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ABSTRACT

A Perfectly Absorbing Technique (PAT) is proposed for
numerical solutions of the Euler equations. This technique
follows the recent studies of Perfectly Matched Layer (PML)
as absorbing boundary conditions. In the present paper,
we construct the Perfectly Matched Layer equations for
linear as well as non-linear Euler equations as an absorbing
boundary condition. Plane wave solutions and propagation
properties are analyzed for a uniform flow in an arbitrary
direction. It is shown that the proposed PML equations are
capable of absorbing the out-going acoustic, vorticity and
entropy waves at numerical boundaries without reflection
(theoretically) for any angle of incidence and frequency
of the wave. The absorption rate is also independent of
the wave frequency/wavelength. The PML equations are
then extended to non-uniform mean flows. Moreover, by
introducing a “pseudo mean flow”, PML equations for non-
linear Euler equations are constructed. The pseudo mean
flow needs not to be an accurate prediction of the actual
mean steady flow. Consequently, it becomes possible to
apply the PML equations without the exact mean flow
being available. Numerical examples that demonstrate the
validity of the proposed absorbing boundary conditions are
presented.

1. Introduction

Recently, a new technique for-absorbing boundary con-
ditions, here referred to as the Perfectly Absorbing Tech-
nique (PAT), has been proposed for the Euler equations
(1]. This technique follows the recent work on Perfectly
Matched Layer (PML) first developed by Berenger for nu-
merical solutions of the Maxwell equations [2]. Numerical
examples of ref [1] and those in the present paper indicate
that this technique can provide a very effective absorb-
ing boundary condition for computational fluid dynamics
and, particularly, computational aeroacoustics where highly
accurate numerical boundary condition is essential.

In numerical simulations, the physical domains are
often necessarily truncated due to the limitation of a finite
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computational domain. At these artificial boundaries,
numerical non-reflecting or absorbing boundary conditions
are needed so that the out-going waves are not reflected.
Various computational techniques have been developed in
the past to minimize the reflection of out-going waves.
They include the out-flow boundary conditions based on the
characteristics of the Euler equations [3, 4] and the radiation
boundary conditions based on the far field asymptotic
solutions [5, 6, 7, 8, 9], to cite just a few. A recent
review can be found in reference [10]. In addition, a buffer
zone technique has been developed in which the mean flow
is altered gradually to be supersonic in a buffer region
adjacent to the artificial boundary [11, 12].

A different approach has been taken in the proposed
Perfectly Absorbing Technique. In this approach, a region
with a width of a few grid points, called the PML domain,
is introduced adjacent to the artificial boundaries, such as
the radiation and out-flow boundaries. In the PML domain,
Perfectly Matched Layer equations are constructed so that
the out-going waves are absorbed without reflection. Thus,
in numerical calculations, the computational domain is
divided into the interior domain, where the Euler equations
are applied, and the PML domains, where the proposed
PML equations are applied, as shown in Figure 1. In
ref [1], PML equations for the linearized Euler equations
with a uniform mean flow were proposed. It was shown
that the proposed PML equations are capable of absorbing
the out-going acoustic, vorticity and entropy waves without
reflection for any angle of incidence and frequency of the
waves. The absorption rate is also independent of the
wave frequency/wavelength. Thus the effectiveness of the
absorbing boundary condition is not affected by a change
of frequency or wave number of the out-going waves.

In this paper, we further study the Perfectly Absorbing
Technique for non-uniform mean flows and for non-linear
Euler equations. In section 2, we first re-examine the
theoretical reflection and transmission properties of the
PML equations for a mean flow which is in an arbitrary
direction. It will be shown, again, that the theoretical
reflection coefficients are zero for the linear waves. Then, in
Section 3, the PML equations are extended to the linearized
Euler equations with a non-uniform mean flow. In Section
4, by introducing a “pseudo mean flow”, PML equations
for non-linear Euler equations are proposed. Numerical
examples are presented in Section 5. Concluding remarks
are given in Section 6.
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2. Perfectly Matched Layer equations
for a uniform mean flow

Consider the two-dimensional linearized Euler equa-
tions with a uniform mean flow :
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in which v’ and v’ are the velocity perturbations in the

. . . ! - U
r and y directions respectively, p’ is the pressure, and p
is the density. Through out this paper, the velocities are
non-dimensionalized by the speed of sound ag, the density
by po and the pressure by ﬁoa%, where pg is the mean
density. U, and V, are the mean velocities in the z and y
directions respectively, i.e.,

Uo=Mcosa, Vo= Msina,

where o is the angle between the direction of mean flow
and the z-axis and M is the Mach number. In particular,
we will be interested in subsonic flows, i.e., M < 1.

It is well known that the linearized Euler equations
(1.1)-(1.4) support acoustic waves, which travel with the
speed of sound relative to the mean flow, and vorticity
and entropy waves, which travel with the mean flow. Our
aim is to define a perfectly matched layer to be used at a
region adjacent to the artificial boundary that can absorb
the out-going acoustic, vorticity and entropy waves with
little or no reflection in computation.

