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a b s t r a c t

Explicit Runge–Kutta method has been widely used for time-accurate simulations in aeroacoustics and
aerodynamics, partly because of its strong stability properties. However, when dealing with problems
involving irregular geometries or multi-scale phenomena where the grid is often refined in localized
regions, a single global time step size dictated by the smallest grid size based on the explicit stability
condition would inevitably result in excessive computational consumption. A local time stepping strategy
that adopts time step size to the local stability requirement in different grid blocks is an effective way to
reduce the cost of time integration and to increase the overall computational efficiency. In the present
paper, a non-uniform time step (NUTS) explicit Runge–Kutta scheme, previously introduced in the frame-
work of discontinuous Galerkin method, which makes the local time stepping strategy applicable to the
explicit Runge–Kutta family without any interpolation and extrapolation in time, is further extended to
high-order finite difference methods. The stability of non-uniform time step (NUTS) scheme in combina-
tion with high order difference schemes is studied. Numerical experiments are carried out using 1D and
2D acoustic problems for validation of the proposed approach. Computational cost reduction by the
proposed algorithm is also discussed.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

A wide range of aeroacoustic problems concern with the noise
phenomena produced by interactions between the unsteady flows
and embedded solid bodies, including the generation of aerody-
namic sound and its propagation in a large acoustic field. Due to
the great differences in the length scale as well as the magnitude
of the fluid flows and acoustic disturbances, accurate prediction
of these phenomena requires spatial and temporal algorithms of
low dissipation and low dispersion errors [1]. In the past few dec-
ades, optimized high-order finite difference schemes and high-
order time integration have been developed in computational
aeroacoustics (CAA) [1–4,20–22], and shown to be reliable in a
variety of aeroacoustic applications. The development of overset
grid techniques [5,8,6,7] based on high-order interpolation and
extrapolation technique [11,9,10] has made finite difference
schemes capable of dealing with complex problems involving
irregular geometries, where the grids are refined in the immediate
vicinities of the solid body to accurately capture aerodynamic
structures and coarsened in the region far away from the solid
boundaries that would be adequate to resolve the acoustic scale.
However, computational efficiency of high-order explicit time
integration with a single uniform time-step size dictated by the
smallest grid size based on the stability requirement can lead to
excessive computational cost in the application of finite difference
techniques to many practical complex problems in computational
aeroacoustics.

Local time stepping strategy that uses local time-step size for
time marching is one of the effective ways to reduce the overall
computational time for temporal integration, and has attracted
much attentions recently [12,13,16,14,15,17,18]. Some of these
works are based on the multi-step time integration schemes, such
as Adams–Bashforth method, or employ the high-order optimized
interpolation technique for communications between different
time levels. For high-order explicit Runge–Kutta integration
methods (RK), which is popular time integration schemes in aero-
dynamic and aeroacoustic simulations, multirate algorithms has
been introduced for solving the stiff system with the aid of interpo-
lation and the extrapolation in time [15,18]. Recently, a high-order
coupling procedure without interpolation and extrapolation in
time, called non-uniform-time-step explicit Runge–Kutta scheme
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Nomenclature

q density disturbance
u the velocity disturbance in the x direction
v the velocity disturbance in the y direction
p pressure disturbance
�q mean density
�u mean velocity in the x direction
�v mean velocity in the y direction
�p mean pressure
�a mean velocity of sound
Mx Mach number in the x direction
My Mach number in the y direction
ug X component of gust disturbance

vg Y component of gust disturbance
k reduced frequency
c chord length
AOA angle of attack
Dt time step
UðiÞ;ki stage values of RK integration
R amplification matrix
k eigenvalue of amplification matrix
CFL Courant–Friedrichs–Lewy number
S; S� time cost reduction factor
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Fig. 1. Schematics of nonuniform time-step advancing in a nonuniform grid.
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(NUTS-RK) [19], has been developed, making the local time
stepping strategy available for explicit Runge–Kutta methods. In
Ref. [19], linear formulation of the scheme has been proposed for
various explicit RK schemes that are used frequently in CAA, and
has been demonstrated in the framework of discontinuous Galer-
kin (DG) finite element method.

