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On Constructing Stable Perfectly Matched Layers
as an Absorbing Boundary Condition for Euler
Equations

Fang Q. Hu*
Department of Mathematics and Statistics
Old Dominion University, Norfolk, Virginia 23529

In a recent work, a stable Perfectly Matched Layer (PML) formulation has been
proposed for the linearized Euler equations. The new formulation had been derived under
the assumption that the absorption coefficients are constants. In this paper, we present
the derivation of the stable PML equations when the absorption coefficients are spatially
varying. In addition, PML equations for both the two- and three-dimensional linearized
Euler equations will be given. Furthermore, the PML equations are formulated in unsplit
physical variables. Numerical examples that demonstrate the validity and effectiveness

of the proposed equations are presented.

Introduction

For numerical simulations in an infinite or semi-
infinite domain, the physical domain is necessarily
truncated and artificial boundaries are formed. Nu-
merical non-reflecting boundary conditions are needed
at these artificial boundaries to ensure that out-going
disturbances are not reflected. Quite often, non-
reflecting boundaries are the sources of the most signif-
icant numerical errors in a computation. This is espe-
cially true after substantial progresses that have been
made in recent years in the discretization methods,
such as the utilization of high order schemes and un-
structured meshes, as well as the orders-of-magnitude
increase in high-performance computing power.

A variety of non-reflecting boundary conditions have
been developed in the literature to cope with the open
domain problem. The most widely used non-reflecting
boundary conditions for the Euler equations are the
characteristics based inflow and outflow boundary con-
ditions (eg., [1],[2],[3],[4]).- These methods are formed
by a generalization of one-dimensional Euler equations
to the multi-dimensional cases. The use of character-
istics variables is usually straightforward and robust,
especially for schemes with upwinding features. The
drawback of the characteristics based boundary condi-
tions is that the accuracy can be limited. They usually
work the best when the wave is normal to the bound-
ary and their performances can deteriorate when the
wave angles deviate from that of a normal incident.

Another type of widely used non-reflecting bound-
ary conditions is based on the far field asymptotic
solutions (eg., [5],[6],[7],[8]). The governing equations
at the boundary are replaced by suitable forms of
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modified partial differential equations based on the
asymptotic form of the solution at the far field. This
class of methods, when applicable, can be quite ac-
curate. However, because the asymptotic forms are
not always available, it may not be applicable in many
situations. In addition, to implement the asymptotic-
solution-based boundary conditions the computational
boundary is necessarily placed at far field to achieve
the accuracy. This can result in an increase in compu-
tational cost.

A third type of non-reflecting boundary conditions
is the buffer zone technique which is actually a group of
methods based on various buffer zone techniques. For
instances, the computational domain may be extended
to create an extra zone where the numerical solution
is damped by an application of low-pass filters, grid
stretching, numerical damping or a combination of
these techniques (eg., [9],[10]); or the mean flow is ac-
celerated to a supersonic velocity toward the end of
the added buffer domain thus eliminating the need of a
non-reflecting boundary condition (eg., [11],[12]). The
accuracy of these methods depends on the gradualness
in which the various parameters are varied inside the
buffer zone. Moreover, the added buffer zone is usually
required to be of substantial length for the method to
be effective. The increase in computational cost can
be significant.

A recently emerged method of constructing a non-
reflecting boundary condition is based on the Perfectly
Matched Layer (PML) technique.!® In this approach,
like the buffer zone method, extra layers of grids are
added to the non-reflecting boundaries in which the
out-going waves are damped or “absorbed”. A major
difference between the PML technique and the other
buffer zone techniques mentioned earlier is that the
equations to be used in the added region are con-
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structed in such a way that, theoretically, the out-
going waves will not cause any reflection when entering
an PML domain, for any frequency and angle of inci-
dence. Because of this, a PML domain is usually very
effective as an absorbing boundary condition and re-
quires only a small number of grid points to achieve
satisfactory results'4.!®