We split the flow variables u’, v', p’ and p’ in equations
(1.1)-(1.4) into sub-components uy, uz, vy, ve, p1, p2 and
p1, p2 and define the following equations for the Perfectly
Matched Layer (PML) :

%ut_l +osuy = _B(Pla-: P2 _ 8(“16: u2) (g
% +oyug = —VO—B(“‘B;L uz) (2.2)
%Utl_ - _B(Pla: P) _y, a(vla‘;' v2) (2.3)
%2 +ozvg = —Uo———a(”la'; v2) (2.4)
Baitl +oepy = — a(ula‘: v) _ 3(?181- p2) (2.5)
%L: +oups = _3(1118: v) 3(P16; p2) (2.6)
%ptl_ +oepy = _3(U18: w) ., 3(/’16: p2) 2.7
% + oy = _3(1)16: v) 3(P18'; p2) (2.8)

In the above, coefficients o, and oy have been in-
troduced for the absorption of waves in the layer. They
are called absorption coefficients and assumed to be greater
than or equal to zero. It is to be noted that, when
0z = oy = 0, equations (2.1)-(2.8) can be reduced to the
Euler equations (1.1)-(1.4) with u’ = u; + ug, v/ = v; + vg,
p' =p1+p2 and p' = p; + p2. Thus the Euler equations are
a special case of the PML equations. Moreover, the spatial
derivatives involve only the total u’, v, p’ and p’. Conse-
quently, the implementation of the PML equations in finite
difference schemes are quite straightforward.

In introducing PML domains, two kinds of interfaces
are created, namely, the interfaces between the interior
domain and a PML domain and those between two PML
domains, as shown in Figure 2. The former, of course,
can be regarded as a special case of the later. At the
interfaces, v/, v, p’ and p’ are assumed to be continuous.
The absorbing coefficients, o, and oy, will be chosen such
that oy is the same across an interface normal to z and o
is the same normal to y, as in [2]. Since the Euler equations
for the interior domain are considered as PML equations
with both absorption coefficients being zero, oy or o, will
be consequently zero across an interface normal to z or y
between an interior domain and a PML domain. This is
as shown in Figure 2. It is important that oz and oy are
“matched” in this way.

If no mean flow is present, i.e., Uo = V, = 0, equations
(2.2) and (2.4) may not be used. We also note that,
when V, = 0, equations (2.1)-(2.8) are slightly different
from those of ref [1], although they are computationally
equivalent [18]. The wave reflection and transmission
properties will be re-examined below for equations (2.1)-
(2.8). In what follows, we show the wave propagation and
absorption properties of the PML equations defined above
and calculate the reflection and transmission coefficients at
an interface between two PML domains.

2.1 Linear waves in the Perfectly Matched Layer

Let a plane wave solution in the PML domain be
expressed as

[u1,uz,v1,v2,p1, P2, p1, P2

i(kez+kyy—wt
= [u10, u20, V10, ¥20, P10, P20, P10, P20] €' 5= =T ) (3)

in which a subscript 0 has been used to denote the am-
plitudes of the components. By substituting (3) into
(2.1)-(2.8), we get

(w +ioz)uig = kz(p1g + P20) + kxUs(u1g + uzq) (4.1)

(w+toy)ugg = kyVo(urg + uzq) (4.2)
(w+ioy)vig = ky(p1g + P20) + kyVo(vig + v20) (4.3)
(w+ioz)v2g = kzUo(v1g + v2q) (4.4)

(w+1i0z)p1o = kz(u1o +u20) + k2 Uo(p1g + p2g) (4.5)
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(w+10y)p2g = ky(vig + v20) + kyVo(p1g + p2g) (4.6)
(w+ioz)p1g = kz(u1g + u29) + kzUs(p19 + p20) (4.7)
(w+ioy)pag = ky(vig + v20) + kyVo(p1g + p2g) (4.8)

For convenience of discussion, let
up = ujg + uzg, vo = vig + V2q, (5)
and denote
D= (w—kello +ioz)(w—kyVo +ioy) — kzkyUsVy. (6)

It will be shown below that equations (4.1)-(4.8) support
acoustic waves, when D # 0, and vorticity and entropy
waves, when D = 0.

2.1.1 Acoustic Waves

When D # 0, it is easy to find that the amplitudes of
the wave components in (3) can be expressed in terms of
up and vg as follows :

w—kyVo + ioy

uip = Tiay__ ug (7.1)
vig = w——u’jr_'_U:T-:w{ vo (7.2)
uz2g = u%; ug (7.3)
v20 = f:_—i[;x vo (7.4)
pro = kr(w — kyVo + iaDy) ug + kzkyUs vo (7.5)
pag = ky(w — kzUs + icz) vo + kykz Vo ug (76)
pry = ke(w—kyVo + ichy) ug + kzkyUs vo (7.7)
pog = ky(w—kon+iU;)U0+kyszouo (7.8)
In addition, by (4.1) and (4.3), we have
(w+ ioz)urg — kzUs ug — k_:r
(w+ioy)vig —kyVovg  ky’
Using (7.1) and (7.2), the above gives
wtiozug _ kz (8)

wHioy vy  ky
By substituting (7.1)-(7.6) into (4.1) and (4.3), we get
(w+iog)(w —kyVo + 1Uy)
w+ 10y

_ ki(w + lo'y)UO + krky(w + iax)vo
- D

and

(w+ioy)(w — kzUo + w’z)
w+ 0z

kzky(w + ioy)ug + k2 (w + ioz)v
_ haky( v) o sl tioe)vo o (9.2)

respectively. This yields a homogeneous system for ug and
vo. For (9.1) and (9.2) to have non-trivial solutions, it is
found that the following dispersion relation for kg, ky and
w has to hold:

2
[(w +ioz)(w +i0y) = ke Us(w + ioy) — kyVo(w + iaz)]

—k2(w +i0y)? — k2 (w + i0z)? = 0. (10)

However, it has been found more convenient to express kg
and ky in terms of ugp and vo. Upon eliminating ky and
kz in the numerators of (9.1) and (9.2)
equation (8), we obtain

, respectively, using

D ug

kz = + , 11.1
: wtioy \JuZ + 02 (11.1)
ky = +—2 0 (11.2)

w+ 10z /u(z) + v(?)