In the present paper, we will further explore the application of
NUTS-RK to typical high-order spatial difference discretization in
CAA, for example, the dispersion-relation-preserving (DRP) finite
difference scheme [1], and discuss some implementational issues
of this application on overlapping grids for aeroacoustic computa-
tions. The numerical algorithm involved is first reviewed in Section
2. In Section 3, the stability of NUTS-RK applied to high-order finite
difference schemes is examined in one space dimension. Section 4
gives the numerical validations carried out in one and two dimen-
sional examples. Finally, Section 5 includes the conclusions.

2. Nonuniform-time-step explicit Runge–Kutta method

The general linear formulation of non-uniform time step
Runge–Kutta scheme, given in Ref. [19], is reviewed briefly at first.
After a spatial discretization by finite difference scheme, the semi-
discretized equation to be advanced in time can be modeled as
follows

@U
@t
¼ FðUÞ ð1Þ

where U denotes the solution at the grid points. A general p-stage
explicit Runge–Kutta integration for advancing solution from
t ¼ tn to t ¼ tn þ Dt can be expressed as follows,

k1 ¼ FðUnÞ;Uð1Þ ¼ Un þ Dta21k1

k2 ¼ FðUð1ÞÞ;Uð2Þ ¼ Un þ Dtða31k1 þ a32k2Þ
� � � � � �
kp�1 ¼ FðUðp�2ÞÞ;Uðp�1Þ ¼ Uð0Þ þ Dt½ap1k1 þ ap2k2 þ � � � þ app�1kp�1�
kp ¼ FðUðp�1ÞÞ

Unþ1 ¼ Un þ Dt
Xp

i¼1

biki

ð2Þ

where Un and Unþ1 indicate the numerical solutions at time level tn

and tnþ1 ¼ tn þ Dt, respectively. Here, UðiÞ and ki are the stage values
for the RK integration.

The exact linear relation between ki and time derivatives @ðiÞU
@tðiÞ

can be found as [19,20]
½K� ¼

k1

k2

�
�
�

kp

2666666664

3777777775
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1 0 0 � � 0
1 c22 0 � � 0
1 c32 c33 � � 0
� � � � � �
� � � � � �
1 cp2 cp3 � � cpp
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PDt
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@t

@2 U
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�
�
�

@p U
@tp

26666666664

37777777775
t¼tn

ð3Þ

where the entries of matrix C are constants and related to the
RK coefficients aij and given in detail in Ref. [19]. This relation
allows the coupling of solutions between blocks employing dif-
ferent local time steps without interpolation and extrapolation
in time.

Now consider the coupling formulas for time stepping in a finite
difference scheme, in two blocks next to each other and with dif-
ferent time step sizes, denoted as Mesh 1 with Dt1 and Mesh 2 with
Dt2 in Fig. 1.

For time stepping in Mesh 1, to advance solution from tn to tnþ1,
using the relation given in (3), the required stage values at t ¼ tn on
grid points inside block 2 can be obtained as

½eK2�t¼tn
¼ CPDt1 BDs2 P�1

Dt2
C�1½K2�t¼tm�1

ð4Þ

where tm�1 < tn and Ds2 ¼ tn � tm�1. Here, a tilde is used to indicate
the k values to be used in the neighboring block. Likewise, for time
stepping in Mesh 2, to advance solution from tm to tmþ1, the
required stage values on the grid points inside block 1 are computed
by

½eK1�t¼tm
¼ CPDt2 BDs1 P�1

Dt1
C�1½K1�t¼tn

ð5Þ



Fig. 2. Schematic of a 1D overset grid for finite difference discretization.
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Fig. 3. Distribution of eigenvalues of the amplification matrix R for LDDRK4-DRP:
(a) uniform time step when CFL ¼ 1:73 and (b) non-uniform time step when
CFL ¼ 1:73.
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Fig. 4. Distribution of eigenvalues of the amplification matrix R for LDDRK5-
DRPðOð4ÞÞ: (a) uniform time step when CFL ¼ 2:14 and (b) non-uniform time step
when CFL ¼ 2:14.

