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We present a discrete analysis of non-reflecting boundary conditions for the discon-
tinuous Galerkin method. The boundary conditions considered in this paper include the
recently proposed Perfectly Matched Layer absorbing boundary condition for the linearized
Euler equation and two non-reflecting boundary conditions based on the characteristic de-
composition of the flux on the boundary. The analyses for the three boundary conditions
are carried out in a unified way. In each case, eigensolutions of the discrete system are ob-
tained and applied to compute the numerical reflection coefficients of a specified out-going
wave. The dependencies of the reflections at the boundary on the out-going wave angle
and frequency as well as the mesh sizes are studied. Comparisons with direct numerical

simulation results are also presented.

Introduction

The discontinuous Galerkin method (DGM) provides an
attractive platform for computational aeroacoustics in
dealing with complex geometries while using high order
approximations [3]. Our recent works have shown that
the discontinuous Galerkin scheme is super-accurate for
the numerical simulation of wave propagation [6,7]. A
framework of discrete analysis has been proposed in [6,7]
to study systematically and analytically the numerical
errors occurring due to a sudden discontinuity in the
mesh topology or the order of the basis functions, in
one and two spatial dimensions. In this paper, this
framework is extended to study numerical errors due
to non-reflecting boundary conditions in DGM schemes.
The effects of various numerical non-reflecting bound-
ary conditions on the DGM schemes will be studied in a
unified way as either a variation in the flux formula or a
variation in the underlying governing equations across
a mesh interface.

The non-reflecting boundary condition is an essential
part of any numerical code in computational aeroa-
coustics. In this paper, we will analyze three types of
non-reflecting boundary conditions for DGM, namely,
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the characteristic non-reflecting boundary condition,
finite-wave model boundary condition and the Perfectly
Matched Layer (PML) absorbing boundary condition.
An earlier version of PML for the linearized Euler equa-
tion was given in the split physical variables. Its imple-
mentation in the discontinuous Galerkin schemes has
been demonstrated in [1]. An unsplit version has been
proposed recently in [5] that eliminates numerical in-
stabilities that can occur in the earlier version. The
implementation and the discrete analysis of the unsplit
version for DGM will be studied in the present paper.
We will recognize the advantage of DGM in that, un-
like finite difference schemes, the absorption coefficient
in the PML domain needs not to be continuously vary-
ing but can be increased discontinuously. Although
the PML is reflectionless in its formulation in the non-
discrete partial differential equations, the discretization
of the equations can nonetheless cause reflections. We
will first present an eigensolution analysis of the dis-
cretized PML equations in DGM. Then, the results of
the eigensolution analysis will be utilized to study wave
reflections caused by the discretization process at the
interface of the Euler and PML domains.

We will also present a discrete analysis of the character-
istic non-reflecting boundary condition [8,9] as well as
the finite-wave model boundary condition proposed in
[2]. The characteristic non-reflecting boundary condi-
tion is widely used in DGM schemes because it is easy
to implement due to the intrinsic upwinding features
of the schemes. The finite-wave model non-reflecting
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boundary condition proposed in [2] improves the char-
acteristics boundary condition in that the reflection of
out-going waves can be annihilated under certain con-
ditions. The results of our discrete analysis will be
compared with the theoretical reflection coefficients ob-
tained from the non-discrete partial differential equa-
tions as well as those obtained from direct numerical
simulations.

In the next section, we will first describe the discretiza-
tion of the PML equation in the DGM schemes and
present an eigensolution analysis of the semi-discrete
system. The results of this analysis are used in sub-
sequent sections to study reflections generated at an
Euler-PML interface, and reflections produced when
Euler domains are terminated with characteristic and
finite-wave model non-reflecting boundary conditions.

Discrete analysis of PML absorbing
boundary condition

It has been shown in [5] that the PML equation is per-
fectly matched to the Euler equation (1). That is, in
the non-discrete form, there is no reflection created at
an interface between the Euler and PML domains. The
effects of numerical discretization by the DGM scheme
on this reflectionless property will be studied in two
steps. First, we will compute the eigensolutions of the
semi-discrete PML equation and study the effects of the
absorbing coefficients on the wave propagation proper-
ties. Second, we will utilize the eigensolutions so formed
to compute the wave reflection and transmission coef-
ficients at an interface of discretized Euler and PML
domains.

