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The eigenvalue problem for spatially propagating waves in a discontinuous Galerkin scheme
is formulated for a system of two dimensional hyperbolic equations. Both the quadrilateral and
triangular elements are considered. The numerical dispersion and numerical damping errors are
calculated for various orders of the basis functions and directions of wave propagation. Spatial
propagation properties of the physical as well as non-physical numerical modes are studied. In
addition, numerical reflections at an interface of triangular and quadrilateral elements are found
and reflection coefficients are estimated. Examples of direct numerical simulations that verify
some of the theoretical properties found in this paper are presented.

Introduction

Recently, the discontinuous Galerkin formulation of the
finite element method has been increasingly used in com-
putational aeroacoustics (CAA) and computational elec-
tromagnetics (CEM) [1-4]. Compared to finite difference
schemes, finite element methods have an advantage in han-
dling complex geometries in practical and realistic prob-
lems. In most traditional finite element methods for hy-
perbolic systems, nodal based continuous basis functions
are used [5-6]. As a result, inversion of a global mass ma-
trix becomes necessary at each time step. Although the
mass matrix is usually sparse, its inversion often makes
the numerical implementation non-compact and creates
difficulties when high order basis functions are used. The
utilization of high order basis functions has been shown
to be more efficient in reducing the numerical dispersion
and numerical damping errors in finite element methods
[6]. In the discontinuous Galerkin formulation, on the
other hand, there is no need to invert a global matrix (see
reference [1] for a recent review and the references cited
therein). This makes the implementation of the discontin-
uous Galerkin method compact and more efficient for time
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dependent problems. In addition, high order basis func-
tions can be used easily without any essential difficulty
and even spectral accuracy becomes obtainable.

When partial differential equations in aeroacoustics prob-
lems are solved computationally, the numerical dispersion
relation and the discrete eigenfunction are, inevitably, not
exactly the same as their physical counter parts. It is
important to analyze this discrepancy and to understand
its consequences in computing the acoustic waves [4, 7-
9]. In reference [4], a study on spatially propagating
waves in a one-dimensional hyperbolic system has been
presented. Some of previous works on the Fourier analy-
sis by other researchers were also reviewed in [4]. Tt was
shown, analytically, that the numerical dispersion relation
in a discontinuous Galerkin method is locally accurate to
the optimal order 2p+2, where p is the highest order of the
basis polynomials. Furthermore, for each physical mode,
there is only one spurious non-physical mode. As a result,
numerical reflections at a grid discontinuity, when they
occur, are always in the form of the spurious non-physical
mode and are highly damped.

In the present paper, the one dimensional study presented
in [4] is extended to a system of two dimensional equa-
tions. The acoustic wave equation will be discretized using
triangular, quadrilateral or a hybrid of these two types
of elements. As we will see, the super-accuracy in the
numerical dispersion relation is found to be true for two-
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dimensional waves as well. A methodology of comparing
the discrete and exact eigenfunctions will be presented.
The discrete eigenfunctions are found to be accurate to a
global order of p+ 1 in a uniform grid. The results on the
numerical eigensolutions are then applied to study numeri-
cal reflections at a grid discontinuity caused by a change in
element topography. Here, a significant difference between
the one- and two-dimensional waves occurs in that the
numerically reflected waves in a two-dimensional problem
can be in the form of the physical as well as the spuri-
ous non-physical modes. However, it will be shown that
the amplitudes of reflected waves at the grid discontinuity
decrease very rapidly as the mesh size decreases.

In the next section, the discontinuous Galerkin formu-
lation for a linear two-dimensional hyperbolic system is
briefly outlined. Then a Fourier analysis of the scheme
in a uniform square or triangular grid is presented. The
emphasis will be on the spatially propagating waves. By
using the results of the uniform grids, numerical wave re-
flections at an interface of two different types of elements
will be analyzed. Direct numerical simulation results that
verify the theoretical findings will also be presented.