Table 1
Stability limits of 1D LDDRK-DRP.

Stage of LDDRK Non-uniform time step Uniform time step

CFL (by (9)) CFL (numerical) CFL (by (9)) CFL (numerical)

4 1.73 1.74 1.73 1.73
5 2.14 2.14 2.14 2.14
6 1.00 1.01 1.00 1.04

Note: In non-uniform time step, Dt1 : Dt2 ¼ Dx1 : Dx2 ¼ 2 : 1.
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where tn < tm and Ds1 ¼ tm � tn. Matrix BDs appeared in (4) and (5)
is derived from Taylor series expansion of vector ½K�, and the details
can be found in Appendix A.

In practice, the coupling procedures formulated by (4) and (5)
can result in two cases, of which one is synchronous stepping and
the other is nonsynchronous stepping. When the neighboring grid
blocks are to advance from the same time level, i.e., when tn coin-
cides with tm, the coupled integration at the overset grids between
those blocks should be executed synchronously by formula (4) and
(5), where Ds ¼ 0 and BDs is an identity matrix. That means the
coupling procedures should be carried out at each stage of RK inte-
gration. When the neighboring grid blocks is to advance from dif-
ferent time levels, i.e., when tn is different from tm, the coupled
integration described by (4) and (5) needs be executed individually
on the block, which is referred to as nonsynchronous stepping.
When the intermediate stage values are computed by (4) and (5),
no interpolation or extrapolation is necessary.

Once the coupled stage values ~kj are obtained by (4) and (5), the
coupled values eUðjÞ can be computed according to formula (2).
With finite difference discretization on overset grids, only the
coupled values eUðjÞ that are to be interchanged between neighbor-
ing blocks are needed at each stage. That means the coupling pro-
cedures for non-uniform time step RK integration are only
executed on a small number of grid points for spatial interpolation
and not on the entire grid of the computational domain.

3. Stability analysis

In this section, the stability property of the above non-uniform
time step explicit Runge–Kutta scheme combined with a
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Fig. 5. The solution in 1D overset grid: (a) t = 0 and (b) t = 625.

Table 2
The cost reductions by NUTS-RK for cases presented in Section IV.

Examples Case A Case B.1 Case B.2

AOA ¼ 0� AOA ¼ 2�

Sð%Þ 73.8 82.3 74.3 77.4
S�ð%Þ 72.4 75.8 71.6 74.4
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high-order finite difference discretization will be investigated. A
one-dimensional convective equation will be used as the model
equation for our analysis, as follows:

@u
@t
þ a

@u
@x
¼ 0 ð6Þ

The spatial discretization is done by a central difference scheme in a
one dimensional overlapping grid depicted in Fig. 2. The 7-point
DRP scheme will be used as an example. The non-uniform grid con-
sists of two blocks, and both are in turn partitioned uniformly by
X

Y

-100 -50 0 50 100
-100

-50

0

50

100

4

4 4

4

3

3 3

3

2
2

(a)

Fig. 6. 2D overset grid: (a
104 grid points within the block. For each block, 3 points are located
at the other side of the interface between the blocks. As an example,
the spacings of grid points in two blocks satisfy Dx1 : Dx2 ¼ 2 : 1.

Since a 7-point stencil is used in spatial discretization, the val-
ues at the last 3 points of each block in the overlapping area that
are not immediately available have to be found by spatial interpo-
lation for data transfer between the overlapping blocks. Here the
interpolation algorithm suggested in Ref. [11] is adopted. The
periodic boundary condition is assumed at the left and the right
of the computational domain as indicated in Fig. 2. The finite differ-
ence semi-discretization of (6) as described above can be written in
a global-matrix form as follows:

@U
@t
¼ HU ð7Þ

where U is a column vector containing all solutions at grid points. H
is a constant matrix that depends on the specific finite difference
scheme and the spatial interpolation formula.
X

Y

-10 -5 0 5 10
-10

-5

0

5

10

3

2

2 2

2

13

3

3

3

(b)

) whole and (b) local.