The positive and negative signs indicate the direction of
wave propagation. The positive sign will be taken in the
discussions followed. For convenience, we express ug and vg
as

ug = ACOSd), (12.1)
vg = Asin ¢. (12.2)

The amplitude A and angle ¢ are complex in general.
However, as will be seen later, the wave angles are conserved
at interfaces. Since ¢ is real for solutions of the Euler
equations in the interior domain, it would remain real in
the PML domains as well.

By substituting (12.1)-(12.2) into (11.1)-(11.2) and
solving for kz and ky, we get

w+10¢
ks = 1+Uocos¢+Vosin¢cos¢’ (13.1)
w+ 10y .

14+ Uy coso + Vosm¢

ky = sin . (13.2)

Then, it follows that the plane wave solution to (4.1)-(4.8)
can be expressed as follows :

uy (14 Us cos ¢) cos ¢
u2 Vo sin ¢ cos ¢

v1 (1 + Vosin ¢)sin ¢
vy | _ A U, cos ¢ sin ¢

1| 14+ Us,cosé+ Vosing (cos ¢ + U,) cos ¢
P2 (sin¢ + Vo) sin ¢
,1 (cos ¢ + Us) cos ¢
P2 (sing + Vo) sin ¢
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(cos @) r+(3ing) y

¢ Tzr(cos ) z+ay(sine)y
140, cos 0+ V, sine ) e

w( T+U0, cos 6+ Vy siné | (14)

X e

[t is easy to see that the first exponential function of
the above expression represents a wave propagating with
the speed of sound (which is unity in the non-dimensional
variables) relative to the mean flow in the direction making
an angle ¢ with respect to the z-axis [13]. This solution,
thus, represents the acoustic wave in the PML domain.
Furthermore, when o; or oy is not zero, the magnitude of
the wave decreases exponentially as it propagates in the z
or y direction respectively. We point out also that the rate
of absorption in (14) is independent of the frequency.

2.1.2 Vorticity Waves

When D = 0, it can be shown that the plane wave
solutions of (4.1)-(4.8) represent the vorticity and entropy
waves in the PML domain, as it follows easily from (4.1)
and (4.2) that p1g + p2g = 0. The amplitudes of each
components in (3) can now be expressed in terms of ug, vg
and pg where pg = p1g + p2g. We will consider the vorticity
and entropy waves separately. For vorticity waves, we let
po = 0 and, for convenience, denote ug and vg as

ug = —Bsin 1[},
vg = Bcos. (15.2)

Then, it follows from (4.1)-(4.8) that

(w + toz) cos ¥
Jo cos P + Vo siny ’

(w+ioy)siny
Uocosyp + Vosinp

(16.1)

ky =

(16.2)

The plane wave solution to (4.1)-(4.8) can now be
expressed as

uy —U, cos ¥sin )
ug —V,sin?y
v1 Vo sin ¢ cos ¢
vy | _ B Us cos?® o

p1 |~ Uscosy + V, sin ¢ —cos Y siny
P2 sin v cos ¥
P1 — cos Y sin ¢
P2 sin v cos Y

(cos ) z+(siny)y

. t) gz(cos¥) z+oy(siny)y
X el“)( Uo cos ¥+ V, sin ¥ e_

Uo cos y+V, sin ¢ . (17)

It is easy to verify that the first exponential function
of the above expression represents a plane wave that is
propagating with the mean flow (Uo, V,). (It satisfies the
convection equation %t[ + Uogé + Vo% = 0). Furthermore,
the wave amplitudes are decreased exponentially when o
or oy is not zero.

2.1.3 Entropy Waves

For entropy waves, we let ug = vy = 0 and po = C.
Then, the plane wave solution having an angle ¥ with the
I-axis is

ux 0
U 0
U1 0
va | C 0
P1 | = UscosW + V,sin W 0
P2 0
P1 Us cos ¥
P2 Vo sin ¥

(cos W) z+(sin W)y _

¢ 7r(cos W) z4a, (sin W)y
U, cos Y+ Vg sin ¥ )e_

iw( Uocon T Vosin ¥ | (18)

X e

This solution represents the entropy wave in the PML
domain. It travels with the mean flow and decays exponen-
tially when o or oy is not zero.

2.2 Reflection and transmission at interfaces
between two Perfectly Matched Layers

We now consider wave reflection and transmission at
an interface between two PML domains. This, of course,
includes the interface between the interior domain and
a PML domain for the reason stated previously. The
absorbing coefficients, oz and oy, are assigned such that
oy is the same across an interface normal to z and o,
is the same normal to y. In what follows we show that
the reflection coefficient at an interface downstream normal
to z is zero for incident acoustic, vorticity and entropy
waves. Similar results can be established analogously for
other interfaces.