The Perfectly Matched Layer technique was first
introduced by Berenger!® for absorbing electromag-
netic waves of the Maxwell equations. For the Euler
equations, currently, there are two main PML formu-
lations. The first formulation was given by the author
in [14]. Like Berenger’s original formulation for the
Maxwell equations, it used split variables in the PML
domain, i.e., the velocity, pressure and density were
split into two independent parts according to the spa-
tial derivative terms in the Euler equations in two
space dimensions. The second formulation was given
by Abarbanel, Gottlieb and Hesthaven in [16]. This
formulation did not split the physical variables but, in-
stead, augmented the Euler equations with additional
terms, albeit complicated, so that all waves decay ex-
ponentially inside the PML domain. There are also
other formulations, notably [17] by Turkel and Yefet,
that are aimed at absorbing only the convective acous-
tic waves when the vorticity and entropy waves are not
present.

Unfortunately, both formulations given in [14] and
[16] entail exponentially growing solutions that, if not
suppressed or eliminated by numerical dissipation or
other means, can cause numerical instability in the
PML domain and ruin the numerical solution. In [14],
the instabilities were suppressed by a use of numerical
filtering. In [14], artificial damping terms were added
to the PML equations. The instability waves of the
PML equations formulated in [14] have been studied at
length in [18] by Tam, Auriault and Cambulli. They
analyzed the dispersion relations of the linear waves
and found that the PML equations of [14] have unsta-
ble solutions whenever the mean flow has a component
normal to the PML domain interface. They suggested
a use of artificial selective damping for the suppression
of instability waves since the unstable modes were as-
sociated with high wave numbers.

In addition to the instability issue, there is also
a well-posedness issue for the formulation given in
[14]. The original PML equations constructed by
Berenger,'? for the Maxwell equations, were shown
to be only weakly well-posed by Abarbanel and Got-
tlieb.1® Later, it was shown by Hesthaven®® that the
formulation given in [14] for the Euler equations was
also only weakly well-posed. It was demonstrated that
the PML equations proposed in [13] and [14] could
become ill-posed by certain low order perturbations.
These authors attributed the weakly well-posedness,
in part, to the fact that PML equations in [13] and
[14] were constructed by splitting the physical vari-

ables. This prompted them to construct PML equa-
tions without splitting the physical variables in [16].
However, as mentioned earlier, although the equations
given in [16] were shown to be well-posed, they also
admitted exponentially growing solutions. A close in-
spection of the analysis presented in [16] indicates that
the unstable modes are associated with low wave num-
bers. In this case, exponentially growing solutions can
be found for & = 0 where k is the spatial wave number.

In a recent paper [25], the stability and the well-
posedness issues related to the formulation given in
[14] were investigated. It was found that, in the pres-
ence of a mean flow, there could be acoustic waves
that have a positive group velocity but a negative
phase velocity in the direction of the mean flow and
these waves become actually amplified in the previ-
ous formulation, thus, giving rise to the instability. A
new stable PML formulation that is perfectly matched
to the Euler equations and does not entail exponen-
tially growing solution was presented in [25]. Fur-
thermore, the new formulation was given in unsplit
physical variables after treating the PML methodol-
ogy as a complex change of variables in space (eg.,
[17],21],22],[23],[24])-

The analysis presented in [25] has been carried out
under the assumption that the absorption coefficients
are constants. In this paper, we show that the analysis
presented in [25] can be easily extended to cases where
the absorption coefficients are spatially varying. The
resulted stable PML equations are, however, the same
as those given in [25]. In addition, PML equations
for the three-dimensional Euler equations will also be
derived in this paper. This will again be formulated in
the unsplit physical variables.