Discontinuous Galerkin formulation

Consider the discontinuous Galerkin method for a system
of hyperbolic equations in two space dimensions x = (,y):

ou

SV F) =0 (1)

where u is a vector of dimension N, F = (fi,f;) is the
flux vector and V = (Z, 8%). Let the spatial domain be
partitioned into elements €, i.e., 2 = (i Qx. Within
each element, the numerical solution, denoted by uy, is

approximated by an expansion in the basis polynomials as

L
llh(X, t) = Z Cy (t)¢€ (X)a (2)
=1

where {¢¢(x),£=1,2,..,L} is the set of the basis poly-
nomials and ¢,(t) is the expansion coefficient. For sim-
plicity, the basis functions are chosen to be of the form
{z*yP|0 < a + B < p}, where p is the highest order of the
polynomials. Thus,

L= %(p+ 1)(p+2).

We require that when (2) is substituted into (1), the resid-
ual is orthogonal to the basis functions, i.e.,

/QK (% +V 'F(u)) $¢(x)dx = 0

for £ =1,2,..., L. By a use of integration by parts, we get
the following weak formulation,

0e(x) %dx + ¢e(x)(n - F)ds

QK l_‘K

- Ve(x)-Fdx =0
Qg

(3)

where I'x denotes the edge of Qx and n = (n1,ns) is the
outward normal. Equation (3) gives a system of ordinary
differential equations for the expansion coefficients c,(t).
It is to be noted that the numerical solution is not re-
quired to be continuous across any interface between two
elements. Instead, inter-element coupling is accomplished
through the normal flux vector in the edge integral in (3).
In this way, high order basis functions can be easily ap-
plied and the numerical implementation becomes compact
[1-2].

We will only consider linear equations and assume that
the flux vector is of the form

F(u) = (Aju, Aszu) (4)

where A; and A, are constant NV x N matrices. To reflect
the properties of the Euler equations, we further assume
that A; and A, are not simultaneously diagonalizable.
Moreover, we denote the normal flux Jacobian matrix by

An = ’I’L1A1 + ngAQ. (5)

As noted earlier, since we do not require that the numeri-
cal solution be continuous across the interface of any two
elements, the normal flux n - F appearing in the edge in-
tegral in (3) is not uniquely determined. To complete the
formulation, a numerical flux formula needs to be speci-
fied. As in reference [4], we will consider two commonly
used flux formulas, namely, the characteristics splitting
flux formula and the Lax-Friedrichs flux formula. For con-
venience of discussion, let u;f and u, denote the values of
uy, on the edge of an element evaluated using numerical
solutions inside and outside of that element respectively.
For the characteristics splitting flux formula, the normal
flux on the edge is computed as

(6)

where A, is that given in (5). For the Lax-Friedrichs flux
formula, the normal flux is computed as

1 1
n-F= §An(u7{ +uy) — §|An|(ug —u})

1 _ 1 _
n-F= §An(uz +u,) - §|amaz|(“h - uZ) (7)

2 oF 11
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where a,,,, is the largest (in absolute value) eigenvalue
of A,. It is easy to see that both flux formulas can be
conveniently written in the form of

n-F=Ajul +A_u, (8)
where

1 1
A =5(An+|Au]) and A = 2 (An — A4

for the characteristics splitting flux formula and
1 1
A, = E(A" + |@maz|In) and A = E(A" — |@maz|IN)

for the Lax-Friedrichs flux formula. Here Iy denotes the
N x N identity matrix

Quadrilateral elements

Consider a discretization with uniformly distributed
quadrilateral elements. For simplicity, the elements will
be taken to be squares with each side of length h. The
analysis lends itself easily to more general quadrilateral
elements. In addition, we introduce element indices n and
m in the z and y directions respectively and denote each
element by (2,,,, and its four boundaries r£§2n, 1=1,2,3,4,
as shown in Figure 1. Using (8) for the normal flux, the
weak formulation (3) can be written as

aunm -
/Q de(x) =gy —dx+ /F o, A+ AW ds

+ [, 9 AL W™ + A ™ ds
IS

+ ® ¢g(x)(Af)u’,}m + A@uZerl)ds
Iam

+ de(x) (AP + AW 1™y s

(4)

d(f)g / d(f)g
- 9P A jul™mdx — 99 A pul™mdx =
/Qm Ir 1up™dx o dy qup™dx =0 (9)

for £ =1,2,..., L, where superscripts (1) — (4) indicate the By substituting (

specific edge of the element.