Let the interface be located downstream at z = 0
and the absorption coefficients be o,; and oy on one side
and o2 and oy on the other (Figure 3). Suppose that
the incident acoustic, vorticity and entropy waves have
amplitudes A;, B;, C; and angles ¢;, ¥;, ¥;, respectively,
then, for a subsonic mean flow, the possible reflection at
a downstream boundary is an upstream traveling acoustic
wave. Clearly, it is sufficient to consider the case when
the three incident waves have the same wavenumber in the
y direction. Otherwise, they can be considered separately.
Then, by the results of previous section, the incident,
reflected and transmitted waves can be expressed as follows:
(a) Incident waves :

uy (1 4+ Uo cos ¢;) cos ¢;
u2 Vo sin ¢; cos ¢;

vy (1 + Vo sin ¢;) sin ¢;
va | _ A; U, cos ¢; sin ¢;

p1 | ~ 14 Uscosd; + V,sing; (cos ¢; + Us) cos ¢;

P2 (sin ¢; + Vo) sin ¢;

P1 (cos ¢; + Us) cos ¢;
P2 (sin¢; + V,) sin ¢;

ar1(cosd;) s+, (sind;)y
1+Ug con &, + Vo, in b,

. (cosp)r+(sind;)y
x ew( T¥U, cos &, + Vo sin &, t) e
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+ B
U, cos ¥; + Vo sin ¥;

i (cos ¢, ) r4(sinv, )y —t)

—U, cos ¢; sin y;

-V sin? Vi

/o SIn Y; cos Y;

o cOS> Yy

— €os Y; sin Y;
sin ¥; cos Y;

— cos Y; sin Y;
sin ¥; cos ¥;

grilcos ;) r+oy(siny;)y

X e Uo cos b, + Vg sin U, e

C;
+ Uocos ¥; + Vo sin U,

To o8 ¥, Vo sin ¥,

0

oo oo

0
U, cos ¥;
Vo sin ¥

7r1(cos W) z+ay(sin¥;)y

(con¥j)zh(sin¥i)y _,
% eW(_UD oV TV ey, —t) e~

(b) Reflected wave :

Up cos ¥ +V, sin ¥

. (19.1)

uy (1 = U, cos ¢r) cos ¢r
ug —Vo sin ¢, cos ¢r

vy (1 4+ Vo sin ¢r) sin ¢
v | _ Ar —U, cos ¢r sin ¢

P1 |~ 1—=U,cosér+ V,sinor (cos ¢r — Up,) cos ¢r
P2 (sin ¢r + Vo) sin ¢~
p1 (cos dr — Uo) cos ¢r
P2 (sin ¢r + Vo) sin ¢
s Taieeeny

(c) Transmitted waves :

uy (1 4 U, cos ¢¢) cos ¢4
uo Vo sin ¢4 cos ¢y

v1 (1 + Vo sin ¢¢) sin ¢¢
vy | _ At Uo cos ¢4 sin ¢¢

P1 | = 1+ Uscos¢s + V, sin ¢y (cos ¢t + Us) cos ¢t

P2 (Sin ot + Vo) sin ¢4

p1 (cos ¢t + Uo) cos ¢
p2 (sin ¢¢ + Vo) sin ¢

oz2(cosdt) x+oy(sindy)y

. (cosdy)zH(sindy)y
x e""( TFU, cos 9 FVgonop — L)

+ Be
Uo cos Yt + Vo, sin ¢y

(cos ¥y) r+(sinvy) y —t)

e

1+ U, cos 61 F Vo 5in b¢

—Uo, cos Y4 sin Yt

—V,sin® 4

Vo sin ¢¢ cos ¢

Us cos? ¢y

— cos Y sin Yt
sin Y cos P

— cos Yt sin ¢
sin Y cos ¢

_ az2(cos vy) z+ay(sin vi)y

x e’“’( Uo cos Uy + Vo sin Uy e

U, cos i+ Vo win ¥y

0
0
0
+ Ct 0
U, cos ¥y + V, sin U, 0
0

U, cos U,

Vo sin ¥,

iw((l;(ns\lltzpz+(sil\>l'¢)y_t) _”:2(f""“‘l"’+”ytj*i"q’1)V
x e o cos T+ Vg win Uy e Uo cos U Vo sin ¥y . (19.3)

The angles of the acoustic waves are as indicated in Figure
3.

At the interface, we impose the condition that u; + us,
v1 + v2, p1 + p2 and p; + p2 be continuous. Since this
continuity is true for all values of y along the interface,
it follows that the coefficients of y in the exponents of
(19.1)-(19.3) must be the same for all the incident, reflected
and transmitted waves. This yields, for the angles of the
reflected and transmitted waves,

sin ¢r _ sin ¢;
1 —Uscospr + Vosindr 14 Uscosp; + Vosin; '
(20.1)
sin ¢¢ _ sin ¢;
1+ Uocosd + Vosing: 1+ Us,cosd; + Vosing; '
(20.2)
sin ¥t . - sin Y; ' ' (20.3)
Uo cos ¥t + Vo sin it U, cos ; + Vo sin ¥,
sin ¥, . _ sin ¥; ‘ ' (20.4)
Us cos ¥y + Vi, sin ¥y Uscos ¥, + Vosin ¥,
Solving these equations, it is found that
1 (1-=U
ér = tan”! (H-_UZ tanq&i) , (21.1)
bt = ¢i, (21.2)
Yt = Y;, (21.3)
U, =0, (21.4)