The rest of the paper is organized as follows. For
completeness, a brief review of the linear waves and
their dispersion relations supported by the Euler equa-
tions are presented in the next section. We then show
that PML formulation with non-constant absorption
coeflicients can be viewed as a complex change of vari-
ables. After reviewing the cause of the instability
waves for the split PML version, we derive a stable
formulation that is perfectly matched to the Euler
equation and does not entail exponentially growing so-
lutions. Both the two- and three-dimensional Euler
equations will be considered. Finally, numerical ex-
amples are presented to demonstrate the validity and
effectiveness of the proposed equations.

Plane waves of the Euler equations

We consider the linearized Euler equations with a
uniform mean flow in a vector form,

ou ou ou
5 + A% + BO_y =0 (1)

where
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p M 1 0 0
u 0 M 0 1
u=| A=l 0 o M o |- @
p 0 1 0 M
0010
0000
and B = 000 1
0010

Here, p is the density, (u,v) is the velocity vector, p
is the pressure, and M is the Mach number (i.e., the
mean flow non-dimensionalized by the speed of sound).
We also assume that the mean flow is subsonic, i.e.,
M < 1.

It is well known that, when we look for plane waves
of the form ugetk=+ikyy—iwt the Euler equations sup-
port three types of waves, namely, the acoustic, vor-
ticity and entropy waves. In particular, the dispersion
relations of these waves are

(w—Mk;)> =k, — k) =0 (3)

for the acoustic waves and

w— Mk, =0. (4)

for the vorticity and entropy waves.

For convenience of discussion, we will use the dis-
persion relations to express the wave numbers k, and
ky in terms of the frequency w and a wave angle ¢, i.e.,
we have

w sin ¢

w COS ¢
Y 14 Mcos¢ (5)

:1+Mcos¢’

for the acoustics waves and

kz

w _ wtang

kz:M;ky— M (6)

for the vorticity and entropy waves.26 Then the plane
wave solutions of the Euler equations are found to be:
acoustic wave,

and entropy wave,

iw . iwtanx
et a1

=C

SR~
OO =

el ()

p 0

where ¢, ¥ and x are the angles of the wave front
normal vectors of the acoustic (A), vorticity (B) and
entropy (C) waves, respectively. We note that the
wave angles are not assumed to be the same since
the three types of waves are kept independent of each
other.

PML with variable absorption
coefficients

In the PML methodology, absorbing layers are
added to the Euler domain so that the waves of all the
three kinds mentioned above are absorbed without re-
flection (Figure 1). A straight forward extension of the
PML technique originally proposed by Berenger for the
Maxwell equations'® suggests a splitting of the Euler
equations according to the spatial derivative terms.
This results in the following split version of the PML
equations for (1),

6111 all _
8112 Bu _
W + O'yllg + Ba—y = 0, (].].)

where u = u; +u3. 0, and oy are positive absorption
coefficients. The conditions on the absorption coef-
ficients are that o, be independent of y and o, be
independent of z with both being assumed zero in the
interior Euler domain.

In a recent work [25], an analysis of the split PML
equations (10)-(11) has been carried out under the as-
sumption that o, and o, be constants. It was shown
that, for the Euler equation with a mean flow, the split
version (10)-(11) can lead to numerical instability in-
side the PML domain. After an investigation into the
cause of instability, a stable reformulation was found
and given in [25].

In practical computations, especially when a finite
difference scheme is used, o, and o, are often varied

p 1 smoothly inside the PML domain. A common spatial
U cos ¢ ot iweosd gy dusingd y gy variation for the absorption coefficients are of the form
v sin ¢ ’ 5
p 1 M| T =
Oy =0 12
g " | -
vorticity wave,
MY —U g
Oy = 0y D— ’ (13)
p 0 Y
v |l_pgl| ~ sin piga plutenyy ) where x; or y; denotes the locatior.l of an intj\e/z[rface b}e\;—
v cos ’ tween the Euler and PML domain, and o,"and o,
) 0 are the maximum values of o, and o, respectively.
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In addition, D, and D, in (12) and (13) denote the
thickness of the added PML domains in the z and y
directions respectively.