To look for wave-like solutions supported by (9), we as-
sume periodicity in time with a frequency w and let

up™(z,y,t) = e “rap™ (o, y), (10)
where

3 oF 11

€]
@ Qpm (2 h
€]

h

Figure 1 A schematic of partitioning of the computa-
tional domain in quadrilateral elements. Here, n and
m are the indices of the element and the number inside
the parentheses indicates the ordering of the element
edges.

L
W (z,y) = > & pu(x,y).

=1

The coefficients ¢} are now independent of ¢.

For convenience of discussion, define vectors
Cnm —

and

b
tﬁ

Then, using the Kronecker product ®(see reference [4] for
definition), the solution in (11) can be expressed as follows,

" = (PT @ Iy)C™™. (12)

10) into (9), we get a linear system for

the expansion coefficients C™™ as follows:

Z.W(Q®IN)(A3"7”+(B(l)(X)ASLl))CAlnm.|_(]3’(1)®A(71))Cnm—1

+(B(2) ® Af))cnm + (B’(2) ® A(_2))Cn+1m

+B® g AP)C™ 1 (B'®) g AD)Ermtt
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+(B(4) ® Agil))cnm + (BI(4) ® A(_‘l))én—lm

—(Q. ® A)C™™ — (Q, ® Ay)C"™ =0

where Q is the mass matrix, Q, and Q, are the “stiffness”
matrices, and B and B'(Y) are obtained from the edge
integrals for solutions inside and outside of the element
respectively. The detailed definitions of these matrices are
given in the Appendix.

(13)

Equation (13) can be written more intuitively as

_inCnm + H(O)Cnm + H(l)énm—l + H(2)Cn+1m

+HO®CrmH L gOCrIm = (14)

where

4
Q=Qely, H? =Y BOgAY -Q,0A,-Q,0A.,

i=1

and H? = B @ AD ;=123 4.

Since we have a uniform distribution of elements, the co-
efficient matrices in (14) are independent of the element
indices n and m. We seek solutions of the form

Cm = NP C (15)
where C is independent of the element indices n and m.
Substituting (15) into (14), we get a homogeneous system
for C:

_ o~ ~ 1 ~ ~
—iwQC+HOC + /\—H(l)C +MH?C
2

+XHOIC + %H(‘*)C =0. (16)
1

We note that the values of A and Ay are related to
wavenumbers k; and ks, respectively, by expressions

AL = eifih A, = gikah
, .

(17)
To study the spatially propagating waves, we solve for
A1 and C as the eigenvalue and eigenvector for given w
and Ag. Specifically, when ks is chosen to be of the form
ko = wsin @, the resulting eigensolution will approximate
a plane wave of angle §. The corresponding discrete eigen-
function is constructed according to (10) and (11). The
details are omitted here.

Triangular elements

We now consider the eigenvalue problem when the spatial
domain is partitioned by triangular elements. We assume
that the triangulation is spatially periodic with triangles
of types (a) and (b) being repeated in the z and y direc-
tions, as shown in Figure 2. The elements will be denoted
by QS{’% or ngbr)n accordingly. The numerical solutions are
expanded as

(a)nm Z (a)nm )
in ng)l and
uglb)nm Z c(b)nm )

in Q%b,)n, where 1,(x) are the basis functions for triangular
elements.

Then, by (3), the discontinuous Galerkin weak formulation
for elements of type (a) becomes

auﬁl‘l)"m
A;a& qpf(X)de
i /< (1) Pex) (AP "™ + AP ds
T a)(1
+/ W(x)(Af)ug{z)nm +A£2)u§1b)nm)ds
Tl

* /< )(3) W(X)(Af)“%)nm + A(_?’)ugb)nflm)ds
ra
dW (a)nm drpy (ynm 4.
/S:Z(a) d(E uh dx /g’l(a”31 d—yAQUh dx — 0

(18)
for £ =1,2,...,L. Similar equations for elements of type
(b) can be obtained easily.

By assuming a time periodicity similar to (10) and intro-
ducing vectors

é(a)nm é(b)nm
1
~ A (a)nm N A(b)ynm
Cnm — C2 nm __ C2
a . ) b - ) ’
A(a)nm ~(b)ynm
(¢4 CL

a linear system that couples C;”” and C{,‘mcan be formed
as follows,

4 oF 11
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h

Figure 2 Schematic of uniform distribution of triangu-
lar elements. Numbers inside the parenthesis indicates
the ordering of the sides.