We start with the linearized Euler equation in conser-
vation form,

ou
E-I—V-F(u)zo, (1)

where F(u) is the flux vector given by

where w and v are velocity components (non-
dimensionalized by the speed of sound) in the spatial
7 and o directions respectively; p is the pressure; M
is the Mach number of the mean flow. For conciseness,
the density equation is not included here.

At non-reflecting boundaries, absorbing layers are
added so that the waves exiting the physical domain
are damped. The equations to be used in the PML
absorbing domain can be written as follows [5],

Ou

5 + V- -Fpn(u,q) + (0, + 0y)u+o0,0.q
+0.6A1(u+0yq) =0, (4)
and
Mo, Q

where q is a vector of auxiliary variables and § in (4)
is a function of the mean flow Mach number as

M

=i

The flux vector Fppy in (4) is of the form

Fpml (11, q) = (Al (u + O'yQ)a A, (ll + Uzq))- (6)

Here the absorption coefficients o, and o, can be con-
stants or functions of & and y respectively [5].

We consider a discontinuous Galerkin scheme for (4)-(5)
in which the spatial domain is partitioned into ele-
ments denoted by ,,,, where n and m are element
indices in the directions of x; and x5 (spatial coordi-
nates) respectively, as in Figure 1. For simplicity, we
will only consider uniform rectangular elements in this
paper. Triangular elements can be studied in a similar
approach as we have done in [7] for the Euler equations.
For each element in the PML domain, the numerical
solution vectors, denoted by up™ and q3™, are approx-
imated by expansions in polynomials as

F(u) = (A1u, Azu), (2) L
in which up™(x,t) = Z ;™ () dr™ (%), (7)
=0
U M 0 1 L
u=|ov |, A=| 0 M 0 ], Qi (x, 1) = Y dFm ()™ (%), (8)
P 1 0 M £=0
where {¢7™(x),£=0,1,..,L} is the set of the basis
000 polynomials and c}™(t) and d}™(t) are the expansion
A,=| 0 0 1 (3) coefficients for u}™ and q@™ respectively. A weak for-
010 mulation of (4)-(5) is obtained by substituting (7)-(8)
2 or 11
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into (4)-(5) and requiring that the equations be orthog-
onal to the basis functions. After applying integration
by parts, the semi-discrete equations for (4) and (5) are

| oo [

Cnm

- / Fopmt - V™ (x)dx + /
Qnm

Qnm

(0 Fpmi)pr™ (x)ds

sp ¢ (x)dx =0, (9)

and

/ 99" g (x)ydx = / wpm g (x)dx,  (10)
Q Q

ot

nm nm

for £ = 0,1,..., L, where T',,,, denotes the boundary of
Qnm and n = (ny,ny) is its outward normal. Here sp™
in (9) represents the non-differential terms in (4):

sh" = (0z+0y)up™ +0,0yq,™ +0, BAL (U™ +oyqp™).

Equations (9) and (10) will result in a system of ordi-
nary differential equations for the expansion coefficients
c}™(t) and dP™(t).

For the PML flux vector given in (6), the normal flux
at the edge of an element is

n- Fpml = (n1A1 + ngAg)u + (aynlAl + (TmngAg)q.
(11)

For convenience of discussion, we denote the normal flux
in the original Euler equation by

n- F = (nlAl + n2A2)11 = Anu: (12)

which is the same as the first term in n - Fp,; above.
Further, it is easy to verify that the second term in (11)
can be simplified as

(oyn1A1+ozn2As)q = { oyAnq  vertical edges (n> = 0)

(13)
This leads to the following more compact flux expres-
sion on the edges

n- Fpml = An(u + Uq) (14)
where o is either o, or o, according to (13).