X

Y

-100 -50 0 50 100
-100

-50

0

50

100

(a) t = 30
X

Y

-100 -50 0 50 100
-100

-50

0

50

100

(b) t = 60

Fig. 7. Contours of pressure with Mx ¼ 0:5; and My ¼ 0.
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Fig. 8. Contours of density with Mx ¼ 0:5; and My ¼ 0.

170 L. Liu et al. / Computers & Fluids 105 (2014) 166–178
We assume that a uniform CFL number is used in the whole
domain, which leads to time step sizes of two blocks in the current
example as Dt1 : Dt2 ¼ 2 : 1. By applying the explicit RK integration
with non-uniform time steps described in Section 2 to Eq. (7), it is
straightforward to find the amplification matrix R that gives

Unþ1 ¼ RUn ð8Þ

Then the stability of the scheme can be investigated by checking if
the modulus of eigenvalues of R satisfy the condition expressed as

maxðjkijÞ 6 1 ð9Þ

where ki are the eigenvalues of R.
The distribution of eigenvalues of the amplification matrix R for

the non-uniform time step (NUTS) low-dissipation and low-
dispersion Runge–Kutta methods (LDDRK) [20], with DRP spatial
difference scheme, has been computed for this example. Distribu-
tion of eigenvalues is shown in Figs. 3 and 4 for LDDRK4 (4 stages)
and LDDRK5 (5 stages) respectively. The stability limits obtained
analytically by (9) are also compared with the ones found by direct
numerical simulation of the 1D problem and shown in Table 1. The
comparison shows that the stability limits on local CFL number for
non-uniform time steps are almost identical to those for a single
uniform time step, which means the coupling procedures for
non-uniform time-step size preserve the original stability limits
of the LDDRK schemes well.

4. Numerical validation

4.1. One dimensional case

The present algorithm is first validated for a one-dimensional
two-way wave equation, which is described by the equation and
initial condition listed below,
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(a) (b)
Fig. 10. The body-fitted overset grid around airfoil: (a) whole and (b) local.
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@u
@t
þ @v
@x
¼ 0

@v
@t
þ @u
@x
¼ 0; x 2 ½�50;50�

ð10Þ

and

uðx;0Þ ¼ exp � ln 2 x�x0
r0

� �2
� �

; x0 ¼ 0; r0 ¼ 6:0

vðx;0Þ ¼ 0

Eq. (10) is discretized in an overset grid composed of two blocks as
indicated in Fig. 5a, of which the left block starts from x ¼ �53 and
is partitioned by 57 points with a uniform spacing Dx1 ¼ 1:0, and
the right block starts from x ¼ �1:5 and contains 107 points with
a uniform spacing Dx2 ¼ 0:5. The last 3 points on both ends of each
block are calculated by spatial interpolation, and the dashed lines in
Fig. 5 indicate the interface of the blocks. Using the same local CFL
condition, the time step sizes in two blocks satisfy a ratio
Dt1 : Dt2 ¼ 2 : 1. The 4th-order non-uniform time step LDDRK6 (6
stages) scheme is employed for time integration, while the DRP
scheme with high-order interpolation technique is used for spatial
discretization. The initial Gaussian shaped pulse is split into two
that move in opposite directions. By applying the periodic boundary
condition, the two pulses propagate back and forth repeatedly in
the overset grid. Fig. 5b gives the solution at t ¼ 625. For compari-
son, the case is also re-run with a single uniform time step Dt2 (STS)
and shown in Fig. 5b as well. Good agreement is observed.

