the
particular solution specifically for non-homogeneous terms with »-, z- and i-
dependence in the form of (38) by a subscript € (for resonating with the C',,, wave).
Thus let

P1 pply. s) cos (2nmz/B) Pely. s) cos (2nmz/B)
" Pply. 8) cos (2nmz/B) Dy, s)cos (2rnmz/B)
u, =1 dply.s)cos(2nmz/B) Jet®oz=wt 4 ¥ di.(y,s)cos (2nmz/B) | etkczmed
7y Tply. s) cos (2nmz/B) tc(y, s)cos (2nmz/B)
w, bp(y, 8)sin (2nmz/B) Wely, s)sin (2mmz/B)

+ other particular solutions. (39)
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On substitution of (39) into the ¢-order problem defined by (29)—(34) and separating
out the z-, z- and ¢-dependence, it is straightforward to find that the functions g,, p,,
and &, of (39) are given by the solution of the following non-homogeneous boundary-
value problem :

. v da@ L,
—iplw—1uk,) iy +pbp——+ikppp =1 py.9), (40)
dy
o . dp
—1p(w—uch)vD+dLyD=12D(y,s), (41)
. _ . 2nmy\ .
"IP(“)—ukD)wD_(T)pD = L;p(y, s), (42)
. . .. . db, 2nm ,
—i(w—1kp) pp+yp|ikpip+ Dy Wy | = 1yp(y, ), (43)
dy B
bp,=pp at y==H,, (44)
iy = Pop at y=-—H,. (45)

The non-homogeneous terms I,,, L,p, 1,5, 1,5, B1p and f,, which depend on the ¢°-
order solution are known functions of y. They also depend linearly on A, and
dA,/ds. These functions can be found in a straightforward manner and, therefore,
will not be written out explicitly.

Clearly the above non-homogeneous problem admits the D, wave solution of (36)
as an eigensolution, i.e. p,=py, ¥, =1v, is a solution of the corresponding
homogeneous problem. Thus by the Fredholm alternative theorem there is no
solution to the problem unless the non-homogeneous terms satisfy the solvability
condition. In other words, a bounded periodic solution in z exists only if the
solvability condition is satisfied. By applying appropriate integration by parts it is
easy to find from (40)-(45) that the solvability condition is

i . dpp . [(2nm p dy
I,k +il —D—l(——)l +-—(w—ukpy)l ]__—
J‘_Hz[ 10 ¥pPp 2D dy B 3pPp 7/}3(“’ p)lapPp Blo—aky)?
_ pDﬂ_lD + PDﬁizD —0. (46)
(w—ukp) y=H, (w—ukp) y=—H,

For the acoustic modes considered here, the integrand is regular.
On carrying out the integration of (46) an equation relating the wave amplitudes
Aq(s) and Ap(s) of (36) in the form

dA
,u,l—dS—D+V1AC=0 (47)
is obtained, where w, and v, are constants. Similar consideration for the non-

homogeneous terms of the form of (38) provides an equation relating 4 (s) and 4 ,(s)
in the form

d4
,uzd—sc+ v, Adp=0. (48)

The simultaneous solution of (47) and (48) is

Ac(s) _ Gyl s
[AD(S)]—[Cz:Ie ’ (49)
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where o= i(:li) = o, +i0,. (50)
S¥a

With ¢, > 0 the C,,, and D, - waves will grow exponentially with s. The growth rate

is proportional to €, i.c.

1 dld. 1 did,l

A de ) de T

(51)

Numerical results of o, will be presented in the next section.

We would like to point out that in the above analysis we have chosen a (', and
a D, wave to be the resonant waves. Clearly the choice is quite arbitrary. It can be
waves from any two different wave families or two different modes from the same
wave family. All these possible combinations have been explored in our numerical
calculations. These numerical results will be discussed in the next section.

4. Numerical results

We will adopt the notation C',,,—D,, .. to indicate the family and the mode
numbers of the two waves involved in our resonant instability calculation. The single
most interesting quantity as far as mixing enhancement is concerned is the growth
rate parameter o, H of (51). For a given e, which is the ratio of the maximum height
of the wavy wall to the wavelength, the spatial growth rate of resonant instability
over the distance of one channel height is equal to eo. H. In this section numerical
results of o H for different wave modes under different mixing-layer operating
conditions will be reported. Figure 5 shows a typical set of results. Here the values
of o, H as a function of non-dimensional wave frequency wf /u, for a number of two-
dimensional wave modes arc provided. In the calculation the fast-stream Mach
number, M. was taken to be 3.5 and the slow-stream Mach number, M,, to be 1.2.
The sound speed ratio (a,/a,) was set to be 1.2. In addition, the shear layer has been
assumed to have a vorticity thickness to channel height ratio (8,/H) of 0.05. As can
be seen, o, H varies not only with frequency but also much more strongly with mode
numbers. It appears that the growth rates of the lower-order modes are quite small.
They are, therefore, not likely to be candidates for mixing enhancement purposes.