—iwQ,CT™ + HO Erm 4 H( Grm—1

+HPCrm + HPCPIm = 0 (19)
and
—iwQ,Cym + HO Cpm 4+ HD Crmt!
+HPCm 4+ HP Ertim — g, (20)

An eigenvalue problem similar to (16) can be formed in a
straight forward manner.

Waves in uniform grids

To demonstrate wave propagation properties of the discon-
tinuous Galerkin method in two space dimensions, we will
use the following system of equations for all the numerical
results presented in this paper:

N L

ot ox oy
where
0 1
-1 0 /"

ae(31): ne

It can be shown easily that this system is equivalent to the
more familiar second order two-dimensional wave equation

(21)

1 0

0 1 (22)

8%u

dz?

2u
ot?

02
gu _y.
0y?
For a plane wave of the form

5 oF 11

u= ﬁezln z+iko y—zwt’

the exact dispersion relation for (21) is

w? =k} +k3 (23)

where k1 and ks are wavenumbers in the 2 and y directions
respectively. The exact eigensolution of (21)-(22) can be
expressed as

-~

where 6 is the angle of wave propagation.

1+ cos@

] ) eiw cos fz+iw sin Qy—iwt (24)
sin 6

Dispersion and dissipation errors

When equation (21) is solved numerically, the numerical
dispersion relation and the discrete eigenfunction are, in-
evitably, not exactly the same as (23). Most notably there
will be spurious numerical modes in addition to the physi-
cal modes. The numerical dispersion relation can be found
from the homogeneous system formulated in previous sec-
tions, i.e., equation (16) for square elements or equations
(19) and (20) for triangular elements. A generalized al-
gebraic eigenvalue problem can be formed for one of the
three parameters in the system, namely, w, A\; and ;.
Note in particular that A\; and A, are related to the spatial
wavenumbers k; and ko by equation (17). For an initial
value problem, the values of k; and k, are given and w
is found as the eigenvalue [7-9]. However, to study wave
propagation in non-uniform grids, it becomes necessary to
consider spatially propagating waves since the wavenum-
ber will not remain constant. Therefore, we will treat the
homogeneous system as an eigenvalue problem for A; for
given values of w and Ay = e™*2". Once ); is found, the
numerical wavenumber, denoted by k7, is obtained as

kih = —iln(\).

In general, ki is complex, i.e., ki = ki, + ¢k];. The imag-
inary part of ki represents the dissipation of the wave as
it propagates in space. The real part of &k} should be close
to the exact physical wavenumber, namely, k}2 ~ w? — k2.

In addition to the physically meaningful eigenvalues, there
are also spurious non-physical wave modes. It can be
shown that the linear homogeneous systems obtained in
the previous sections will have N (p+ 1) eigenvalues where
N is the number of equations in the physical system (1)
and p is the order of the basis polynomials. The situation
for p = 2 is illustrated in Figure 3 and Figure 4. The real
and imaginary parts of numerical wave number k; are plot-
ted as functions of the frequency w. For this calculation,
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Figure 3 Real part of numerical wave numbers. Tri-
angular elements. p = 2, k» = wsin(f), § = 7/6. — ex-
act dispersion relation, e physical right-traveling mode
(W%®), o physical left-traveling mode (W), = right-
traveling non-physical modes (Ef, Ef), ¢ left-traveling
non-physical modes (ET, EY).
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Figure 4 Imaginary part of numerical wave numbers.
See Figure 3 for caption.

Figure 5 Contours of the discrete eigenfunction in a
uniform triangular mesh. Physical mode W% for wh =
w/2, k2 = wsin(w/6), p = 2.

ky = wsin(m/6). There are six eigenmodes. Two of the
modes, labeled W and W, closely resemble the physical
right-traveling and left-traveling waves, respectively. The
other four modes, two right-traveling (Ef, EF) and two
left-traveling (EF, EF), are spurious non-physical waves.
However, it is important to note that, as Figure 4 shows,
the non-physical waves have large damping rates, which
render them inefficient in propagation.