In order to estimate the computational benefits by the NUTS
algorithm over a single uniform time step method, we define a
time cost reduction factor S as follows

S ¼ 1� Tm

Ts
ð11Þ

where Tm is the computational time by using the NUTS algorithm,
and Ts is the one by using a single uniform time step. Excluding
the cost of overset-point coupling for the moment, the ideal factor
can be estimated as

S ¼ 1� Tm

Ts
¼ 1�

PM
i¼1ðNe;i=DtiÞPM

i¼1Ne;i

� �.
Dtmin

ð12Þ

where Ne;i denotes the number of the grid points in the i-th block
with a local time step size Dti, and Dtmin ¼min16i6MðDtiÞ is the
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smallest of all M blocks of grids. The actual reduction factor can be
obtained by comparing the actual computational time costs as

S� ¼ 1� T�m
T�s

ð13Þ

where a superscript ‘�’ means the quantity in actual computation.
The ideal and the actual cost reduction factors for all the cases stud-
ied in this paper are shown in Table 2. For the test presented in this
section, the reduction reaches S� ¼ 72:4%, and is only slightly lower
than the ideal estimation S ¼ 73:8%.

4.2. Two dimensional case

4.2.1. Acoustic propagation
A two dimensional acoustic pulse is simulated by solving the

linearized Euler equations,

@U
@t
þ @E
@x
þ @F
@y
¼ 0 ð14Þ

where
U ¼

q
u

v
p

26664
37775; E ¼

Mxqþ u

Mxuþ p

Mxv
Mxpþ u

26664
37775; F ¼

Myqþ v
Myu

Myv þ p

Mypþ v

26664
37775

and x 2 ½�100;100�; y 2 ½�100;100�.
In the example, the background flow is uniform with Mx ¼ 0:5

and My ¼ 0, and a 2D Gaussian pulse is excited at t ¼ 0 as

p ¼ exp � ln 2
x2 þ y2

9

� �� �
q ¼ exp � ln 2

x2 þ y2

9

� �� �
þ 0:1 exp � ln 2

ðx� 67Þ2 þ y2

25

 !" #

u ¼ 0:04y exp � ln 2
ðx� 67Þ2 þ y2

25

 !" #

v ¼ �0:04ðx� 67Þ exp � ln 2
ðx� 67Þ2 þ y2

25

 !" #
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Fig. 16. The RMS pressure on airfoil surface and the acoustic intensity, k ¼ 1:0, AOA ¼ 2� .
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Overset grids are used for this problem, as shown in Fig. 6. It
consists of 13 overlapping structured grid blocks, to validate the
coupling and stability of the NUTS schemes presented in the
previous sections. In Fig. 6, each block is shown with a grid spacing
index number. The blocks with the same index number have the
same grid spacing, and those spacings satisfy ratios
D1 : D2 : D3 : D4 ¼ 1 : 2 : 5 : 16, where the smallest one is
D1 ¼ 0:05. The total number of grid points under each block index
is N1 ¼ 2401;N2 ¼ 13;524;N3 ¼ 30;084, and N4 ¼ 65;100,
respectively.

A uniform CFL number is applied throughout the computational
domain, resulting in the non-uniform time steps as
Dt1 : Dt2 : Dt3 : Dt4 ¼ 1 : 2 : 5 : 16. The numerical results at t ¼ 30
and 60 are shown in Fig. 7 for pressure and Fig. 8 for density. For
comparison, the calculation has been repeated with a single time
step (STS) Dt1 for all blocks. Fig. 9 presents the exact and the
numerical solutions along y ¼ 0. Good agreements are observed
in those comparisons. By definitions given in (12) and (13), Com-
putational time reduction by NUTS algorithm reaches 75.8% when
comparing with the cost by STS algorithm, which is slightly lower
than the ideal estimate 82.3%. This implies that the overhead due
to the coupling procedures is not significant in this test problem.
4.2.2. Single airfoil gust response
In this example, the non-uniform time step (NUTS) scheme is

applied to the gust-airfoil interaction problem which is one of
the benchmark problems of the fourth CAA workshop [23] and
involves an irregular geometry. The response of a 12% thickness
Joukowski airfoil to a 2D harmonic vortical gust is considered,
and the upstream velocity distribution is given by

U ¼ U1iþ ea cos½k � ðx� iU1tÞ� ð15Þ

where U1 is the velocity of the free stream, k ¼ ðk1; k2Þ is the corre-
sponding wavenumber vector of the gust, and the amplitude of the
vortex disturbance is determined by e.