To provide an estimate of whether the resonant instability mechanism proposed in
this paper is a viable scheme for mixing enhancement we are faced with the problem
of not knowing what is the minimum growth rate required. At the present time, as
far as we know, there is not enough experimental and theoretical understanding to
offer any hint as to what it ought to be. This is not too surprising for even in the
relatively well-researched subject of boundary-layer transition only semi-empirical
criteria are available. One of these criteria which scems to have received general
acceptance is the e®-amplification factor of Smith & Gamberoni (1956) (see also
Reshotko 1976). The suggestion is that as an empirical rule one may assume that
transition takes place after the Tollmien-Schlichting instability waves have
amplified by ¢ folds. In the complete absence of any working formula we will adopt
the same e® amplification factor as a mixing enhancement criterion. We are aware
that this is arbitrary and has no sound justification. We can only hope that a more
rational formula would become available in the future. Now for practical
considerations we will restrict ¢ to no more than 1}% and allow a distance of ten
channel heights for amplification. With these specifications it is casy to find that
o, H must be greater than or equal to 60 in order to produce an ¢®-fold increase in
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Fieure 5. Dependence of resonant instability growth parameter o.H on non-dimensional
frequency wH/u, (spatial growth rate = eo, H) for different wave modes. M, =35, M, =12,
a,/a,=12, H =H, vy, =vy,=14,0,/H=0.05.

amplitude. Therefore, in the following we will be particularly interested in cases for
which the resonant instability growth parameter o, H is greater than or close to 60.

To assess the effectiveness of using resonant instability for mixing enhancement
under different operating conditions a parametric study has been carried out. The
results of this study will now be reported.

4.1. Wave mode effects

Figure 5 provides the dependence of the spatial resonant instability growth
parameter o, H on frequency for a number of Cy, —D,, wave modes. It was pointed
out above that there is latitude in choosing the resonant wave modes. Here several
choices will be examined. Figure 6 illustrates the strong dependence of this
parameter on the modal number and wave family. In figure 6(a) the growth rate
parameter for Cy,—D,, (n =2,3,...,7) wave modes are given. It is clear from this
figure that the resonant instability growth rate is generally smaller when the
difference in the n-numbers of the two wave modes involved is larger. The numerical
results appear to suggest that it is advantageous to keep the n-numbers the same in
the selection of wave modes. Figure 6(b, ¢) shows that resonant instabilities
associated with C,,—B,,, and Cy,—A,, and Dy, —A4,, wave modes are very
ineffective. Based on these results we will limit our consideration to C—D modes in
the rest of this paper.
4.2. Three-dimenstonal wave modes

Numerical values of the spatial resonant instability growth rate parameter typical of
three-dimensional wave modes (m = 1) are shown in figure 7. The mean flow
conditions are the same as in figure 5. By comparing these two figures it is easy to
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Ficure 6. Dependence of resonant instability growth parameter o, H on wave modes.
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Fieure 7. Growth parameter (o, H) for three-dimensional wave modes (m = 1).
M =35M,=12a/a,=12,y,=y,=14,6,/H=005 H =H, B=H.

see that two-dimensional wave modes generally have higher growth rates. Since our
aim is to find conditions with the highest growth rate we will confine our attention
to two-dimensional wave modes.

4.3. Effects of shear-layer thickness

It is well known that the thickness of a mixing layer exerts great influence on the
growth rate of its natural instability waves. An example is given in figure 3. For the
A,, instability wave mode the maximum growth rate decreases by over 50 % as the
thickness increases from 8,/H = 0.05 to 0.2. In fact, it is this tendency of rapid
decrease in growth rate with increase in mixing-layer thickness which effectively
limits the natural mixing rate of shear layers especially at supersonic speeds. Figure
8(a) shows the dependence of the growth rate parameter of resonant instability on
shear-layer thickness at frequency wH/#, = 1.0. Figure 8(b) shows a similar
dependence at wH/@, = 0.4. Contrary to expectation o, H does not seem to be
affected by changes in shear-layer thickness at all. This is true for all the wave modes
we have considered. This result is most useful for estimating the total growth of the
instability since the downstream changes in growth rate can be effectively ignored.