In this paper, we will show that the analysis pre-
sented in [25] can be easily extended to cases where
o, and o, are spatially varying. The resulted stable
PML equations are, however, the same as those given
in [25].

We will begin by re-examining the PML technique
as a complex change of variables for space variables

z and y when o, and o, are non-constant. Let us
consider the split version (10)-(11) in the frequency
domain. By replacing % with —iw, we get
ou
—iwly + o0y + A% 0, (14)
ou
—iwily + oyl1y + Bé)_y =0, (15)

where a tilde indicates the solution in the frequency
domain. Dividing equations (14) and (15) by 1+ 2=
and 1+ “Zj‘ , respectively, and subsequently adding the
two equations, we can get an equation in the unsplit
physical variables,

1 A@u 1 B@

: =0. (16
14+ 0z 149 0y (16)

—iwi +

Thus, if we introduce a complex change of variables
for x and y as

x'=/ (1+ﬂ)dx=x+i/ ozdz (17)
0 w Jo

w
and
v io i [Y
' = 1+ —L)dy = —/ d 1
y /0(+w)y y+w00yy, (18)
then
o __ 1t 9 90 _ 1 9
83:’_14—""72837’ 8y’_1+%8y
and equation (16) becomes
on o1

Here, 0, and o, are assumed to be functions of z and
y respectively. The lower limit of the integrals in (17)
and (18) can be arbitrarily chosen and has been set
to be zero for simplicity. It is easy to see that (19) is
exactly the same as the Euler equations when (1) is
written in the frequency domain and z and y are re-
placed by z' and g, respectively. Therefore, the plane
wave solutions of (19) should be the same as those in
(7)-(9) with z and y being replaced by z' and y'. That

is, the plane waves of (19), and thus the PML equa-
tions (10)-(11), when o, and o, are non-constant, will
be

acoustic wave:

P 1
)
u €os ¢ e 11“11\/;2505 sT— 1+‘I:\cl’scos P f T2 dw
v sin ¢
p 1

iwsin ¢ sin ¢

y )
xeTFMcos Y™ 1+Mcos¢f oydy—iwt

vorticity wave:

p 0
u —siny iwg L %6 de
v cos 1) ool (1)
p 0
xeiu g\z;nqpy_ta;[qp foy oy dy—iwt

and entropy wave:

iwtan x tan x

eTyf 74 f:o’zdzfz'wt (22)

"W e
SO O -

xew 7% foy Jydyfz'wt‘

We note that the wave eigenvectors in (20)-(22) are
the same as those in (7)-(9), while the exponential de-
caying of the waves has been made possible by the
introduction of o, and o,.

Instability of the split PML equations

A close inspection of the acoustic wave in (20) shows
that the solution in (20) can give rise to an instability
in the PML domain. Specifically, let us consider the
exponential expression involving o, in (20),

1+(I:\Zsc?;s¢f ”wdz (23)

Since o, is always positive, the expression in (23) will
be exponentially decaying only if the wave is

right — going and cos¢ > 0
or
left — going and cos¢ < 0

where ¢ is the angle of the wave front normal vector as
defined in (5). Here, the direction of wave propagation
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is determined by the group velocity v, in that a wave
is right-going or left-going if the z-component of the
group velocity is positive or negative, respectively. In
the presence of a mean flow, however, as we will see
below, the group velocity is not always in the same
direction as that of the phase velocity and there now
exist right-going waves with cos¢ < 0.

For the acoustic waves in the Euler equations, the

group velocity, by dispersion relation (3), is
Oow Ow .
\Z (Okz’ 8ky) (M + cos ¢,sin ¢) (24)
where ¢ is as defined in (5) (see, eg., [27],[28]). Ob-
viously, there could be right-going waves where M +
cos ¢ > 0 but cos¢ < 0, as illustrated in Figure 3. For
these waves, therefore, the wave amplitude will actu-
ally be exponentially growing after entering the PML
domain, giving rise to the instability. The unstable
wavenumbers are shown in Figure 4.