Two Joukowski airfoils are considered, of which the first is sym-
metric and with an angle of attack (AOA) 0�, and the other is of the
camber ratio 0.02 and with AOA ¼ 2�. In both cases, the back-
ground flow is calculated by a CFD tool. For small amplitude �,
the acoustic field can be described by the linearized Euler equa-
tions as follows,

@U
@t
þ Ax

@U
@x
þ Ay

@U
@y
þ ðBx þ ByÞU ¼ 0 ð16Þ
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Fig. 17. The RMS pressure on airfoil surface and the acoustic intensity, k ¼ 2:0, AOA ¼ 2� .
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where

U ¼

q
u

v
p

26664
37775; Ax ¼

�u �q 0 0
0 �u 0 1=�q
0 0 �u 0
0 c�q 0 �u

26664
37775; Ay ¼

�v 0 �q 0
0 �v 0 0
0 0 �v 1=�q
0 0 c�q �v

26664
37775;

Bx ¼ @
@x

�u �q 0 0
0 �u 0 0
0 �v 0 0
0 �p 0 c�u

26664
37775; By ¼ @

@y

�v 0 �q 0
0 0 �u 0
0 0 �v 0
0 0 �p c�v

26664
37775:

In the present work, the perturbation variables q; u;v , p are nondi-
mensionalized by �q; �a and �q�a2, respectively. In (15), e ¼ 0:01,
U1 ¼ 0:5, and the wave numbers are chosen to be k1 ¼ k2 ¼ 1:0,
and 2.0 in the test.

A body-fitted overset C-grid used for the simulation is shown in
Fig. 10, where the finest grids are used in the area close to the air-
foil to accurately represent the boundary of the geometry, and the
coarser grids are used in the blocks away from the airfoil. The grid
consists of 36 blocks, on which different time-step sizes are set in
different grid blocks according to their smallest characteristic
length. The distribution of the time steps in the 36 blocks is
illustrated in Fig. 11, where the block index denotes the time steps
that satisfy Dt1 : Dt2 : Dt3 : Dt4 : Dt5 : Dt6 : Dt7 ¼ 1 : 2 : 4 : 6 :

8 : 12 : 16, and Dt1 is 0.001. In the case with AOA ¼ 0�, the grid
points with the smallest time-step size form 3.1% of the total num-
ber of grid points, 98923. In the case of AOA ¼ 2�, they form 2.2% of
the total number of grid points, 155,991.

In order to demonstrate the computational cost reduction by the
present non-uniform time step integration scheme, the tests are
conducted with both the non-uniform time step (NUTS) and single
time step (STS) RK schemes. Fig. 12 gives the mean pressure distri-
bution on airfoil surface and its comparison with the solution given
in Ref. [24]. We note that for the case with AOA ¼ 2�, the mean pres-
sure on the airfoil surface, which is obtained by solving the nonlin-
ear Euler equation, is slight higher than the reference solution,
which was calculated by the potential code FLO36 [24]. The differ-
ence between the background field used in the present calculation
and the one used for the reference solution in Ref. [24] could affect
the acoustic intensity in the near field as reported below.

Fig. 13 shows the contours of the v-velocity component. The
solutions appear to be smooth and without artifacts at block
interfaces. Figs. 14 and 15 give the RMS pressure distribution on
airfoil surface and the scattered acoustic intensity in the near field
calculated on a circle of radius R ¼ c;2c and 4c for the case with
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AOA ¼ 0�. Here c is the chord length of the airfoil. Comparing with
the results by using the single time step method, the results by
using NUTS-RK method show good agreements. Similar results
for the case with AOA ¼ 2� are shown in Figs. 16 and 17. Compar-
isons with the reference solution of [24] are given wherever avail-
able. In all the cases shown, while the results from non-uniform
time step (NUTS) and single time step (STS) schemes match very
closely, differences with the solution given in Ref. [24] are visible.
The deviations are attributed to the differences in the mean flows
used in the calculations as mentioned earlier. The computational
cost reductions are also investigated and listed in Table 2, in which
the computational time is saved by as much as 71% to 74% in actual
computation in the current problem.

