Journal of Sound and Vibration 443 (2019) 198-211

_]Ournal Of Sound and Vibration VIBRATION

journal homepage: www.elsevier.com/locate/jsvi e

Contents lists available at ScienceDirect

JOURNAL OF

SOUND AND

On the use of a Prandtl-Glauert-Lorentz transformation for )

Check for

acoustic scattering by rigid bodies with a uniform flow At

Fang Q. Hu®*, Michelle E. Pizzo ¢, Douglas M. Nark "

2 Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA
b Structural Acoustics Branch, NASA Langley Research Center, Hampton, VA 23681, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 23 December 2017
Revised 28 September 2018
Accepted 26 November 2018
Available online 27 November 2018
Handling Editor: ]. Astley

Keywords:

Acoustic scattering
Boundary condition

Mean flow effects
Space-time transformation

It is well-known that the convective wave equation with a uniform mean flow can be trans-
formed into a standard wave equation without flow by a Prandtl-Glauert-Lorentz type trans-
formation. This paper examines the boundary condition to be used in the transformed coor-
dinates for acoustic scattering by rigid bodies. Recently, based on the energy conservation
equation for acoustic waves propagating in a uniform flow, a new solid wall boundary con-
dition, dubbed the Zero Energy Flux (ZEF) solid surface boundary condition, has been pro-
posed. Instead of the commonly used solid surface boundary condition that the normal acous-
tic velocity be zero, the ZEF condition requires that the acoustic energy flux be zero. In this
paper, we point out that when formulated in the acoustic velocity potential and under the ZEF
boundary condition, the normal derivative of the velocity potential remains to be zero when
computed in the transformed coordinates. As such, numerical methods developed for solving
the standard wave equation can be directly applied to the convective wave equation through a
use of the Prandtl-Glauert-Lorentz transformation. Utilization of the transformation is partic-
ularly beneficial for numerical methods based on the boundary integral formulation because
of the simplified kernel function in the transformed coordinates, for both the time domain
and the frequency domain approaches. Useful relations for applying the transformation are
derived and numerical examples that demonstrate the effectiveness of the transformation
and ZEF boundary condition are presented.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Under the assumption of a uniform mean flow, acoustic wave propagation is governed by the convective wave equation [21].
It has long been known that the convective wave equation can be transformed into the standard wave equation without flow by
using a Prandtl-Glauert type transformation [1,2,4,6,8,9,12,16,18,23,24,27]. The Prandtl-Glauert transformation was originally
made to study the effect of compressibility on the lift of an airfoil where the linearized static velocity potential equation was
transformed into one of incompressible flows [9]. Extension of the Prandtl-Glauert transformation to time-dependent aerody-
namic problems has been made in Refs. [1,16,18,24], which consisted mainly of a combination of Galilean transformation and
Lorentz transformation. For aeroacoustic applications, similar transformations were proposed by Taylor [27] for the study of
wind-tunnel flow effects on sound propagation where the mean flow condition was extended to include steady homeotropic
potential flows at low Mach numbers. In Ref. [7], similarity variables were developed for sound radiation in uniform flows
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based on the so-called Prandtl-Glauert coordinates. In a different approach, a space-time Lorentz transformation was studied
for aeroacoustic problems using Geometric Algebra in Ref. [10]. Use of such transformations in boundary element methodology
was first presented in Ref. [2] for acoustic radiation and scattering by applying Taylor’s transformation to the acoustic perturba-
tion equation for low Mach number flows. More recently, an assessment of the Taylor-Lorentz transformation for the boundary
element method was given in Ref. [17], and an application of the Lorentz transformation to the equivalence source method in
the frequency domain was presented in Ref. [28]. For these historical developments, the transformation with uniform mean
flows discussed in this paper will be referred to as Prandtl-Glauert-Lorentz transformation.

This paper is concerned with the boundary condition to be applied at solid surfaces under the Prandtl-Glauert-Lorentz trans-
formation. While the aforementioned transformations can be used to reduce the convective wave equation into the standard
wave equation, one potential concern has been that the use of the transformation “does not lead to a much simpler boundary-
value problem in the transformed space” when physical boundaries are present [1]. This is understandable, because the bound-
aries are necessarily deformed under the transformation and, consequently, the boundary condition is also expected to be mod-
ified. Consider the usual solid wall boundary condition for acoustic waves which states that the normal velocity, or the normal
derivative of the velocity potential, becomes zero at solid surfaces. As body surfaces are deformed by the transformation, the
surface normal vectors will obviously no longer be the same in the two coordinates, and, as we will show later, application of
the usual solid wall boundary condition would indeed lead to a more complicated normal derivative in transformed coordi-
nates.