On the other hand, for the horizontal y-layers where
o, = 0 no instability will occur, since the y-component
of the group velocity is in the same direction as that
of the phase velocity. In addition, the vorticity and
entropy waves do not concern us because they travel
with the mean flow in the z-direction and will be ex-
ponentially decaying according to (21) and (22).

Stable PML equations in unsplit
physical variables

As we have seen in the previous section, the in-
stability of the split equations (10)-(11) is caused by
the existence of convective acoustic waves that have
a positive group velocity but a negative phase veloc-
ity in the z-direction. Therefore, to construct stable
PML equations, we first use a transformation so that
in the transformed coordinates the acoustic waves of
the Euler equations become non-convective and the
group velocities of all linear waves are in the same
direction as that of the phase velocities. We then ap-
ply the PML technique to the transformed equations.
This technique has been successfully applied in [25]
for constant o, and oy. As we will see, it will work
for variable absorption coefficients as well. Further-
more, although the original PML was implemented in
split variables, the splitting is actually not necessary
and the new PML formulation will be given in unsplit
physical variable.

Following similar transformations used in several
previous works in dealing with the convective wave
equation (see, eg., [5],[16],[17] and [29]), we introduce
new variables Z,7 and t as follows,

_ M
zfc:x,gjzvl—M?y,tzt—kl_sz. (25)

The corresponding transformed wavenumbers and fre-
quency are

M - 1 _
In the transformed variables, the Euler equation (1)
is found to be

M Ou
(” mA> o "

ky =k, +

Aa—l_l+\/1—M2B6—1f =0
OT oy

(27)
where I is the identity matrix. It is also easy to
find that the dispersion relations for (27) in the trans-
formed wavenumbers and frequency are

(Dz

(1_M2)2_ki_k§:0

for the acoustic waves and

W

for the vorticity and entropy waves. As we can see, the
acoustic waves are now non-convective in the trans-
formed variables and, further, the direction of propa-
gation for the vorticity and entropy waves is unaltered.

Now, we apply the PML complex change of vari-
ables (18) to the transformed equation (27). In the
frequency domain, we modify (27) to be

M 1 ou
—iw({I+—=A ) — A — 2
zw(+1_M2 >u+1+z%ﬂ o (28)

. .
V1= M2 g _

1+ 90y

After multiplying (28) by (1 + ‘Z=)(1 + %), we get

M o - -
+(1+ﬂ)A6_ﬁ+(1+ﬂ) 1_M2B6—ﬁ—0 (29)
ooz @ oy

The above can be written back in the time domain by
introducing an auxiliary variable q such that

—=uand q=—

Then, equation (29) in the time domain is

M Ou Ju Jdq
(I + WA) [ﬁ+(Ua;+0'y)u+GzUyq]+A%+UyA%

+ 1-]\/1236—‘_‘+az 1—M2Ba—(} =0.
0y 0y
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Finally, when expressed in the original variables x,y
and t, we get the following new formulation of the
PML equations,

ou ou ou oq dq

A B LAY, BY
ot T or TPy TR TP,

o.M
+(oz +oy)uto0.q+ ﬁA(u+ayq) =0, (30)
dq
“4_ 1
ik (31)

These two equations, (30)-(31), are the same as
those given in [25] and do not entail exponentially
growing solutions. For well-posedness issues3%:3! of the
proposed equations, we refer to the analysis given in
[25].