The contours of the discrete eigenfunction for the physical
wave mode W are shown in Figure 5. To further study
the physical modes, let’s define numerical phase speed as

w
Cph = —F———.
VR R

Clearly, cpp, will depend on w and ko, giving rise to disper-
sion errors in the numerical solution. Figure 6 shows c,p
as a function of non-dimensionalized frequency wh*, where
a value of k» = wsin(7/6) has been assumed. The results
for triangular elements are shown in solid lines while those
for quadrilateral elements are shown in dashed lines. For a
fair comparison of the two types of elements, the frequency
has been non-dimensionalized by h*:

B h  triangular
- %h quadrilateral

This is to ensure that, for any given computational do-
main, the two types of elements would use the same num-
ber of unknowns when the order of basis functions is kept

6 oF 11
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1.003 |
p=3

1.002 |

1.001 |

numerical phase speed c,,

W mode

frequency wh

Figure 6 Numerical phase speed of the physical mode
WZ=. § = 7/6. Solid lines for triangular elements and
dashed lines for quadrilateral elements. p is the order
of basis polynomials.

0.02

0.018
0.016

“ 0014 b

*

0.012

0.01 |

0.008 |

dissipation Im(k;

0.006 |
0.004 |

0.002 R
W mode

0.0 .
0 6

-

Figure 7 Dissipation errors of the physical mode WE.
6 = 7 /6. Solid lines for triangular elements and dashed
lines for quadrilateral elements. p is the order of basis
polynomials.

the same. In all the cases, increasing the order of the basis
functions results in significant improvement in phase speed
and dissipation errors. For the chosen angle of wave prop-
agation 6 = /6, Figure 6 shows that triangular elements
have a some what better performance in the phase speed.
The comparisons in dissipation error are shown in Figure
7. Again, triangular elements result in smaller dissipation
error.

However, we should note that the damping factor for tri-
angular elements, with a pattern as shown in Figure 2,
exhibits stronger preference in the direction of wave prop-
agation [7]. In Figures 8 and 9, we show the directivity
plot of the damping factor for 0 < § < 7 after a prop-
agation of 10 wavelengths. Therefore, for waves whose
propagation direction 8 is in the second quadrant, for in-

7 or 11

Figure 8 Directivity plot of damping factor e 10 *1i

for A\ = 8h,4h and 3h where A is the wavelength and
h is the element size defined in Figure 2. Triangular
elements. p = 2.

1.0 |

08 F

0.6 |

04

02}

0.0

Figure 9 Directivity plot of damping factor e~10*k1i

for square elements. p = 2. Wavelength ) is the same
as those in Figure 8.

stance § = 57/6, the advantage of triangles over squares
shown in Figures 6 and 7 for § = 7/6 is expected to be
reversed.

It is interesting to compare the phase error of the dis-
continuous Galerkin method with that of finite difference
schemes. In Figure 10, the numerical phase speed c,p
as a function of non-dimensionalized frequency is plotted
for the 4th order central and compact finite difference
schemes, as well as the 4th-order (p=3) discontinuous
Galerkin scheme with triangular elements. Here, when
angle § = 0, the finite difference schemes are assumed
to have a grid spacing of Az = h/4 where h is the di-
mension of triangular elements. We see that, while DGM
schemes produce waves that travel faster than the exact
phase speed, the finite difference schemes have a phase lag
in the solution. However, the phase error is much smaller
in the DGM scheme.

In reference [4], it has been shown, for a one dimensional
system, that the real part of the numerical wave number
is accurate locally to order 2p + 3 and the imaginary part
accurate locally to order 2p + 2. This is again observed in
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Figure 10 Comparison of numerical phase speed for
4-th order finite difference and discontinuous Galerkin
schemes.

102k p=order of basis, slope s=2p+3

dispersion error Re(k; h)-k;h

-15
10" 2 5 10 2

10
physical wavenumber kih

Figure 11 Convergence of the real part of ki. p is the
order of basis functions and s is the slope of the fitted
line. Triangular elements.

two dimensional waves in this paper. In Figures 11 and 12
we show the convergence of the real and imaginary parts of
the numerical wavenumber kf. The slope of convergence
in the log-log scale is indicated in the figures by s.

Convergence of eigenfunctions

We now consider the convergence of the discrete eigenfunc-
tions. For a wave equation written in the form of (21), the
exact eigenfunction is given in (24).