Recently, based on the acoustic energy conservation equation, an alternative solid wall boundary condition has been pro-
posed for computing acoustic wave scattering in the presence of a uniform flow [14]. Unlike the commonly applied boundary
condition that the normal velocity of the acoustic wave be zero, the new boundary condition instead requires that the acoustic
energy flux be zero at solid surfaces. The new boundary condition was referred to in Ref. [14] as the Zero Energy Flux (ZEF) condi-
tion. In this paper, we show that an application of the ZEF solid wall boundary condition preserves the usual solid wall boundary
condition of no flow under the Prandtl-Glauert-Lorentz transformation. The simplicity of the boundary condition in the trans-
formed domain should render the Prandtl-Glauert-Lorentz transformation an attractive tool for finding numerical solutions for
scattering by rigid bodies in the presence of flow.

The rest of the paper is organized as follows: A detailed derivation of the generalized Prandtl-Glauert-Lorentz transformation
is presented in Section 2. In Section 3, the solid wall boundary condition to be applied in the transformed coordinates is discussed
and derived. Section 4 works out some useful relations between the solutions in the transformed and the original physical space-
time coordinates. Numerical examples of wave scattering by a solid body are presented in Section 5 that demonstrate the utility
of the Prandtl-Glauert-Lorentz transformation. Section 6 contains the conclusions.

2. Generalized Prandtl-Glauert-Lorentz transformation

In this section, we first present a derivation of the generalized Prandtl-Glauert-Lorentz space-time transformation for mean
flows in a general direction. In the literature, the transformations are often given for the special case where the mean flow
coincides with one of the spatial axes. The current derivation is presented from the point view of transforming the partial
differential equation. The properties of the transformation discussed in this section will also become useful for deriving the
solid wall boundary condition in the next section.

Consider the convective wave equation written as

2
(%+U~V> ¢ -V =qx.y.2.0), (M
where c is the speed of sound, q(x, y, z, t) is a source term, and U is the uniform mean velocity vector defined as
Uy
u=|u,]|. (2)
Us

Here, ¢(x,y,z,t) is the acoustic velocity potential where the acoustic pressure p and acoustic velocity u are related to ¢ as
follows:
o¢
px.y.z.0=—py| - +U-Vo ), u=Ve, 3)
where p, is the mean density. In this study, solution of Eq. (1) is considered in the context of scattering of acoustic waves by
rigid bodies bounded by a surface, or a collection of surfaces, S.
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We look for a linear space-time transformation of the following form,
t' = agt + byx + byy + b3z,
X' = ay X + apy + a5z,
V' = 0y + ayyy + 4532, @
7' = a31x + agyy + a552,

such that Eq. (1) is transformed to the standard wave equation without flow in space coordinates (x',y’,z’) and time t’. Note that,
in the above, the transformation in space is taken to be independent of time. In this way, spatial boundaries in the transformed
domain will remain stationary and independent of time. For convenience of discussion, we denote

a1 G2 453 by
A=|ay; ay ay| and b=|b,|. (5)
a31 43y ds3 by

Then, transformation for the spatial derivatives can be found as follows:

— a - i

0 ot ot
0

3 ~ Z1 (1 0y 043 % ~ | ow ]
ay | TPz %z 92 il 5 | T [b A] o | (6)
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0z 9 9
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A superscript T denotes the transpose of the matrix. Using Eq. (6), it is straight forward to find that the convective wave Eq. (1)
becomes the following in the transformed coordinates:

_i_T _@_
at’ at’
9 Tp)2 T T AT T T AT op
ox' (ag+U'b) (ap+U'D)U'A e b'b b'A ox' —q o
9 [ \|(a+U"b)AU AUUTAT Ab  AAT | J|0®| "
ay’ 9y’
0 9¢
Loz’ | | 07 |

We wish to determine the transformation such that the above is the standard wave equation, namely, we wish to choose ag, b,
and A in Eq. (4) such that

(6o +U')*  (ap+UTB)UTAT| ,[bb B'AT| |0 - 0 o0
_C =
(ap+U"b) AU AUUTAT Ab  AAT

This leads to the following requirements for the transformation defined in Eq. (4):

(ap +UTD)’ = 2b'b =1, 9
(a0 +U78) U7 — 7] a7 <0, (10)
AUUTAT — 2AAT = —2I. (11)
Solving Eqs. (9) and (10) simultaneously for a; and b, we get the following unique solution:
ag=a, b= m (12)
ac
where
M,

a=V1-M?, M=U/c=|M,|, M=|M|=1/M?+M:2+M:. (13)

M;
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The solution of Eq. (11) for A however would not be unique. One solution is that found in the Lorentz transformation in the
theory of special relativity [ 15,28]. For a general velocity vector M, the solution for Ain Eq. (11) is

M2 MM, M;M;
MM, M: M,Ms]|, (14)
M;M; M,M; M3

1 T 1
A=Il+— MM =1+ ———
a(l +a) a(l +a)

where I is the identity matrix.
Hence, the space-time transformation (4) that we sought for stated explicitly is:

t’ =at+ % (M1X+M2y+M3Z) .