Moreover, by the continuity of u; +ug, vy +v2, p; +p2 and
p1 + p2 on both sides of z = 0, we get

A;cos ¢; — Ar cos ¢pr — B;sinp; = Ay cos ¢y — By sin ¥y,
(22.1)

A;sing; + Arsin¢r + B;cosy; = Ay sin ¢y — By cos ¢,

(22.2)
A+ Ar = Ay, (22.3)
Ai+Ar+Ci = At + Cy. (22.4)
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It is straightforward to verify that the only solution to
the above equations for any angle of incidence is

Ar =0, (23.1)
At = Ay, (23.2)
B: = B;, (23.3)
Ce = C;. (23.4)

Therefore, equations (21.1)-(21.4) and (23.1)-(23.4)
demonstrate that at an interface between two PML do-
mains downstream normal to the z-axis with absorption
coefficients being (0z1,0y) and (0;2,0y) respectively, the
reflection is null and the transmitted waves maintain the
same direction and amplitude as the incident waves at the
interface. This has been shown to be independent of the
angle of incidence and frequency of the waves.

The PML equations (2.1)-(2.8) result from separating
the spatial derivative terms of the Euler equations such
that each equation contains only the derivative with respect
to one space variable. This has been shown to give
perfectly absorbing equations. This technique of separating
spatial derivatives will be extended to the linearized Euler
equations with a non-uniform mean flow in Section 3 and,
with modifications, to the non-linear Euler equations in
Section 4.

2.3 Absorption factor and boundary conditions
at the end of a PML domain

We now estimate the rate of wave absorption in actual
computation based on the wave forms given in previous
discussions.  With finite difference schemes, particularly
with high-order schemes using wide stencils, the absorption
coefficient, i.e., oz or gy, is usually varied gradually in the
PML domain [1,2]. In the present paper, the following form
has been used for the variation of oz and oy :

o =on (2, (24)

where D is the width of the PML domain, d is the distance
from its interface with the interior domain and o, is the
maximum value of o. Alternatively, the PML domain can
also be viewed as consisting of layers with constant ¢ which
varies discretely.

At the end of a PML domain, certain boundary
conditions still need to be specified, such as a solid wall
type condition or some other radiation conditions. In the
present paper, unless otherwise noted, a solid wall boundary
condition is applied at the end of the PML domain, i.e., the
normal velocity components are set to be zero. Normally,
the variables are already quite small at the end of the PML
domain after an exponential decay. Suppose the waves
are completely reflected at the end of the PML domain,

then the total absorption factor when a wave re-enters the
interior domain can be estimated to be

_omD ( cos ¢; + COS By
e AL \1+Uocon g, +Vosind, ' 1-Ug cos by +V, ain by (25)

for the out-going acoustic waves through layers normal to
z. For the vorticity and entropy waves, this factor is

_omD cos Y, + cos P
e BT \Uocos v, +Vosin ¥, ' T=U, cos 6, +V, sin 7

) (26)

assuming the reflected wave is a upstream-traveling acoustic
wave. Clearly, absorption factors are independent of the
frequency. They are, however, dependent on the wave
angles. There will be, for instance, little absorption in a
layer normal to the z-axis if the wave angle is close to +m/2.
In actual computation, this does not present a problem as
these waves are absorbed by the layers normal to the y-axis
[2].

The parameters of the PML domains can thus be ad-
Jjusted for desired absorption. They can also be determined
independent of the size of the interior domain. Experiences
show that a value of 0,» D/(8 + 1) =~ 8 would give satisfac-
tory results. Typically, with a uniform grid of spacing Axz,
if D =10Az and B = 2, it gives omAr = 2.4.

The maximum value of o, however, will be restricted
by the stability limit of the time integration scheme used,
since an absorption term has been introduced in the PML
equations. Detailed considerations are given in the Ap-
pendix.

3. Perfectly Matched Layer equations
for a non-uniform mean flow

The above PML equations can be extended to the
linearized Euler equations with a non-uniform flow. Let the
non-dimensionalized equations be written as follows :

P

v  -ou  _ou  10p _ _
— 2P —Uzu' = Uy’ + 5—;—pl

E—-{-Uax +v3_y+ﬁaa:

(27.1)
! ! ! / D
Qv +L—,6v +‘-/8v +l¢9p

., B
ov_ =V, I_V ' Py o
3t " "8z TV ey T3y vt e

(27.2)
QZ)_’+UQZ)_’+V6_1”+ P 6_1/+8_1/
ot oz Ay v or Oy
= —Ppu — Ppv' —y(U: + Vy)p' (27.3)
/ _ / _ / a ! 6 ’
O g g0 (0w O
z y Oz Oy
= —peu’ — pyv’ — (Uz + Vyy)p' (27.4)
where U, V, P and j are the mean velocities, pressure
and density, respectively, and the subscripts z and y denote
partial derivatives.