Since we do not require that the numerical solution be
continuous across the interface of any two elements, the
normal flux n-F,,,,; appearing in the edge integral in (9)
is not uniquely determined. To complete the formula-
tion, a numerical flux formula needs to be specified. As
in references [6] and [7], we will consider two commonly
used flux formulas, namely, the characteristics splitting

0:A,q horizontal edges (n1 = 0)

flux formula and the Lax-Friedrichs flux formula. For
convenience of discussion, let u}, g and u; , g, denote
the values of uy, q on the edge of an element evaluated
using the solutions inside and outside of that element re-
spectively. Then both flux formulas can be conveniently
written as follows

n-Fo=Ai(uf +0q))+A_(u, +oq;) (15)
where

1 1
Ap=5(An+ AL and A = (A, —|A,)) (16)

for the characteristics splitting flux formula and

1 1
A, = i(An + |amaz|I) and A_ = §(An = |amaz|T)
(17)

for the Lax-Friedrichs flux formula, where a,,,, is the
largest (in magnitude) eigenvalue of A,,.

In our analysis, we assume that the same flux formula
is used through out the computational domain.

p)

Figure 1. A schematic of the partitioning of computational
domain in quadrilateral elements. Here, n and m are the
indices of the element and the number inside the parentheses
indicates the ordering of the element edges.

We order and denote the four edges of 2, as I‘sf,)n, 7=
1,2, 3,4, as shown in Figure 1. Using (15) for the normal
flux, the weak formulation (9) can now be written in

detail as

Jup™
/Qnm de(x) 5t dx

+/ o GO + AL W ds
I""I.‘rn,
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+ de(x)[APup™ + s

e

nm

AP tm)g
+/< ) ge()[AP W™ + AP upmHds
F'n.sm

/ pe(x)[ AP ™ + AW a1 ds

a¢l nm / a¢l nm
— ——Aiu, "dx —Asu; "dx
/Q Oz O O

nm nm

; / S $Em (x)dx = 0 (18)
Q

nm

where we have used the notation

"t ouyan” (19)
The superscripts (1) — (4) in equation (18) indicate the
specific edges of the element for the integrals as shown
in Figure 1.

nm — __n
llm’y = up

Eigensolutions of the discrete system

To look for wave-like solutions to (18), we assume peri-
odicity in time with a frequency w and let

nm(Em,t) = Z“thzbmmsn) (20)

£=0

L
ap™ (Em 1) = ey AP ge(Eom),  (21)

=0

where £ and 7 are local coordinates. The coeflicients
¢}™ and q7™ are now independent of ¢.

For convenience of discussion, define vectors

&g dg™
Cnm — c{f , f)nm — d?m
cpm &gm
and
¢0 (6; 77)
P(S,n) — ¢1(§,77)
¢L (&5 77)

Then, using the Kronecker product ® (see reference [6]
for definition and its properties), the solution in (20)
and (21) can be expressed as follows,

™(Em,t) = e WP oT)CM, (22)

™(&n,t) =e “(PT D" (23)

By substituting (20) and (21), or their tensor forms (22)
and (23), into the semi-discrete PML equations (18) and
(10), we get a linear system for the expansion coeffi-
cients C"™ and D™ as follows:

—iw(QeI)Cr™m + (BW g AS:))C;”” (B ®A(_1))Cmnm71

—|—(B(2) ® Af))ézm + (B'(2) ® A(E))CZ*'”"

;s nm—+1

+B® g AP)Erm + (B'® 9 AP)C,

+B® o AP)Cpm 4+ (B@ 9 AD)S, T

nm

—(Qs ® A1)CI™ — (Qy ® A2)C,

HQ®D[(0s +0y)C™™ + 020, D" + 02 8(Q ® A1)CI™ =0
(24)

and
—iw(Q® D" = (QeI)C™" (25)
where

~Anm . (nm \Nnm
c;y =C" +0,,D

and Q is the “mass matrix”, Q. and Q, are the “stiff-
ness” matrices, and B and B/(Y are the “edge” ma-
trices resulted from the edge integrals in (18) involving
solutions inside and outside of the element respectively.
The detailed definitions of these matrices are given in
the Appendix (Al).