’ Ml
=X+ —— (Mx+ M M;z) ,
ooy Mix Moy + Ms2)
(15)
y =y+ M, (M;X + Myy + Msz)
al+a) ! 2 e
gy M (Mx + Myy + M3z)
a(l+a) V! 2 e
or, in vector notation,
1 M-1)
t=at+ —M-r), ¥=Ar=r M, 16
a+ e Mn a(l+a) (16)
where
/
r=|y|, =[y]. (17)
z z
Under such a transformation, the convective wave Eq. (1) becomes the following standard wave equation without flow:
0*d
sz ~ OV =K.y, Z. D), (18)

where ®(x',y’,Z',t') = ¢(x,y,z,t)and QX',y’,Z’,t') = q(x,y,z t) denote, respectively, the solution and source term in trans-
formed coordinates.
It is also easy to find the inverse for transformation (15), as we have conveniently

M2 M;M, M;M;

MM, M5  M,M;|. (19)

M;M; M,M; M3

At=1- L M= L
1+a 1+a
We note that both A and A~! are symmetric matrices. In addition, it can be shown that the following properties are true:

1

AM = EM, A"'M =aM, (20)
and
AAT = %MMT +1, A'[AT] = -MMT +1. 21)

Finally, the inverse transformation for Eq. (15) can be written as follows:

t=ty 1 M-y, r=A"=r - MM (22)
a ac ’ 1+a

We note that the space-time transformation (15) is not exactly the same as the Lorentz transformation in the theory of special
relativity, which would be a transformation between 1’ and a moving frame r” where " = r — Ut.
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3. Boundary condition at solid surfaces

We now consider the problem of scattering by solid surfaces and study a suitable boundary condition to be used in the
transformed coordinates. A commonly applied solid wall boundary condition has been that the normal velocity of the acoustic
wave, or the normal derivative of the velocity potential ¢, be zero. Now as body surfaces are deformed by the space-time
transformation (15), the surface normal vectors will obviously no longer be the same in the two coordinates. Suppose a surface
defined by equation f(x, y,z) = 0in space (x,y, z) is transformed to be F(x',y’,Zz’) = 0inthe (x',y’,Z') coordinates. Then, by Eq.
(6), we have the following relation for their normal directions:

oF o
ox’ 0x

e oF _1a-11T df _ 1T

VE=|5y =[A"] By = [A7"] Vf. (23)
OF o
oz’ 0z

Let n and n’ be respectively the unit normal vectors of the scattering surface in space coordinates (x,y,z) and (x',y’,2'). Then,
we have

_vE _ [
n = IEl T - T
where y is a scalar factor such that n’ is a unit vector.

On the other hand, for the normal derivative of the solution ®(x’,y’, Z/, t’) in the transformed coordinates, by using relations
(20)and (21), we have

’ V'F

[A7"]"n=pla]'n, (24)

A 99
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0P _ e 7| 0P| ra1]| 109 17| 9¢
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= un ( CatM+(MM +) Vo) =u CMnat+(MnM +n") Vo
—ulnve-1m (%% cu. (% _MyDo)\_ d¢
—;4<n Ve CM"(0t+U Vo)) =n on ¢ bt )Mo (25)
where % stands for the material time derivative:
D _9¢ , y.
pe = o UV (26)
and %, as denoted in Eq. (25), will be referred to as the combined normal derivative [14]:
0 _ 0¢ _ M, D¢
op _ 09 P 27
Jn  on c Dt 27

Here, M,, = n-M is the normal component of the uniform mean flow on solid surfaces, which, because of the uniform mean
flow assumption, is not always zero. In fact, M,, is nonzero whenever the assumed constant mean flow is not aligned with the
boundary. Clearly, an application of the usual solid surface boundary condition

[l
i gy
on
does not lead to as simple a boundary condition for ® wherever M, # 0.

In a recent study in Ref. [14], it was shown that, under the uniform mean flow assumption, instead of the usual boundary
condition (28), an alternative Zero Energy Flux (ZEF) boundary condition might be used on solid surfaces:

99
on
That is, the boundary condition is such that the combined normal derivative of ¢ is zero. As we will see later, this condition is
equivalent to the requirement that the acoustic energy flux be zero at solid surfaces. By Eq. (25), the ZEF boundary condition

(29) immediately leads to the following boundary condition in the transformed coordinates:
00
= =0
on’

(28)

=0.