It is also straight forward to find that the plane wave
solutions to (30)-(31) are

acoustic wave:

P ! ( ¢)
iw cos ¢ M +cos z
u _ C9S¢ eTHMecos 6“7 (1-M2)(1+M cos ¢) J:) oadz
v sin ¢
p 1

(32)

iwsin ¢ sin ¢

Yy .
xeTFMcosd Y= 1FMcos & fo oydy—iwt

vorticity wave:

p 0

u —sin®y oot [, oede
v cos

p 0

33
iw tan tany (Vo . ( )
xe M YT fo oydy—iwt

and entropy wave:

X Jo = (g

SIS I~

Xew;u—% foy oydy—iwt

where ¢, 1 and x are, again, the angles of the wave
front normal vectors. From (32)-(34), we can show
easily that the solutions are perfectly matched at any
vertical interface where o is the same on both sides of
the interface and at any horizontal interface where o
is the same on both sides.!* This includes the inter-
faces between the Euler domain and a PML domain
as well as the interfaces between two PML domains

such as those at the corner layers. When compared
with (20), the acoustic wave in (32) is now absorbed
correctly according to the group velocity. In addition,
the absorption rate in the z-direction is increased by a
factor of 1/(1 — M?). This means that the absorption
rate in the z-direction will be larger than that in the
y-direction if the values of absorption coefficients are
the same.

It is important to note that the auxiliary variable q
is only needed inside the PML domains, because the
spatial derivative % is only required when o, # 0
which only happens inside a horizontal y-layer or a
corner layer and g—;‘ is only required when o, # 0 inside
a vertical z-layer or corner layer. This situation is
illustrated in Figure 1. As a result, we do not need to
know q in the Euler domain. Therefore, q is neither
computed nor stored inside the Euler domain.

Simplified PML equations

We note that at a vertical z-layer or horizontal y-
layer, one of the absorption coefficients is zero and,
accordingly, a simpler form of (30) results. Specifically,
we have these simplified equations:

at a vertical z-layer (o, = 0), we solve

ou ou ou Jq
—+A—+B—+0,B—+0,
5t TAz; TBy, TosBy, Tosut

o.M
1—- M2

Au = 0;

(35)
at a horizontal y-layer (o, = 0), we solve

Ou Ou Ou 0q
— +A—+B— A— =0. 36
ot Tz TPy TovRg, T (36)
In both cases, the equation for q is (31). At a corner
layer, of course, the full version of (30)-(31) should be
used. This situation is depicted in Figure 4.

Three-dimensional PML equations

In this section, we show that the technique used in
deriving the two-dimensional PML equations (30)-(31)
can be easily extended to three-dimensional problems.
Let the three-dimensional linearized Euler Equations
be written in the matrix form

Ou Ou Ou Ou
5 TAg, By, +Cp, =0 (37)

where

>
1]

1
M
0
0
1

cooco g

oRococo
REocoor~o

= O O O
coococo ocoRoo

cocoococo RWE SO

ve}

I
coococo
coococo
co~roO

Q

Il
cocoocoo
cocoococo
—_Oo oo
orRrooOo
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After applying the following transformation to (37 ),

T=x,§=\1—-M?y, z2=+/1—-M z,t—t+ Ve

we get

M
(1+m )—J,-A -H/l—MZB \/1—M2C—:0

To apply the PML technique, we modify the above
equation in the frequency domain as

1 8u
14 = 6.70

A)u—l—

—iu‘)(I+ M
1— M?

,/1_
1+ 31/

Multiplying (38) by (1+2=) (14 222)(1 4 22=), we get

M
(I+

L VI-M

TrEm Bz =0  (38)

(020y + 0,0, +0y0,)u — Eozayazu]

&~

+

H1+ 0+ A + 0+ )0+ )1 MR

(1+7’% Yvy1i-M C—:0 (39)

This can be rewritten in the time domain by intro-
ducing auxiliary variables q; and q2 as shown below.
Thus, the PML equations for the three-dimensional
Euler equations are the following,

5 A T 3y + C&
+(oy + Uz)A% + (0z + UZ)B%—C;I + (00 + ay)c%
+O'yUzA% + O'J;O'ZB%(?; + Uzo'yc%
+H(og+0y+0.)ut (020 + 0,0, +0y0,:)q1 + 0204002
1Uj]]\\442 Alu+ (o) +0.)a1 +0y0.q2] =0 (40)
% =u (41)
% =q (42)

The absorption coefficients o,, o, and o, can be
constants or functions of x, y and z respectively, as
illustrated in Figure 5. Again, it is easy to verify that
the auxiliary variables q; and q, are only required in-
side the added PML domain and need not to be known
inside the Euler domain. Equation (40) can be further
simplified whenever any of the absorption coefficients
is zero. In particular, qa is not needed in any region
where two of the absorption coefficients are zero.