To obtain the order property on the convergence of the
discrete eigenfunction, we form a correlation coefficient «

numerical dissipation Im(k; h)

107 2 5 10" 2

physical wave number k;h

Figure 12 Convergence of imaginary part of k7. p is
the order of basis functions and s is the slope of the
fitted line. Triangular elements.

as follows,

o= < f u, >
V<, f><up,up>

where the inner product is defined as

<u,v>= / u-vdx.
Q

Coefficient o is meaningful because it can be shown that
|| = 1 if and only if uy is proportional to f. Further-
more, the Ly norm of the projection error from the exact
eigenfunction to the discrete eigenfunction is found to be
related to a as

By = /< f—cuy,f—cu,>=/(1-]a)+ |af)|f]2
(25)
where ¢ =< f,uy > / < up,up >. The Ly norm E is
found to decay at order p+ 1 as shown in Figure 13. This
order property has been verified for a flux formula that is
of either characteristics-based or Lax-Friedrichs type.

Coupling of triangular and quadrilateral
elements

In practical computations, the grids are likely to be non-
uniform and may even be a hybrid of triangles and squares.

8 oF 11
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Figure 13 Convergence of eigenfunctions. p is the

highest order of the basis polynomials. For this calcu-
lation, the discrete eigenfunction is found by choosing
k2 = wsin(n/3). wh is the non-dimensionalized fre-
quency where h is the element size. o error in L; norm
computed by (25), order p + 1 convergence line.

In this section, the eigensolutions analyzed in the pre-
ceding sections will be used to study a particular sce-
nario of non-uniform grids. We will consider the coupling
of numerical solutions at an interface of triangular and
quadrilateral elements, as shown in Figure 14. Due to
discontinuity in grid topography, spurious numerical re-
flections can occur at the interface.

Let the elements in the triangular and square half-domains
be denoted by Qg%, QS’,& or Q. , respectively, where n
and m are element indices. Without loss of generality, sup-
pose that the triangular elements are used for n < 0 and
quadrilateral elements are used for n > 1. To introduce
a right-going incident wave for n < 0, let the eigenfunc-
tions for a right-traveling wave, mode W¥ in Figure 3,

be denoted as ng{,‘VR and Vg‘,’v’{,R for elements Qg% and

ang] respectively. Then, by including the reflected and
transmitted waves, the solutions at the left and right of
the interface can be expressed as

n <0:

Crm =V o+ By Vi + ) B Viler,  (26)
j J

Cpm =Vpme + Bwe Ve + > BeeVige,  (27)
. i

J
9 orF 11

Figure 14 Schematic of an interface between triangu-
lar and square elements.

n > 1:

C"™ = BwrViyk + > BprVER, (28)
3 J J

J

where By r and Bgr are the reflection coeflicients of the
J

physical and spurious waves in the triangular elements
respectively, and Syr and Sgr are the transmission coef-
J

ficients of the right-traveling physical and spurious waves
in the square elements respectively. The V vectors in (26)-
(28) denote the corresponding eigenvectors. At elements
next to the interface, the discretized equations (14) and
(20) are modified due to the coupling between triangular
elements of type (b) and quadrilateral elements. Specifi-
cally, we get

atn =0:
—iwQ,CY™ + HV CY™ + H{D GOt

atn = 1:

_inCIm +H(O)Chn +H(1)Clm—1 + H(z)é2m
+HO G L HOCI™ =0 (30)

where a tilde indicates modified matrices. In particular,
we have

A =B g A

and
H® = B'®W g A(_4)

where the modified boundary integral matrices ]3;(3) and
B’ are as follows,
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~ (3 _
B;( ) = {/F(a) W(;Sl,ds}
b

B/@ — { WT/)e_ldS} .
r@

and

Here vy and ¢, are basis functions used for triangular and
quadrilateral elements respectively. After comparing with
equations (20) and (14), equations (29) and (30) can be
further simplified to be

aYcim = 1P Cim, (31)
HYC)™ = HOCO™, (32)

This gives the matching conditions at the interface. By
substituting (26)-(28) into the matching conditions, the
reflection and transmission coefficients can be found.