4.4. Effects of Mach number

Our computational study on the spatial growth parameter (o,H) of resonant
instability indicates that it is very much affected by the flow Mach numbers. Figure
9 is a plot of this parameter for the C;—D,, wave modes at a slow-stream Mach
number of 1.2 as the fast-stream Mach number, M,, varies. At low M, the growth
parameter is very large. As M, increases o, H decreases monotonically. For M, greater
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Ficure 8. Effect of mixing-layer thickness on the spatial growth rate parameter o H at a fixed
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Ficure 9. Dependence of spatial growth rate parameter ¢, H on M, for the Cyy— D, wave
modes. M, =12, a,/a, =10, v,=vy,=14.6,/H = 0.05.
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Ficure 10. Influence of flow Mach number on the spatial growth parameter. Cys — D, wave
modes. a, = a,, ¥, =¥, = 1.4, §,/H = 0.05. .oH/a, =1.0; -------- , wH/7, = 0.5.
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Ficure 11. Effect of temperature on spatial growth parameter o, H. Coy — Dy wave modes.
M,=12 vy, =v,= 14 (a) wH/a, = 0.5. (b) wH/@, = 1.0.

than 3.0 there is only a narrow range of frequencies for which o, H is close to 60. In
other words, resonant instability as a mixing enhancement mechanism becomes less
and less effective with increasing Mach numbers. Figure 10 shows the effect of
increasing M, as well as M, at fixed frequencies. As can be seen, at moderate Mach
number M, a small increase in M, can lead to a large reduction in growth rate. Based
on the values of this figure it appears that if the resonant instability mechanism is
to be useful the Mach number of the slow stream must be in the low supersonic range.

4.5. Effects of temperature

Here we consider the effect of heating the slow stream on the growth rate parameter
o, H. Figure 11(a) at oH/u, = 0.5 shows that, regardless of Mach numbers, heating
of the slow stream generally increases o, H. This temperature effect, however,
becomes saturated at high temperature ratio. Figure 11(b) at wH /@, = 1.0 shows
similar trends. At higher frequency it seems that the effect can be realized over a
large range of temperature ratios. Figure 12 shows the effect of heating over the
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Fieure 12. Effect of heating of the slow stream on the spatial growth parameter o H. Cyg—D,
wave modes. M, =35, M,=12, v, =y,= 14,4, =0.05.
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Ficure 13. Spatial growth parameter. Mach waves generated by the top wall.
M =35,M,=12,0,/a,=12,y,=v,=14,8,/H=005 H =H, m=0.
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range of frequency up to wH /%, = 2.0. A careful examination of the computed results
reveals that the growth parameter appears to peak at w/k, = #,—a, As T,/T)
increases (#,—a,) increases also. Therefore, the peak of o, H moves to the right with
increase in T,/7). It is safe to say that heating the slow stream while keeping the
Mach numbers fixed generally makes the resonant instability growth rate increase.
On the other hand, the opposite is true when heating is applied to the fast stream.

To conclude this section we would like to point out that so far it has been assumed
that the Mach wave system is generated by the lower wall (see figure 4) and cancelled
by an appropriate choice of the amplitude and phase of the wavy upper surface. It
is, of course, possible to reverse the role of the top and bottom walls. Figure 13 shows
calculated results for flow conditions identical to those of figure 5 except that the
Mach wave system is generated by the top wall. On comparing figures 5 and 13 it is
seen that the growth rates given in figure 13 is higher than the corresponding values
in figure 5. However, it must be pointed out that for the same ¢ the Mach waves
generated by the top wall are stronger; it being adjacent to the faster stream. With
this in mind it is probably not worthwhile making detailed comparisons between the
two Mach wave arrangements. The important point to note is that there is more than
one way to introduce the periodic Mach wave system.

5. Discussion

In this paper we have demonstrated that it is possible to induce resonant
instability involving two natural wave modes of a supersonic shear layer inside a
rectangular channel by a periodic Mach wave system. The periodic Mach waves do
not supply energy to the resonant waves. They act as catalysts. Their presence allows
the two natural wave modes to exert secular forcing on each other. The simultaneous
mutual forcing gives rise to spatial growth. The spatial growth rate of the resonant
instability can be quite large. To provide an idea of its magnitude, if we take € =
0.015 and o, H = 60 then the growth rate over the distance of a channel height is 0.9.
For comparison, the maximum growth rate of the natural instability wave under
typical flow conditions as given in figure 3 is about 0.5 per channel height (taking
d,/H = 0.08) and becomes much smaller as the thickness of the shear layer increases.
Thus resonant instability is potentially a more powerful mechanism for mixing
enhancement than the excitation of the natural instability waves.

So far one aspect of using the periodic Mach wave system has not been discussed :
the performance loss due to increase in drag. First of all with supersonic flow there
is a wave drag. It is a simple matter to show that the wave drag is proportional to
2, so with small e this loss is relatively small. However, there will also be an added
viscous drag due to the wavy surface. For high-temperature, high-speed flow we do
not have a simple formula for estimating the added viscous drag. We believe that it
is probably of the same order of magnitude as the wave drag. If this is the case the
total drag might not be of great significance overall.
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