Numerical Examples

To demonstrate the validity and effectiveness of the
PML equations, three numerical examples will be pre-
sented. In all the examples, both the Euler equations
and the PML equations are solved numerically by a fi-
nite difference scheme. Specifically, the spatial deriva-
tives are discretized by a 4th-order 7-point central
difference scheme given in [8] (the DRP scheme), com-
bined with a 5-point boundary closure scheme given
in [32]. The time integration is carried out by a 4th-
order Runge-Kutta scheme that has been optimized for
minimal dissipation and dispersion errors®® (the LD-
DRK56 scheme). Further details of the scheme can be
found in [33] and [34]. Only two-dimensional exam-
ples will be shown in this paper. As mentioned earlier,
the auxiliary variable q is only introduced in the PML
domains and is neither computed nor stored in the in-
terior Euler domain. To verify stability, no numerical
filtering or damping is used in all the computations
reported here.

Since a wide stencil is used in the finite difference
scheme, the absorption coefficients are varied gradu-
ally inside a PML domain. The variations of absorp-
tion coefficients used in the computations are

g y_ylﬂ
D

r — I

O'z:O'm(l—Mz) )

?

(43)
where x; or y; denotes the location where the PML
domain starts, and D is the width of the PML domain.
A factor of 1 — M? has been included in o, so that the
absorption rates remain the same in both the z and y
directions. Values of o,, Az = 2, where Az is the grid
size, and 8 = 2 are used for all the computations.

At the end of the PML domain, no special boundary
condition is needed except those that are necessary to
maintain the numerical stability of the scheme. Ac-
cording to the characteristics of (30)-(31), for a sub-
sonic mean flow, we should specify three boundary
conditions at the left side of the computational do-
main and one boundary condition each at the other
three sides. For the results reported here, we apply
these simple boundary conditions at end points of the
PML domains,

) Uy:Um‘

at = Xmaz, ¥ = Ymin and y = Ypes : p =10,

at inflow z=Xm:p=p=v=20,

in which [Xmin, Xmaz] X [Yimin, Ymaz] denotes the en-
tire computational domain as indicated in Figure 1.
Other forms of characteristics based boundary condi-
tions are equally applicable. Alternatively, it is also
possible to apply periodic boundary conditions since
the numerical solution decays exponentially toward all
the boundaries.
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Acoustic pulse inside a duct

In this example, we simulate the propagation of an
acoustic pulse inside a duct in the presence of a mean
flow of Mach number M = 0.8. The computational
domain is [—110,110] x [—50, 50] where solid walls are
located at y = £50. A uniform grid of Az = Ay =1
has been used. Two PML domains of thickness 10Ax
are included at either end of the open duct. The acous-
tic pulse is initiated at ¢ = 0 by the initial condition:

o _ —(In2) (2+50)2 44>
p=u=v=0,p=e G

Figure 6 shows the pressure contours inside the duct
at t = 20,60,110,150 and 200. As the acoustic pulse
is convected downstream, it is reflected by the duct
walls. However, no visible reflection from the open
boundary is detected. This shows that the PML can
be an effective non-reflecting boundary for duct acous-
tics without assuming any specific modal form of the
acoustics waves.