The case of p = 2 is shown in Figure 15 where the re-
flection coeflicients of the physical and spurious modes
are plotted as functions of the non-dimensional incident
wave frequency wh. As wh decreases, the resolution of the
schemes on both sides of the interface is increased. As a re-
sult, as Figure 15 shows, the numerical reflection reduces
significantly. More importantly, while the maximum re-
flection coefficient has been found to decay at order p+1,
the amplitude of the reflected physical mode, WT, is re-
duced much faster than that of the spurious modes (close
to order 2p+ 1). This has been found to be true for other
values of p as well. This observation is significant because,
as we have seen in Figure 4, the spurious waves are highly
damped and inefficient in propagation. It indicates that
numerical reflection occurring at the interface is likely to
have only a local effect.

Numerical Examples

In this section, we present results of direct numerical sim-
ulations of wave propagation in a discontinuous Galerkin
scheme. In all the examples, equation (21) is solved by a
quadrature-free implementation, which is detailed in ref-
erence [2]. The simulation has been carried out using two
different mesh configurations. The first mesh configura-
tion is a uniform mesh of triangles as shown in Figure
2. The second configuration uses a mix of triangles and
squares as shown in Figure 14.

For numerical examples using uniform triangular elements,
a computational domain of [0, 1] x [0, 1] is discretized with
h = 1/N where 2N? is the total number of triangular el-
ements. The computational domain is initialized with a

p=2, s=slope

reflection coefficients

10"’r -
wh
Figure 15 Magnitudes of reflection coefficients of the

physical (WZX) and spurious (Ef, EY) left traveling
waves.
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Figure 16 Mesh refinement results using uniform tri-
angular elements shown in Figure 2. p is the order of
the basis functions and s denotes the slope of the fitted
convergence line.

plane wave given in equation (24). The wavelength is cho-
sen such that periodic boundary conditions can be applied
in both the x and y directions.

The initial values of the expansion coefficients in each
element are obtained by projection. As the numerical so-
lution advances in time, the values of u at 50 x 50 selected
locations are sampled at time t,, = nT where T is the pe-
riod of the wave and n = 1,2, 3,...20. Then, solutions at
t, are compared with that at the final time ¢29 by com-
puting the L; norm of their differences. In this way, the
propagation errors, rather than the projection errors, can
be assessed.

In Figure 16, we show the mesh refinement results for

10 or 11
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Figure 17 Mesh refinement results using a mix of
triangular and quadrilateral elements shown in Figure
14. p is the order of the basis functions and s denotes
the slope of the fitted convergence line.

simulations using a uniform distribution of triangular ele-
ments. Calculations for p = 1,2, 3 and 4 have been carried
out. The L; norm of the difference between the solutions
at t = t4 and t = t5o has been plotted as function of the
element size h. Also plotted are fitted convergence lines
with their slopes indicated by s. A global convergence of
order 2p + 1 is clearly observed for p = 1,2 and 3. For
the case of p = 4, verification of the order of convergence
has been found to be more difficult as the L; norm itself
is fast approaching machine zero.

The mesh refinement results for a grid with a mix of tri-
angles and squares are shown in Figure 17. Again, the
L, norm of the error reduces nearly at order 2p + 1 for
p=1,2,3 and 4.

Conclusions

An analysis of two-dimensional waves in a discontinuous
Galerkin scheme has been presented. The eigenvalue prob-
lem for spatially propagating waves in a uniform mesh with
triangular or quadrilateral elements has been formulated.
It is found that the discontinuous Galerkin scheme can
support physical as well as spurious non-physical wave
modes. For the physical modes, the numerical disper-
sion relation is accurate locally to order 2p + 2, giving a
global propagation error of order 2p+ 1. The non-physical
modes are highly damped and, thus, inefficient in propa-
gating in space. Furthermore, numerical wave reflection
and transmission at an interface of grid discontinuity have
been studied based on the eigenvalues and eigenfunctions
of the uniform grids on either side of the interface. It is

11 or 11

found that numerical reflection due to grid discontinuity is
likely to be confined near the interface. The order of con-
vergence of propagation error has been verified by direct
numerical simulations.
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Appendix

The mass and “stiffness” matrices for equation (13) are
defined as follows:

Q={qw}rxr, qe= / Peperdx
Q
d
Q. ={a@e}rxr, qee =/ %qﬁe:dx
Q X
d
Qy ={aetxr, que =/ %d)z'dx
Q ay
B = {by }rxr, bere = /(,) Doy ds
F i

B'®D = {b}y Y rxr, Dby = / . bedy ds
I‘ k2
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