Again, we split the variables in the PML domain and
define Perfectly Matched Layer equations as follows :
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66—% +oru = —%% - 0%’ - U + % " (28.1)
% +oyuy = —V%—’; - Uy (28.2)
%+ayv1 =—%g—i—‘7%)y—/—\7yvl+%p' (28.3)
% +ozvg = *U% — Veu (28.4)
86% +ozp1 = —715%—1;, - Ug—;;/ — Pru' —4U.p'(28.5)
% +oyp2 = —vP%% -V g—’; — Py’ —4Vyp' (28.6)
% +o:p1 = —ﬁ%—i - U‘Z—’i - pzu' = Uzp'  (28.7)
%%?- +oyp2 = —ﬁ% - V%;" —pyv' = Vyp'  (28.8)

in which v’ = u; +ug, v = vy + vo, p' = p1 +p2 and
p' = p1 + p2. If the mean flow is uniform, the above reduces
to (2.1)-(2.8). The absorption coefficients oz and oy are
chosen in the same way as those in the previous section,
l.e., oz is the same across an interface normal to the y-axis
and oy is the same across an interface normal to the z-axis.
As indicated by numerical examples in Section 5, the use
of above equations in the PML domains leads to very little
reflection of out-going waves in a non-uniform mean flow.

4. Perfectly Matched Layer equations
for non-linear Euler Equations

We now consider the application of Perfectly Absorbing
Technique to the non-linear Euler equations. Previously,
most non-reflecting boundary conditions for non-linear Euler
equations are based on the assumptions that the boundaries
are placed at the far-field and flow perturbations are small.
In such cases, i.e., when the equations can be linearized at
the boundary and the mean flow is known, the linear PML
equations of the previous section can be readily used.

However, often the mean flow at the boundary is
not known at the start of the computation or the flow
fluctuations are not small so the equations cannot be
linearized. In this section, we construct the Perfectly
Matched Layer equations for the non-linear Euler equations.

4.1 Pseudo mean flow and PML equations
Let the non-linear Euler equations be written as
Ou Ou Oou 10p

gu it — 4+ -ZE = 1
3t+uaz+v8y+p6:c 0 (29.1)

—tu—+v—+-===0 (29.1)
z p

o o 0P (a—“+a—:>=0 (29.3)

ou Ov
p (% a_y> =0  (29.4)

To absorb the out-going waves, we express the variables
in the PML domains as

u=U+uj +usg, (30.1)
v=V 4 +vg, (30.2)
p=P+p1+p2, (30.3)
p=p+p1+p2, (30.4)

where U, V, P and p represent a time-independent “pseudo
mean flow”. This pseudo mean flow needs not to be an
accurate prediction of the actual mean flow for the problem
at hand, but only resembles the actual flow. As will be
seen below, it is preferable that it satisfies the steady Euler
equations itself. For steady flow solutions, the pseudo
mean flow can be updated later in the calculation as time
marching proceeds, as described later. Usually, it will be
quite easy to obtain a pseudo mean flow that resembles
the problem at hand. For instance, a parallel flow profile
will satisfy the steady Euler equations and thus can serve
as a pseudo mean flow for problems such as mixing layers
and jets. In an example given later in this paper, a steady
point source solution will serve as a pseudo mean flow for a
problem with four out-flow boundaries.

We propose the following Perfectly Matched Layer
equations :

Shoen =1 S p 00 L
%2 4 oy = v+ VO, (31.2)
%+0yvlz_£_§_vg§+%ﬁy+vvy (31.3)
%L: +ozvg = —u% + UV, (31.4)
%pTl +oupy = —wg;i - ugs ++PU, + UP; (315)
%2 4y = -ypg_: - g:i +7PV, + VP, (316)
21 tour = o2 w2 50, + 05 (317)
%2 4 0yps =_pg_: _vg_;’+,sx7y+vﬁy (31.8)

Here, subscripts z and y have been used to denote the
partial derivatives of the pseudo mean flow.

It is easy to see that equations (31.1)-(31.8) can be
reduced to the non-linear Euler equations (29.1)-(29.4)
when 0z = 0y = 0 by adding the split equations, provided
that the time-independent pseudo mean flow itself satisfies
the steady Euler equations. It is also to be noted that,
upon linearization, they reduce to the linear PML equations
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given in (28.1)-(28.8). Furthermore, the spatial derivatives
involve the total u, v, p and p only. This leads to easy
implementation in spatial discretization.

Since the variables in the PML domain decay exponen-
tially and are nearly zero at the end of a PML domain, as
discussed in Section 2.3, adding the pseudo mean flow terms
in (31.1)-(31.8) makes the PML equations consistent. As a
result, by applying these equations, the differences between
the actual and the pseudo “mean” values are absorbed and
reduced exponentially in the PML domain. Numerical re-
sults indicate that the use of (31.1)-(31.8) leads to very little
reflection even when the out-going waves are not linear. We
expect that their use will also accelerate convergence to
steady state in aerodynamic computations.

4.2 Updating the pseudo mean flow

For steady flow solutions, i.e., when time marching to
a steady state, the pseudo mean flow may be updated as
the calculation proceeds. Suppose the residues of the Euler
equations have been reduced to a certain level at t = ¢’
Then, at t = ¢/, let

Unew =U +uj +ug, (32.1)
Vnew =V + v, + vy, (32.2)
Prew = P +p1 +pa, (32.3)
Prew =+ p1 + p2, (32.4)
and, subsequently,
up=uz =V =va=pr=pa=p =pp=0. (32.5)

This will bring the residues of the PML equations,
(31.1)-(31.8), to zero immediately. The time marching may
be resumed after this update.