By (25), we easily get
)

—gnm, 2
5 (26)

]jnm

As a result, equation (24) can be written in terms of

Gnm only as

(14" )1+ w’ YyyQe1Erm + HOE™

10,

(1) Avnm—1 ﬂ (2) An+1m
+(1+ =)HPC +(1+ _HHPC

(14 = )H<3>c’""+1 +(1+ “’y YHOE ™ = 0. (27)

4 oF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2003-3301



The matrices H®~® can be obtained by directly com-
paring (27) with (24) and will not be given explicitly
here.

For a uniform distribution of elements, the coefficient
matrices in (27) are independent of the element indices
n and m. We thus seek solutions of the form

Crm = A C (28)

where A\; and A\ are related to wavenumbers k; and ko
in the z; and z, directions, respectively, as follows

A = ekl )y, = gik2he, (29)
where h; and hy are the spatial dimensions of elements
in z; and z2 directions respectively. An eigenvalue
problem for C is formed by substituting (28) into (27)
which yields immediately

—iw(1+ 251+ 22)(QeNC + HOC
e

1 - : .
HL+ 2D HOCH M1+ ZHH?C

w

g 10y \ex(4) &y _
H =0.
) C=0. (30)

.1
+(1+ —2)NH®C + T+
1

w

To study the spatially propagating waves, we solve for
A1 and C as the eigenvalue and eigenvector from (30)
for given w, the frequency, and ks, the wavenumber in
xo direction. The corresponding discrete wave number
k7 of the eigensolution can be found according to (29):

krhy = —iln(\y).

It is well known that, for any given values of w and
k2, the Euler equation (1) supports two acoustic waves
given by the dispersion relation

(w—ME)? =k} —k2=0 (31)

and one vorticity wave given by

w— Mk =0. (32)
The acoustic waves can be conveniently expressed in the

given frequency w and a wave angle ¢ as

_ wsing
1+ Mcosé

w €os ¢

k= 298¢
T 1+ Mcosg’

2 (33)

To illustrate typical eigensolutions of (30), we solve the
eigenvalue problem with square elements h; = hy = h

and the order of basis functions p = 2. In Figure 2, we
show the discrete wavenumber k] corresponding to the
right-traveling acoustic mode obtained as the eigenvalue
of (30). Plotted in Figure 2a are the ratio of the real
part of ki and the exact k; in (33) as a function of non-
dimensionalized frequency wh. In Figure 2b, we show
the imaginary part of kf. The value of ks, hence the
value of s in (30), is given according to (33) and (29)
with ¢ = m/6. The Mach number of the flow is M = 0.5.
For simplicity, o, = 0 in all the calculations. The solid
line in both figures represents the result for o, = 0,
i.e., that of the discretized Euler equation, and dashed
lines represent that of the PML equation with non-zero
oz as indicated. Figure 2 illustrates the effects of the
absorption coefficient on the discrete wavenumber in the
PML domain. Figure 2a indicates that an increase in
the absorption coefficient has very little effect on the
real part of k] for waves within the resolved range in
non-dimensionalized frequency wh < 1, see reference
[7]. The imaginary part of k}, however, has an increase
that is proportional to the increase in the absorption
coefficient, indicating exponentional absorption of the
wave. Furthermore, the damping rate remains the same
for all frequencies within the resolved range wh < 1.
This means that the absorption rate for the acoustic
wave will be independent of the wave frequency.

In Figure 3, we show the dependence of PML damping
rate as a function of the wave angle for a given wave
frequency wh = 0.5. In general, the damping rate re-
duces as the wave angle 6 increases. This is consistent
with the theoretical prediction of the non-discrete PML
equation [5].

Aside from the physical modes, there are also non-
physical eigensolutions, or spurious modes, for (30).
The number of spurious modes depends on the order
of the basis functions and the flux formula being used.
It can be shown that there are p spurious modes for
each physical wave of the non-discrete partial differen-
tial equation when the exact characteristics splitting is
used in the flux formula. The number of the spurious
mode will be increased to be 2p+ 1 when Lax-Friedrichs
flux formula is used. The non-physical waves are irreg-
ular and highly damped [6,7].