(29)

(30)
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Eq. (30) illustrates that, under the ZEF condition, the normal derivative of the velocity potential remains to be zero when com-
puted in the transformed coordinates, i.e., the solid wall boundary condition of no flow is preserved under the Prandtl-Glauert-
Lorentz transformation. Conversely, Eq. (25) reveals that boundary condition of the form (30) in the transformed coordinates
implies the ZEF condition (29) in the physical coordinates.

Therefore, we have shown that the wave scattering problem under a uniform mean flow assumption can be transformed into
the standard wave Eq. (18) with the standard solid wall boundary condition (30) in the transformed coordinates. Consequently,
methods developed for solving the standard wave equation can be directly applied to the transformed problem. Solutions in the
original physical coordinates (x, y, z) and time t can then be found by applying the inverse transform (22) to the results obtained
in the transformed coordinates.

We point out that the ZEF condition (29) reduces to the usual solid surface condition (28) wherever M,, = 0. The fact that the
two boundary conditions are different is due to the uniform mean flow assumption which is only an approximation to the actual
mean flow when rigid bodies are present. Naturally, as noted in Ref. [14], uniform mean flow assumption would be applicable
only to problems where such a simplification is acceptable or justified, such as a flow over slender bodies. According to Eq. (27),
the difference between the two boundary conditions is proportional to the normal component of the mean flow at the surface
M, and the time derivative of the solution %. Therefore, at low Mach numbers and low frequencies, or when the assumed
mean flow is tangent or nearly tangent to the solid surface, the difference of the two boundary conditions is not expected to be
significant. However, as the analysis in this section has shown, when the ZEF condition is used one of the advantages is that the
boundary condition in the transformed coordinates becomes significantly simplified.

4. Consequences of the Prandtl-Glauert-Lorentz transformation

In this section, we derive some useful relations for carrying out computations in the transformed domain and for transform-
ing the computational results back to the physical domain.

4.1. Transformation of the source term

To solve the transformed Eq. (18), the source term q(x, y, z, t) of Eq. (1) is also to be transformed into the new coordinates.
In this regard, special attention may be needed when transforming point sources defined in delta functions. Consider the case
where the source term is of the following form:

Q(X,% z, t) = W(t)é (r - rO) (31)

where ry is the location of the point source and y(t) is the strength of the source which is assumed to be time dependent. Then,
the source term to be used for Eq. (18) in the transformed coordinates becomes the following:

QY. 72 =y (%tl - iM : r’) 8 (A_1(r’ - r{)))
- (4~ ol

where || A || is the determinant of the spatial transformation matrix A given in Eq. (14) and, consequently, the strength of the
point source in the transformed coordinates is modified. Finding the determinant of A by Eq. (14), it can be shown that the
modification factor is
1

a.

Al = (33)

4.2. Transformation of Green’s functions

Next, we consider the Green’s function for the convective wave Eq. (1). The well-known free-space Green’s function for the
standard wave Eq. (18) in the transformed coordinates defined by
9%G
o~ AV26 =6t - t)sr — 1)) (34)

is the following,
8 (t'—t)—Ir' —rp|/c)

J 4! / /
G(r,t;ry, ty) = P
47c? |r’ - ro‘

(35)

where /. and t, denote, respectively, the source point and initial time for the Green’s function. To transform the above back to
the one in the physical coordinates r and t, using Eq. (16), we note
ﬁz

|r' _rf)‘z = (r—ro) ATA(r—1g) = (r—r,)" (%MMT +I) (r—ro) = =
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where

=\/|M-(r—r0)|2+a2|r—r0|2 (36)

and

1 1 R
6<t’—t6—|r’—r6|/c) = E(S (t—t0+ﬁ (M- (r—ro))——>,

a?c

giving the Green’s function in the physical coordinates for the convective wave Eq. (1) as

6<t—t0+i(M~(r—r0))—%)

(r,t;1p, tp) = = > 37
g 0-to AnclR (37)
where g(r, t; g, ty) satisfies
9 2
(EJ’U'V) g§—V2g=6(t—ty)s (r—ry). (38)

4.3. Transformation of the energy equation
We further consider transformation of the energy equation. The well-known energy equation for the standard wave Eq. (18)

with a homogeneous source term is

OF'

+V .y =0 39
ot J (39)
where

1
2c2

oD |2
ot’

7 =-2ve (40)

|V o + 3t

It is straightforward to find that, when expressed in the original physical coordinates (x, y, z) and time t, we have