Acoustic source

In the second example, we solve the Euler equations
with the following source term added to the equation
for the pressure:

2 2
P(x,y,t) = sin(Qt)e~(n2) =5

The frequency of the source is 2 = 0.037 and the mean
flow Mach number is M = 0.8. Due to the mean flow,
the acoustic wave has a larger wavelength at down-
stream boundary than that at the upstream bound-
ary. The Euler domain is [—100,100] x [-100,100].
The source is located at (z,y) = (—20,0). Figure 7
shows the pressure contours of the numerical solution
at t = 600. The PML domains for this calculation have
a width D = 10Az. The calculated pressure as a func-
tion of time at two chosen locations, (z,y) = (100, 10)
and (—100,10), is plotted in Figure 8. Also plotted
are the reference solution computed using a larger do-
main. Excellent agreement is found. This example
shows that PML equations can be effective for absorb-
ing long waves as well as short waves.

Vorticity source

In the third example, we simulate the convection
of vorticity waves generated by a vortex source. To
simulate the vortex generator, the following vorticity
source terms are added to the Euler equations (1),

(2450)2 +y2
—(In 2)%

U(z,y,t) = —sin(Qt)ye (44)

(2+50)2 +42
—(In2) e

V(z,y,t) = sin(Qt)(z + 50)e (45)

where U(z,y,t) and V(z,y,t) are added to the right
hand sides of » and v momentum equations respec-
tively. Figure 9 shows the v velocity contours of the

generated vorticity waves and their exit through the
computational domain. While the vortices are ab-
sorbed inside the PML domain, no visible reflection
is detected. Thus, the proposed PML equations offer
an attractive way to construct an effective absorbing
boundary condition for the linearized Euler equations.

Conclusions

A stable Perfectly Matched Layer formulation has
been derived for the linearized Euler equations in two
and three space dimensions. The derivation has been
carried out under the assumption that the absorption
coefficients may be spatially varying. The new formu-
lation is also given in unsplit physical variables, which
should facilitate its implementation in many practi-
cal schemes. Numerical examples indicate that the
proposed PML equations can be used as an effective
absorbing boundary condition.
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0,20 X Y ax 0,20
Y min Y y
X min X max
Figure 1. Illustration of a computational domain

combining the Euler and PML domains. Solid arrowed
lines indicate the domains where dq/0y is needed
and dashed arrowed lines indicate the domains where
0q/0x is needed.

@ (b)

Figure 2. A schematic drawing showing the re-
lation between the wave front normal vector vy =
(cos ¢,sin @) and the group velocity v, of the acoustic
wave in the presence of a mean flow of Mach num-
ber M. (a) A right-going wave with cos¢ > 0; (b) a
right-going wave with cos ¢ < 0

Z

Figure 3. Shaded are the wavenumbers of the acous-
tic waves that will be amplified when they enter the
PML domain.
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Solve (36) and (31)

/

/

horizontal y—layer layer

Solve (30) and (31)

corner =

Solve (35) and (31)

Euler domain

JOAR[—X [BONIIA

Figure 4. An illustration of simplified PML equa-
tions for different layers.

Figure 5. A schematic of PML configuration in three
space dimensions. The arrows indicate the direction of
increase in the value of the absorption coefficients.

(a) Pressure Contours, M=0.5, t=20

-100 50 0 50 100

(b) Pressure Contours, M=0.5, t=60
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-20

(d) Pressure Contours, M=0.5, t=150

———

——

-20

-100 50 0 50 100

Figure 6 (a)-(e). Propagation of an acoustic pulse
inside a duct with solid walls. M = 0.8, D = 10Ax.

100 f2

50

100 ¢
A

Figure 7. Contours of the pressure p at levels £0.1,
+0.05, +£0.01, £0.005 and +£0.001. M = 0.8, D =
10Az. t = 600.
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(a) Velocity (v) Contours, M=0.8, t=100
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Figure 8. Pressure as a function of time at two se- w0 (c) Velocity (v) Contours, M=0.8, t=350

lected points. (a) (z,y) = (100,10) and (b) (z,y) =
(—100,10). M = 0.8. D = 10Az; —— PML solution; !
circles, reference solution. 20

-20

-40
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Figure 9 (a)-(c). Propagation of vorticity waves
generated by source terms given in (44) and (45).
M =08, D = 10Az.
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