Reflection and transmission at an interface of Euler
and PML domains

Although the PML is reflectionless in the non-discrete
limit, discretization of the partial differential equations
may cause numerical reflections at the interface of the
Euler and PML domains. We will now analyze the nu-
merical reflection error due to the discretization process.

Without loss of generality, suppose that the elements in
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Figure 2. Real and imaginary parts of the discrete

wavenumber ki of the physical mode of (30) as func-
tions of wave frequency wh. ¢ = ©/6, hy = hy = h,
M=05p=2,0,=0.
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Figure 3. Spatial damping rate of the physical mode
as functions of wave frequency. p = 2, hy = hy = h,
M=05p=2,0,=0,wh=0.5.

pa
J’R

Euler PML

n=-2 n=-1 n=0 n=1 n=2 n=3

Figure 4. A schematic of wave reflection and transmis-
sion at an interface of Euler and PML domains. ¢; is
the wave angle of the out-going wave.

the Euler domain have indices n < 0 and those in the
PML domain have indices n > 1, as shown in Figure
4. We will introduce an out-going wave (right-traveling
in Figure 4) in the Euler domain and compute the re-
flected and transmitted waves in the Euler and PML
domains respectively. For an interface shown in Figure
4, the reflected waves will include all the left-traveling
eigensolutions of the discrete Euler equation and the
transmitted waves will include all the right-traveling
eigensolutions of the discrete PML equation. Both the
physical and non-physical modes have to be considered.
Specifically, we assume the solution in each half domain
to be,

for n <0:

Ciier = Vigh + Bwe Vigh + 3 fpe VEE,  (34)
J

forn > 1:

~nm pml
pml — V

e+ Zﬂpml BR,  (35)
where subscripts W and W’ denote the physical right
and left traveling modes respectively, and Ef and E}
denote the non-physical right and left traveling spurious
modes respectively. Here the V vectors are the corre-
sponding eigenvectors of the semi-discrete equations. In
(34), the out-going wave, Vii7%, has an amplitude of
unity, and Bw: and Sgr are the reflection coefficients
and By rand 8 pr are tlie transmission coefficients.

6 oF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2003-3301



The coupling of the two solutions occurs at elements
immediately on either side of the interface, namely, the
elements with indices n = 0 and n = 1. The semi-
discrete equation for the Euler domain is that given in
(27) with 0, = gy = 0. For the PML domain shown in
Figure 4, we have oy, = 0 but o, # 0. Thus, we have

for n = 0:

—iw(QenCy™.  +HOCY,™ +HDCL™!

Euler

+HPCm t HOCRH + HOC L =0, (36)

forn =1:
—iw(1+ ] Qe nCh™ + HOEL™
w pml pml

102

~ )H(l)é;;;rzl—l+H(2)CQ,m

pml

+(1+

+H1+ ZHHOC T + HOC,, =0 (37)
Here, the absorption coefficient o, is assumed to be
constant, for all the elements in the PML domain.

Equations (36) and (37) can be further simplified by the
fact that C%;,, and CJ7 are formed by the eigenvec-
tors. As a result, we get the following more compact

matching conditions [7],

HOCLL,, = HAC T, (38)
HOCRL,, = HOC)T. (39)

By substituting (34) and (35) into (38) and (39), we can
find the numerical reflection coefficients at the interface.

As an example, we consider an out-going acoustic wave
with a wave angle ¢; = /6. The order of the basis func-
tions used is p = 2. For this order, when the exact char-
acteristics splitting formula (16) is used, the reflected
waves in the Euler domain include the left-traveling
acoustic mode, denoted by W, and two non-physical
spurious modes, denoted by E¥ and E¥. Figure 5 shows
the reflection coefficients of the physical (W, in cir-
cles) and non-physical (Ef, EX, in diamonds) modes
as functions of the non-dimensional wave frequency wh.
As the value of wh decreases, i.e., when the frequency of
the wave is reduced (hence its wavelength is increased)
or the size of the element is decreased, the reflection at
the interface caused by numerical discretization also de-
creases. More significantly, the reflection coefficient for
the physical mode is decreasing at a higher order than
that of the non-physical modes. Since the non-physical

reflection coefficients

Figure 5. Reflection coefficients of the physical (W)
and non-physical (EF, EF) modes with basis function
order p = 2. M = 0.5, o, = 1. s indicates slope of
solid line. The out-going acoustic wave angle ¢; = /6.
hi = ha = h.