U *_104Dg

E a2c2 | ot 2 ot Dt +E (41)
and

f o 10 (1 |06 _ 104D

vir= aat(a2c2 ot| 2ot Dt . (42)
where

_Liypps+ L|Pe|" M-V D 0¢ _1D¢y,

_2|V¢| +2C2 Dt c Dt J=- V¢ - Dt . (43)

By substituting Eqgs. (41) and (42) into Eq. (39), we get the following conservation equation for the convective wave Eq. (1):

OE

—+V- 0, 44

V= (44)
where E and J are as given in Eq. (43). When substituted by the acoustic pressure and velocity, Eq. (44) is equivalent to the
familiar energy equation for acoustic waves in a uniform flow with pyE as the acoustic energy density [19,20,22]. Furthermore,
using Eq. (43), it is easily found that energy flux through a surface of normal n is

o __0¢ (0 M, D¢ ¢ ¢
Jon=- at(an c Dt>_ ot ot (45)

Note that the energy flux is directly proportional to the combined normal derivative of ¢ as defined in Eq. (27). Obviously, the
ZEF boundary condition as stated in Eq. (29) satisfies the requirement thatJ - n = 0 on solid surfaces, i.e., the energy flux being
zero. On the other hand, as noted in Ref. [14], the usual solid surface condition (28) will result in nonzero energy flux wherever
M, is nonzero.
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4.4. Finding acoustic pressure and velocity

To find the acoustic pressure and velocity in the physical space from the velocity potential ® that is computed in the trans-
formed coordinates, we have

oo
ot’
0P
-, (9% . y. = |92 syt r]| 9X
P, y,2,t) = ”°<at+u V¢>— polaSy +U [b A] o0
ay’
0P
| 07/ |
0P
ox!
00 T 00 T aT 00 14 00
=-—po|ay; +Ub T +UA o =—;° W+U~V’<I> (46)
0P
07/
and
Mod .,
H=Vp==—"— +A"VdD 47
u®x,y,z,t)= Ve wcor T (47)

where relations shown in Eqgs. (12) and (20) have been used.

4.5. Transformation of frequency domain solutions

The frequency domain solutions in the two coordinates are also related. Let the frequency domain solution in transformed
space-time coordinates (x',y’, 7z, t") be defined as

o0

oK,y .7, 0" = / oK,y 7, the@ ! dt’. (48)
—00

where a hat indicates the frequency domain solution. Then, using Eq. (15), it follows that

dN.,y.7, o) =a / ) o'y, Z, t’)eiw’“te%(M1X+M2y+"”3z)dt

)
E(M X+May+M3z) ® i at M(M x+May+M32) 7 ,
= (e ac 1 2 3 ¢(X,y, z, t)e dt = qeec 1 2 3 ¢(X,ya zZ,w a)
—00

or, equivalently, for the frequency domain solution in the physical coordinates,

’%(M1X+M2y+M3z)

P y.2,0) = éﬁ(x’,y’,z’,w’)e‘a (49)

where
w=aw (50)

is the relation between the frequencies in the two coordinates.
5. Numerical examples

Given the simplicity of the standard wave equation, it would be advantageous to solve the convective wave Eq. (1) by first
applying the Prandtl-Glauert-Lorentz transformation to Eq. (1) and then transforming the solution back to the physical coordi-
nates. It should be pointed out that a fixed time in t does not lead to a fixed time in t’ when spatial coordinates are varying. For
acoustic problems, however, often only the solutions in frequency domain are of interest. For such cases, the frequency domain
solutions of the transformed and the original space-time coordinates are directly related through the relations developed in Sec.
4.5,

In this section, two numerical examples are presented. In the first example, acoustic scattering of a point source by a parabolic
wing section is solved first in the transformed coordinates and then transformed back to obtain the solution in the original
physical coordinates. In the second example, numerical solution by the ZEF condition under a uniform mean flow assumption is
compared with that by the linearized Euler equations under a potential mean flow assumption.
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5.1. Scattering by a parabolic wing section
We present a numerical example of solving the convective wave equation in the transformed coordinates using a Time

Domain Boundary Element Method (TDBEM) [14]. It is well-known that the standard wave Eq. (18) coupled with solid wall
boundary condition (30) can be converted into a Time Domain Boundary Integral Equation (TDBIE) as follows:

2707, t’)+/aG°(<I>(r', R)+7( 52 15) a‘I’( ! t’))dr’ =1 L__ow,tyar (51)
5 on’ S 2

c v/ R, 1)

where r/ and r’ denote, respectively, the integration variables on the transformed surface S’ and volume source region V! in the
transformed (x,y’,z’) coordinates, and R denotes their distances to the collocation point denoted as ¥, (assumed here to be a
smooth surface point) and f;e is the retarded time:

o _=o  ROLT) _1
R(rs, 5) - |r |a t;e = t/ c - GO R( (52)
s’ S

The boundary element method for Eq. (51) involves an expansion of the unknown function ®(r%,t') in spatial and temporal
basis functions and a solution of the linear algebraic system formed by substituting the expansion into Eq. (51) and forcing
the equation to be satisfied at a set of collocation points, leading to a March-On-in-Time (MOT) scheme. Further details on the
numerical method used for the example are referred to Ref. [14].