5. Conclusions

The application of non-uniform time step (NUTS) explicit
Runge–Kutta scheme is explored for a typical high order finite
difference discretization. The general linear formulation of the cou-
pling procedures are given for the exchange of Runge–Kutta stage
values that are necessary for the finite difference discretization
used in overset grids. Investigation of the stability property reveals
that the coupling procedures maintain the original stability limits
of the optimized 4-, 5- and 6-stage LDDRK schemes based on local
grid sizes. Numerical tests are performed for one and two dimen-
sional acoustic problems. The results illustrate the stability and fea-
sibility of the non-uniform time step RK integration scheme
combined with the DRP scheme. Moreover, the overhead in compu-
tational cost due to the coupling procedure is found to be limited. In
2D tests presented in the paper, the computational time reduction
by the NUTS algorithm is approximately 75%, which is very encour-
aging. Further development of the present algorithm in applications
to other aeroacoustics problems will be reported in the future.

Acknowledgments

This work is supported by Grants from the 973 Program
2012CB720202 and the NSF-DMS-0810946. The authors also
would like to acknowledge the support of the 111 Project
B07009 of China.

Appendix A. The derivation of formula (4) and (5)

In this Appendix, we will show more details about the deriva-
tion of formula (4) and (5) in Section 2.

For linear cases, the Taylor series expansion of fkig at interme-
diate time levels up to order p can be used. Specifically, for Mesh 1
in Fig. 1 we have

~k1jt¼tn
¼ @U
@t
þDs2

@2U
@t2 þ

Ds2
2

2!

@3U
@t3 þ�� �þ

Dsp�1
2

ðp�1Þ!
@pU
@tp þOðDsp

2Þ

~k2jt¼tn
¼ @U

@t
þc22Dt1

@2U
@t2

 !
þDs2

@2U
@t2 þc22Dt1

@3U
@t3

 !

þDs2
2

2!

@3U
@t3 þc22Dt1

@4U
@t4

 !
þ�� �þ Dsp�1

2

ðp�1Þ!
@pU
@tp þ

@ðpþ1ÞU
@tðpþ1Þ

 !
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~kpjt¼tn
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@ðpþ1ÞU
@tðpþ1Þ

 !

þ���þ Dsp�1
2

ðp�1Þ!
@pU
@tp þcp2Dt1

@ðpþ1ÞU
@tðpþ1Þ þ � � �þ cppDtp�1

1
@ð2p�1ÞU
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 !
where cij are related to the Runge–Kutta coefficients aij as given in
Ref. [19].

The relation between f~kig and @iu
@ti

n o
can be found in matrix form

~k1

~k2

�
�
�

~kp

26666666664

37777777775
t¼tn

¼ CPDt1 BDs2

@U
@t

@2U
@t2

�
�
�

@pU
@tp

26666666664

37777777775
t¼tm�1

þ O Dsp
2

	 

ð18Þ

where C and PDt1 are in the same form as given in Section 2, and BDs2

is an upper-triangular matrix of the form

BDs2 ¼

1 b12Ds2 b13Ds2
2 � � b1pDsp�1

2

0 1 b23Ds2 � � b2pDsp�2
2

0 0 1 � � b3pDsp�3
2

� � � � � �
� � � � � �
0 0 0 � � 1

26666666664

37777777775
ð19Þ

where bij are the coefficients of Taylor series expansion given
below:

bij ¼
1

ðj� iÞ!

By (3), formula (4) in Section 2 can be derived with ease.
For Mesh 2 in Fig. 1, the Taylor series expansion of fkig at t ¼ tn

up to order p can be utilized. Thus the relation between f~kigt¼tm

and fkigt¼tn
can be found as formula (5) in the same way.
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