5. Numerical Results

In this section, we present numerical examples applying
the PML equations given in previous sections. As pointed
out before, it is quite straightforward to implement the
PML equations in finite difference schemes since the spatial
derivatives involve only the sum of the split variables. In
our examples, a 4th-order 7-point explicit central difference
scheme has been used for the spatial discretization [8]. For
boundary grids where the central difference scheme can
not be applied, backward difference schemes of ref [15] are
used. Time integration is carried out by a 4th-order Low-
Dissipation and Low-Dispersion Runge-Kutta (LDDRK)
scheme [14]. In particular, the optimized 5-6 (multi-stage)
LDDRK scheme is used. Specifically, for a time step with p
stages, the solution is advanced from ¢t = t, to t = t, + At
as follows :

1. For i =1, ..., p, compute

K; = AtF(U™ + 3;K;_,). (33.1)

2. Then
U™l =U"+K,. (33.2)

The details are referred to ref [14].  Moreover, since an
absorption term has been introduced in PML equations,
additional stability condition is required in determining the
proper time step. Details are given in the Appendix.

In addition, we note that, according to Fourier analysis
[16], a central difference scheme can only resolve a limited
range of long waves. It is desirable that the short wave
components be eliminated or damped in computation. In
examples presented here, numerical filtering has been uti-
lized to filter the short waves. In particular, a 10th order
numerical filter is applied every 10 time steps. The numeri-
cal filter has been designed to reduce only the amplitude of
short waves that are not resolved by the central difference
schemes. The details are given in the Appendix. The use
of filter also reduces the numerical instability encountered
with backward differences at boundary grids.

Three examples will be presented below. The first
two deal with non-uniform mean flows of a mixing layer
and a source/sink flow, respectively. The third example
tests the non-linear PML equations where the steady flow
generated by a mass source and a time-dependent flow by a
small acoustic perturbation are computed directly from the
non-linear Euler equations.

5.1 Mixing Layer

The linearized Euler equations (27.1)-(27.4) are solved
with a parallel mean flow whose velocity profile is given as
follows :

0= %[(Ul +Us) + (U — Uz)tanh(y/éw)] (34)

For the present calculations, U; = 0.6 and U, = 0.2 (non-
dimensionalized by the speed of sound of the upper stream).
The mean pressure is constant and the mean density profile
is obtained using Crocco’s relation in which the temperature
is held the same for the two streams [17]. The mixing layer
vorticity thickness, 6., is taken to be 5Ay.

The parallel shear layer supports the Kelvin-Helmholtz
instability wave. The instability wave grows exponentially
as it propagates downstream. The linear instability wave
solution can be found by solving the compressible Rayleigh
equation [17]. At the out-flow, the mean velocity and
density are non-uniform. The purpose of this example is to
demonstrate the validity of the PML equations proposed in
Section 3.

The interior computational domain, where the Euler
equations (27.1)-(27.4) are applied, is [0,200] x [—40, 40]
with Az = 2 and Ay = 1. Eigenfunctions of the Kelvin-
Helmholtz instability wave are forced at the inflow at z = 0
for v/, v', p’ and p’. The chosen non-dimensional frequency

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com



http://www.pdffactory.com

is w = 0.035, which corresponds to the maximum spatial
growth rate. At the out-flow boundary r = 200 and
radiation boundaries y = +40, absorbing PML domains are
applied using equations (27.1)-(27.8). The use of PML
equations leads to very little reflection of the out-going
disturbances, including the transient fluctuations. Shown
in Figure 4 are the instantaneous u-velocity and pressure
contours in which PML domains of 10 grid points have
been used in the computation. For clarity, the contours
in the PML domains are not shown. Comparisons of the
numerical solution with linear instability wave solution are
shown in Figure 5 for the u-velocity and the pressure as a
function of y at z = 194. Very good agreement is found.
The amplitude of the u-velocity along the centerline y = 0
is also shown in Figure 6, exhibiting an exponential growth.
It agrees very well with the spatial growth rate predicted
by the linear stability theory, shown as the solid line.

To further demonstrate the effectiveness of the PML
equations, a numerical reflection coefficient is computed.
This is obtained by comparing the numerical solution with
a reference solution. The reference solution is obtained
by repeating the computation using the same spatial grid
and time step sizes but a larger computational domain so
that its solution is not affected by the numerical boundary
conditions. The difference between the two solutions has
been computed along the vertical line z = 194 near the
exit. This measures the reflected waves of the out-flow
boundary. The maximum pressure difference as a function
of time is shown in Figure 7 for the employed PML domains
of width 8, 10, 16 and 20 grid points, respectively. The
differences have been scaled by the maximum amplitude
of the pressure. With 10 points in the PML domain, the
reflection is less than 0.03% and decreases as the width of
the absorbing domain increases.

5.2 Acoustic wave in a source/sink flow

The second example for the PML equations of non-
uniform mean flow is to compute the acoustic waves in
source and sink flows. The mean flow is generated by
a mass source/sink as that given in ref [9]. Here the
source/sink is centered at (z,y) = (—20,0). Specifically, the
source term in the continuity equation is of the form

r<rg

- —q,

where r = \/(z +20)2 + y2. For the source flow, values

of ¢ = —0.569 and ro = 10 have been taken which give
a mass flux (outward) of 50 from the source region. The
computational domain for the linearized Euler equations is
[—50,50] x [-50,50] with Az = Ay = 1. The mean flow is
non-uniform at all four boundaries. The mean velocity field
is as shown in Figure 8.