To validate the conversion of the convective wave equation by the Prandtl-Glauert-Lorentz transformation and the equiv-
alence of the frequency domain solutions shown in Sec. 4.5, we present a numerical example of sound scattering by a section
of parabolic wing in the presence of a uniform mean flow. The computations are done with and without the Prandtl-Glauert-
Lorentz transformation and the frequency domain results by the two approaches will be compared. The computation without
the Prandtl-Glauert-Lorentz transformation is done by solving the TDBIE derived directly from the convective wave Eq. (1), as
detailed in Ref. [14]. For references, formulation for the direct boundary integral equation in physical coordinates is given in the
Appendix.

The geometry of the scattering surface is that of a convex parabolic wing section. The upper and lower surfaces of the body
are defined as follows:

z=+01L(1-x*/12), -L,<x<L, -L,<y<L, (53)

where L, = L, = 0.5.In this example, the scattering surface is discretized by 8896 unstructured triangular elements and each
is in turn subdivided into three quadrilateral elements, yielding a total of 26688 elements. The source function as it appears in
(1) is a broadband point source defined as the following:

q(r, ) = e 5(r — 1) (54)

where the location of source point ro = (0,0,0.5), and ¢ = 1.42/(6At)%. For the computational results reported below, the
non-dimensional time step is cAt/L, = 0.025. The Mach number of the mean flow is M = (0.5, 0, 0).

In Fig. 1, the geometric setup for computing the scattering of a point source by a section of parabolic wing is shown on the
left in the physical coordinates and an instantaneous pressure contour plot of the TDBEM solution is shown on the right in
the transformed coordinates. As the time domain computation is carried out in the transformed coordinates, the body of the
scatterer is stretched by a factor of 1/« along the direction of the flow according to Eq. (15).

Once the simulation in the time domain is completed, frequency domain solutions can be obtained by an application of FFT
(Fast Fourier Transform) to the solution, or by the following summation for a selected set of frequencies of interest:

iw't!

S, @) = A [@, t)e ™ + o, e £ o, e - - +o, 1y e (55)

where At’ is the time step of the TDBEM scheme applied in the transformed coordinates and N, is the total number of time

steps. Frequency domain solutions in the physical coordinates $(r, ) can be found by applying the inverse transform (22) for
the coordinates and by the relations shown in Sec. 4.5. In Fig. 2, solutions at two frequencies, kL, = 5 and 10 where k = @/c,

are shown for the contours of the real part of $(r, ) on the field points and on the scattering surface. The mean flow effects on
the scattered waves in the physical coordinates are clearly seen.

Moreover, solutions along a field line located aty = 0,z = —2.0 and for —2.0 < x < 2.0 are plotted in Fig. 3 as a function
of x. Also plotted are the solution obtained without using the Prandtl-Glauert-Lorentz transformation, i.e., by solving the time
domain integral equation formulated directly from the convective wave Eq. (1) as discussed in Ref. [14]. Results from the two
approaches are in very good agreement. While the results in Fig. 3 confirm the equivalence of frequency domain solutions by
the two approaches, numerical solution by using the transformed equation is preferred because of the simpler integral kernel
encountered in Eq. (51) as compared to the integral kernel for Eq. (1) as shown in the Appendix. Another advantage in solving
the equation in the transformed coordinates is that the mean flow effect on the wave speeds of the upstream and downstream
propagating waves is avoided. As a result, computational time for the pulse to propagate through the entire computational
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Fig. 1. (a): A schematic of geometrical setup for the scattering surface and location of point source; (b): instantaneous contours of ¢ by TDBEM computed in the transformed
space-time coordinates (x',y’, ', t'). The scattering surface is stretched by a factor of 1/« in the direction of the mean flow.