10 T T T T T T T T
10” /,/—//
_
107 7
w
g _
g - _
& 10 - -
5] = -
o — — — -
() -5
Z 10 T
S T
T otk -
o) —
= -
|51 —
- -
= 10
8
S
10° D=2h
— — — - D=d4h
I T —— D=6h
ll]rlﬂ
0 10 20 30 40 50 60 70 80 90

out-going wave angle ¢

Figure 6. Reflection coefficient of the physical mode as
a function of wave angle. The width of the PML domain
isD. p=2. M =0.5,0,h=1. wh=0.5.

modes are highly damped by the numerical dissipation,
Figure 5 indicates that the reflections occurring at the
interface will likely have only a local effect and will not
be propagated globally to the computational domain.
We note that when the Lax-Friedrichs flux formula is
used, the number of reflected non-physical modes is in-
creased. However, trends similar to those of Figure 5
are obtained.

The transmitted waves are damped exponentially in-
side the PML domain, at a rate that is determined
by the imaginary part of the discrete wavenumber k7.
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In practical computations, however, the PML domain
is of finite width and wave reflection can occur when
the PML domain is truncated. The waves reflected
at the end of the PML domain will be damped again
when traveling back through the PML domain before
re-entering the Euler domain. The magnitude of the
wave that re-enters the Euler domain relative to that of
the initial out-going wave will be referred to the total re-
flection coefficient of the PML domain. Obviously, the
total reflection coefficient depends on the width of the
PML domain as well as the value of the absorption co-
efficient used. In Figure 6, we show the total reflection
coefficient of the physical mode as a function of the out-
going wave angle when the width of the PML domain
is 2, 4 and 6 elements. The value of o,h is unity. Here,
we have assumed complete reflection at the end of the
PML domain. The reflection can be further reduced,
in fact, by using other types of non-reflecting boundary
conditions to terminate the PML domain itself.

Characteristic Non-reflecting Boundary
Condition

Non-reflecting Boundary

&

-

n=-2 n=-1 n=0

Figure 7. Schematic of elements at the non-reflecting
boundary. The elements along the boundary have in-
dexn = 0. (1)-(4) indicates the order of the edges of
element Q.

We will now study the characteristic non-reflecting
boundary condition applied to the discontinuous
Galerkin schemes. The implementation of the boundary
condition is relatively simple by using characteristics

splitting flux formula (16) at the boundary. The non-
reflecting boundary condition is imposed by eliminating
the exterior flux contribution in the edge integrals along
the non-reflecting boundary [8,9].

Consider a non-reflecting boundary shown in Figure 7,
where the boundary elements have index n = 0. The
semi-discrete equation for the Euler domain is the same
as those given in (18) or (24) for the PML domain with
oy, = oy = 0. For elements along the non-reflecting
boundary with index n = 0, the edge integral at the
non-reflecting boundary (i.e., side (2)) in equation (18),

@ $e(x) [Af)u?z,m + A(f)u}l’m]ds,
0,m

is replaced by

o) (X)Af)ug’mds
o,

where Af) is the flux matrix from the characteristics
splitting formula given in (16), i.e.,

AP = 2D +AD).
We note that when the Lax-Friedrichs flux formula is
used in the interior elements, Af) differs from Af) that
appears in the eigensolution analysis of (24). They are
of course the same when the characteristics splitting
flux formula is used in the interior domain.

In terms of the solution expansion coefficient vector
C"™ | the characteristic non-reflecting boundary condi-
tion leads to the following equation for the elements at
the boundary,

BP@APCOm +(BPoA?)C = (BPgAD)CO™.