(a) (b)

Fig. 2. Contours of the frequency domain solution in the physical coordinates (x,y,z, t) transformed back from the results computed in (x',y’,2’,t'). (a) kL, = 5; (b)
kL, = 10, where k = w/c.

domain is shortened compared to the case without the Prandtl-Glauert-Lorentz transformation. For the current example, using
a criterion that numerical simulation is ended when the acoustic pulse has propagated through all the field points and the
magnitude of the solution at all field points is less than 108, the total number of time steps N, used is 775 and 982 respectively
for the computation with and without the Prandtl-Glauert-Lorentz transformation. This is a substantial gain in efficiency for
using the Prandtl-Glauert-Lorentz transformation.

5.2. Scattering by a sphere with potential flow

In the second example, we compare the numerical solution for the scattering of a point source by a solid body obtained under
a uniform mean flow assumption with that under a nonuniform potential flow assumption. Also included in the comparison is
the solution by the conventional solid wall condition under the uniform mean flow assumption, referred to as the zero normal
velocity (ZNV) condition in this section. As pointed out earlier, the ZEF condition differs from the conventional ZNV condition
where M,, # 0, i.e,, when the uniform flow assumption itself does not satisfy the solid surface condition. Of course the two
conditions become the same when M,, = 0 as Eq. (27) shows. A potential flow that does satisfy the solid surface condition
everywhere is a more realistic mean flow to use. By comparing the solutions by both the ZEF and ZNV conditions of uniform
mean flow with that of the nonuniform potential flow, the accuracy and adequacy of the ZEF condition may be assessed. The
solid body is chosen to be a sphere where an analytical expression for the potential flow is readily available. The solution for the
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Fig. 3. Frequency domain solution along a field line located aty = 0,z = —2.0 and for —2.0 < x < 2.0. Plotted are the real part of $ Computations performed by using

the Prandtl-Glauert-Lorentz transformation are shown in lines and without the transformation are in symbols. (a) kL, = 5; (b) kL, = 10, where k = w/c.

scattering by the nonuniform potential flow will be found by solving the linearized Euler equations.
The velocity field of a potential flow past a stationary sphere of radius a and centered at the origin is well-known [3]:

P
UO = V(,bo, (»bO = Uoox <1 + m) (56)
where U = (U, 0, 0) is the external uniform mean flow far away from the sphere. Unlike the simplified uniform mean flow, the
potential mean flow satisfies the solid surface boundary condition everywhere on the sphere. An example of the streamwise
velocity is shown in Fig. 4 (a) for the case of Mach number M = U, /c = 0.2. For the current example, the radius of sphere
a = 0.5 and its diameterd = 2a = 1.

The following linearized Euler equations are solved with a point source of the same form as in (54):

a—"+(u0~v)u+(u~V)uo+le=0 (57)
ot Po
% +Uy - Vp+yPy(V-u)+y(V-Uyp = —poq(r,t) (58)

The mean density p, and mean pressure P, are assumed to be constant, and their relation with the acoustic wave speed is
c=1/YPy/py, v = 1.4.Eqgs. (57) and (58) reduce to the convective wave equation under a uniform mean flow assumption as
given in Egs. (1) and (3). For the current example, the point source is located at ry = (0,0, 1.5).

The Euler equations are solved numerically by a time domain finite difference overset grid method [25]. The computational
domain of [-3,3] x [-3,3] x [—3, 3] is discretized using a Cartesian finite difference grid of spacing Ax = Ay = Az = 0.03

(a)

Fig. 4. Diagrams of the three-dimensional computational domain terminated by Perfectly Match Layers (PML). (a): Contours of streamwise velocity of the potential mean
flow past a sphere of radius a = 0.5, with Mach number U_, /c = 0.2; (b): Converted frequency domain solution, for the real part of p(r, ), of scattering by the sphere for
a point source located at (0,0, 1.5), wd/c = 4z. Dark solid lines indicate locations where solutions are compared in Fig. 5.
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Fig. 5. Directivity plots of D(@) for solutions by the linearized Euler equation (LEE) with nonuniform potential mean flow (symbols), ZEF condition with a uniform mean
flow (solid), and ZNV condition with a uniform mean flow (dash). k = w/candd = 2a.(a)M = 0.1,kd = 4x;(b)M = 0.1,kd = 67;(c)M = 0.2,kd = 4z;(d)M = 0.2,
kd = 67;(e)M = 0.3,kd = 4x; (f)M = 0.3, kd = 6.

and body fitted grid zones based on the spherical coordinates around the sphere, with a total of over 17 million grid points. For
the solution of the Euler equations with the potential mean flow, the usual solid wall condition, i.e., n-u = 0, is applied on the
surface of the sphere. The computational domain is terminated at the non-reflecting far-field boundary by applying the Perfectly
Matched Layer (PML) absorbing boundary condition [13], as illustrated in Fig. 4. Spatial derivatives are approximated by the
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7-point 4th-order central differences (DRP scheme) [26], and time integration is carried out by 4th-order optimized Runge-
Kutta scheme (LDDRK56) [11]. Further details on the overset numerical method are referred to Ref. [25].