(40)

By considering a numerical solution of the form sim-
ilar to (34) for C™™ that consists of an out-going
physical wave mode and reflected acoustic and other
non-physical modes, we can compute the reflection co-
efficients using (40). In Figure 8, we show the magni-
tudes of reflected physical (acoustic) and non-physical
wave modes in response to an out-going (right-traveling)
acoustic wave that has the angle ¢; = /6. The order of
the basis functions used is p = 2 and the characteristics
splitting flux formula is used through out the compu-
tational domain. As the wave frequency w or the mesh
size h decreases, the magnitudes of the reflected non-
physical modes (in diamond symbols) are reduced and
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Figure 8. Reflection coefficient of the characteristics
boundary condition. WL is the physical mode (circles)
and EFand EL are non-physical modes (diamonds).
M = 0.5. Dashed line is the prediction according to
the partial differential equation. s indicates the slope of
the solid line.

approach to zero in the limit. However, the magnitude
of the reflected acoustic mode (in circles) is approaching
a non-zero limit predicted by the non-discrete partial
differential equation model given in the Appendix (A2).
This is in contrast to the case of PML boundary con-
dition shown in Figure 5 where the reflected physical
mode goes to zero in the limit. It indicates that the re-
flection error can not be eliminated by mesh refinements
for the characteristic non-reflecting boundary condition.
Since a well-resolved physical mode has very small nu-
merical damping [7], the reflection error can have a
global effect on the numerical solution.

In Figure 9, we show the magnitude of the reflected
physical mode (left-traveling) relative to an out-going
(right-traveling) acoustic wave. Plotted, in open sym-
bols, are the reflection coefficients as functions of ¢;, the
out-going wave angle, for the mean flow Mach number
M = 0 and 0.5. At the resolved frequency wh = 0.5,
the numerical reflection coefficient coincide with that
predicted by the non-discrete model shown in dashed
lines. Clearly, the characteristic boundary condition is
most effective when the wave angle is close to zero. Also
plotted in Figure 9, in closed circles, are reflection co-
efficients extracted from a direct numerical simulation
of an acoustic pulse propagation with M = 0. We see
very good agreement with the predicted reflection coef-
ficients.

1.0

reflection coefficient

out-going acoustic wave angle ¢; (degrees)

Figure 9. Reflection coefficient of the characteristics
boundary condition. Clircle: M = 0; square: M = 0.5.
wh = 0.5. Open symbols are the results of discrete anal-
ysis and closed symbols are results from direct numerical
simulation. Dashed line is the prediction according to
the solution of partial differential equations.

Finite-Wave Model

As we have seen in the previous section, the characteris-
tic non-reflecting boundary condition works best when
the out-going wave angle ¢; is zero or close to zero,
i.e., when the direction of wave propagation is nearly
normal to the boundary. The reflection coefficient in-
creases significantly when ¢; deviates from zero. Several
improvements on the characteristic boundary condition
have been proposed in the literature [4]. One approach
is the finite-wave model given in [2].

The finite-wave model assumes that a single wave is
propagating in a known direction and corrects for both
directional and non-linear effects. The directional cor-
rection is motivated by the observation that, usually,
the non-reflecting numerical boundary is far from the
sound source and, thus, the vector between the approx-
imate location of the sound source and the boundary
produces a good guess for the propagation direction. In
the present linear analysis, only the directional correc-
tion is relevant, and the method reduces to the construc-
tion of a boundary value from the outgoing eigenvector
components of a flux associated with an assumed prop-
agation direction.

Specifically, the edge integral along the non-reflecting
boundary in the semi-discrete equation (18) (with o, =
oy = 0) for elements with index n =0,
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o GCOIAT ™ + AP ds, (1)
1—‘O,WL

is replaced by

de(x)[AP ul™ds (42)

@)
FO,m

where, again, Ag) is the boundary normal flux Jacobian
matrix given in (12) while u};™ is constructed as follows.

Suppose the assumed out-going wave angle is 8, defined
in the same fashion as ¢; in Figure 7. Then the flux
in the direction of 8 is (cosf,sinf) - F with its Jaco-
bian matrix being Ay = cosfA; + sinfA,. Let Ey be
a matrix whose columns are eigenvectors of Ay, i.e.,

Ay = E¢AE;", (43)

where A is the diagonal eigenvalue matrix. Then the
boundary value is given by

u” = EgI'E, 'u)™ (44)

Here IT is a diagonal matrix whose diagonal values are
1 and 0 according to the corresponding eigenvalues in
A being positive and negative respectively.

In terms of the expansion coefficient vector C"m, the
finite-wave model leads to the following equation to de-
termine the reflection coefficients:

(B(2)®Af))éo’m+(B'(2)®A9))él’m — (B(2)®A£L2))é%m
(45)

where
Ch™ = 1@ EyITE; H)CO™, (46)

In figure 10, we show the reflection coeflicient of the
finite-wave model boundary condition with respect to
an out-going acoustic wave. The non-dimensional fre-
quency is wh = 0.5. The assumed out-going wave angle
was taken to be § = 7/4 while the actual out-going
wave angle ¢; was varied. The continuous and discrete
analyses agree well with results obtain from numerical
simulations. The reflection is around 2% when the er-
ror in the guess to the wave angle is 10 degrees, and the
reflection decreases as the guess is improved.
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Figure 10. Reflection coefficient of the finite-wave model
boundary condition. Circle: M = 0; square: M = 0.5.
wh = 0.5. Open symbols are the results of discrete anal-
ysis and closed symbols are results from direct numerical
simulation. Dashed line is the prediction according to
the solution of partial differential equations.

Conclusions

We have presented a discrete analysis of three non-
reflecting boundary conditions for the discontinuous
Galerkin method. For the Perfectly Matched Layer ab-
sorbing boundary condition, we computed the discrete
wavenumbers and eigenfunctions of the semi-discrete
equation. QOur analysis showed that the reflections at
the interface of Euler and PML domains caused by the
discretization process were reduced and approached to
zero as the resolution of the scheme was increased. For
the characteristic and finite-wave model non-reflecting
boundary conditions, the discrete reflection errors con-
verged to those predicted by the non-discrete partial
differential equations and agreed well with results of dis-
crete numerical simulations. Clearly, the simple charac-
teristic non-reflecting boundary condition is inadequate
for most practical simulations. The finite-wave model
provides a simple and inexpensive approach for engi-
neering applications in which a reasonable guess for the
wave angle can be formulated and reflections on the or-
der of 2% can be tolerated. For applications requiring
minimal reflections, the PML method is preferred.
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Appendix
A1l. Definition of matrices in (24)

The mass and “stiffness” matrices for equation (24) are
defined as follows:

Q=A{qu}trxr, qre= / Grppdx
Q
d
Q. ={aee}rxr, qee :/ %qﬁg:dx
Q X
d
Qy ={awe}trxr, que :/ %@“dx
Q ay
B = {by}rxr, b = /(,) Pegeds
F k]

B'D = {b}y}pxr, Dby = / . bedy ds
I‘ k2

where ¢, in matrix B’ denotes the basis function of the
exterior element along edge T'(¥).

A2. Non-discrete analysis of the characteristic
and the finite-wave model non-reflecting bound-
ary conditions

(1) Characteristic non-reflecting boundary boundary
condition

In the non-discrete limit, the characteristic boundary
condition can be shown to be equivalent to applying
A_u = 0 at the non-reflecting boundary. Using eigen-
solutions of the Euler equation (1), the reflection coef-
ficient of an out-going acoustic wave is found to be

_ 1 —cos¢;
"~ 1—cos¢y,

Br

and that of an out-going vorticity wave is

. sin ¢z
1 ——coso,

Br

where ¢; and ¢, are defined in Figure 7. It is to be
noted that the incident and reflected angles are related
as

sin ¢, _ sin ¢;
14+ Mcosp, 1+ M cosg;

for the out-going acoustic waves and

sin ¢, _ tang;
1+ Mcos¢p, M

for the out-going vorticity waves.
(2) Finite-wave model

Let 6, defined in the same fashion as ¢; in Figure 7,
be the assumed angle of the out-going wave used in the
construction of the solution at the boundary. Then the
reflection coefficient of an out-going acoustic wave is

1 —cos(¢; — )

b = T cos(on = )

and that of an out-going vorticity wave is

_ sin(¢; — 0)
b= s = 0)
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