Also shown in Fig. 4 (b) is a contour plot of the converted frequency domain solution at wd/c = 4x. The frequency domain
solution is obtained from the time domain solution of the linearized Euler equations by a postprocessing procedure as described
in (55).

In Fig. 5, we present the comparison of the solution computed by the linearized Euler equations with a potential mean
flow and that of the ZEF condition (29) and the ZNV condition (28) with a uniform mean flow both computed by the TDBIE
approach. For the solution of the TDBIE, the surface of the sphere is discretized by 1536 constant elements. While the pressure
in the solution of the linearized Euler equations is computed directly, the pressure by the solution of integral equations for the
acoustics velocity potential is computed using the relation given in (46). The frequency domain pressure p(r, w) of the three
solutions along the four field lines of x = +2.7 and z = +2.7 on the plane y = 0, as indicated in Fig. 4 (b), are plotted in Fig. 5
as polar graphs of non-dimensional directivity functions defined as follows:

Ir|

DO ="

Po(@)

B(r, ) ‘ (59)

where d = 2a is the diameter of the sphere and P,y(w) denotes the reference value taken to be the pressure of the point source
(without the body) at the center of the sphere (0, 0, 0).

The results for three cases of mean flow Mach numbers M = U, /c = 0.1, 0.2, and 0.3 and at two frequencies cwd/c = 4x
and 67 are shown in Fig. 5. The solutions by the nonuniform potential mean flow are shown in symbols, and the solutions by the
uniform mean flow assumption with ZEF and ZNV conditions are shown respectively in solid and dashed lines. Fig. 5 shows that,
while it is expected that the solutions computed under the uniform mean flow assumption will deviate from that computed
using the nonuniform potential mean flow, the solution by the ZEF condition is seen to be closer to that by the potential flow
in this example. At low Mach number and low frequency, the difference between the solutions by the ZEF and ZNV conditions
is relatively small. The difference increases when the Mach number and frequency are increased. This is consistent with the
expression given in (27) which shows that the difference of the two boundary conditions, (28) and (29), is proportional to M,

D¢
and D
6. Conclusions

A study of the solid surface boundary condition to be used under the Prandtl-Glauert-Lorentz transformation for the convec-
tive wave equation has been presented. It has been shown that with an application of the recently proposed ZEF solid surface
condition, the boundary condition that the normal derivative of the velocity potential be zero for the case of no flow remains
so when computed in the transformed coordinates. As such, the solid wall boundary condition of no flow is preserved using
the Prandtl-Glauert-Lorentz transformation with the ZEF condition. This observation points to an attractive alternative for solv-
ing the problem of acoustic scattering by rigid bodies in the presence of a uniform mean flow, particularly for the methods
based on the boundary element methods, because of the simplified kernel function in the transformed coordinates, for both the
time domain and the frequency domain approaches. Numerical examples are also presented that demonstrate the utility of the
Prandtl-Glauert-Lorentz transformation.
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Appendix

In this appendix, we show briefly the integral equation formulation in the physical coordinates. The time domain boundary
integral equation in the physical coordinates for the convective wave Eq. (1) can be written as follows [14]:

- - dp,. - . 0G . R ap, - — o -
27[4)("5, t) - A (GO %(r& tR) - a_ﬁo (»b(rs, tR) + W a_(f(rsa tR)] > drs = q(rsa t) (60)
where q(r., ) is the contribution from the external sources to a surface collocation point denoted as r;:
G E)—l/l (r, Epdr (61)
q S - Cz VS ﬁq s 'R

and
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- _ R 5 2 o 1
tR_t+ﬁ~(r—r)—?, R_\/[M~(r—r)] +a?|r—7l2, and GO_E (62)
in which
U U U M
M==, a=V1-M?, f=————~=——-=—, U=|U, M=|M 63

The combined normal derivative d¢b/dn appearing in (60) is as defined in (27) and the modified normal derivative for G, appear-
ing in (60) is defined as follows:

— =—-M, (M- 4
on on n(M - VGo) (64)
The ZEF boundary condition for ¢ on solid surfaces in physical coordinates is that of (29):

op

~ = O

on

To effectively suppress the well-known instability associated with the exterior scattering problem, a Burton-Miller type refor-
mulation is applied to the integral Eq. (60) [5,14]. The Burton-Miller reformulation involves applying the following operator:

0 0
5 _Cﬁ (65)

to the integral equation (60) to eliminate the non-trivial resonant solutions contained in (60). Further details are referred to Ref.
[14].
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