The acoustic wave is generated by adding source terms
to the linearized Euler equations (27.1)-(27.4). Specifically,

the linearized terms of —uS/p, ~vS/p, vpS/p and S are
added to the right hand sides of (27.1)-(27.4), respectively.
Here S =S+ 5" and s’ is given as follows :

s'(z,y,t) = 0.5¢~(In2)7*/9

where r = \/(z + 20)2 + y2.

Figure 9 shows the instantaneous pressure contours for
frequency w = 1. For this calculation, the PML domains
have a width of 10 grid points. A comparison with the exact
(closed form) solution along y = 0 is shown in Figure 10.
Excellent agreement is found. The proposed PML equations
work just as well for a lower frequency w = 0.2, as shown
in Figure 11. This demonstrates that the effectiveness of
the PML equations is not affected by variations in wave
frequency or wavelength, as pointed out in Section 2. The
numerical reflection coefficients are shown in Figure 12 for
w =0.2.

Similar calculations have been carried out for a sink
flow, with values of ¢ = 0.569 and ro = 10 in (35) for the
mean flow. This yields a mass flux of 50 into the source
region, giving four in-flow boundaries. Figure 13 shows the
density variation along y = 0 and its comparison with the
exact solution. For this calculation, w = 0.6. Again, good
agreement is found.

cos(wt) (36)

5.3 Steady flow of non-linear Euler equations

In this example, we first compute the steady flow
generated by a mass source by solving the non-linear Euler
equations directly. Then, a small acoustic perturbation is
added to the non-linear equations, similar to the calculations
performed in ref [9]. The purpose of this example is to test
the non-linear PML equations given in (31.1)-(31.8).

For the steady flow, we solve equations (29.1)-(29.4)
in Section 4 where the right hand sides will be modified
to be —uS/p, —vS/p, vpS/p and S for the four equations,
respectively. The mass source function S is as given in (35),
with ¢ = —0.569, 70 = 10 but centered at (z,y) = (—40,0).

To apply the PML equations (31.1)-(31.8), a pseudo
mean flow has to be chosen for the PML domains. Since
all the four sides will be out-flow boundaries in the present
problem, we choose the pseudo mean flow to be the steady
flow of a point source located at z = y = 0. Such a steady
flow can be obtained in a simple way. The details are given
in the Appendix ( A value of Q = 1 has been used). We
emphasize that this pseudo mean flow is independent of the
specifics of the problem, such as the total flux, the center
of the source, etc.

The computational domain is [—100,100] x [-60, 60]
with PML domains of 20 grid points at four sides and
Ar = Ay = 1. Thus the interior domain where the non-
linear Euler equations are applied is [—80,80] x [—40, 40].
It is found that PML domains larger than those in the

linear problems are needed in this example. Values of
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3 =4 and omAzr = 2 have been used for the variation of
absorption coefficients. The variables in the interior domain
are initialized as follows :

The variables in the PML domains are all set to be zero
initially. The maximum residue of the four equations as
a function of time is shown in Figure 14. The residues
decrease very quickly, indicating that the transient flow
is leaving the computational domain with little reflection.
The convergence, however, is slowed when the residues have
reached the level of the discretization error, of order 1072,
Figure 15 and 16 shows the time evolutions of the density
and u-velocity distributions along y = 0. It is seen, indeed,
that the transient fluctuations are leaving the boundaries
with very little reflection. Figure 17 and 18 shows the
density and velocity profiles along y = 0 as functions of z
after 2000 time steps. Also shown are the exact solutions.
Very good agreement is observed.

We next compute the time-dependent flow when a
small acoustic perturbation is added to the steady flow
Just obtained. The acoustic forcing will be introduced by
modifying the source terms. Specifically, the right hand
sides of equations (29.1)-(29.4) are now —uS/p, —vS/p,
vpS/p and S, respectively, where S = S + s’. The form of
s' is as given in (36) with the amplitude now being 1078,

To capture the minute acoustic disturbances, the
residues of the steady flow solution will be first brought
to zero to eliminate the numerical noise. Thus, before the
acoustic forcing is initiated, the pseudo mean flow is up-
dated as described by (32). This brings down the residues
of the PML equations to zero immediately. Then, the
canceling-the-residue technique of ref [9] is applied to the
Euler equations in the interior domain. This is to add the
residue of each equation to its right hand side but with an
opposite sign. In this way, the residues of the Euler equa-
tions are also brought to zero immediately. Finally, since
this steady solution is to be “preserved”, the numerical fil-
tering will be applied, at each time step, to the intermediate
stage variables of the Runge-Kutta scheme, namely K, in
(33), rather than to the solution variables.

Figure 19 shows the density fluctuation at two chosen
locations as a function of time. The acoustic forcing is
started at ¢t = 0 in these plots. For this calculation, w = 1.0.
Plotted are p — Psteady Where pgieaqy is the value of the
steady solution. It is seen that fluctuations are periodic
in time after a transient interval. Since the two chosen
locations, (z,y) = (+70,0), are close to the PML domains,
this indicates that the acoustic waves are exiting the interior
domain with very little reflection. Instantaneous density
distribution at ¢ = 200 along y = 0 is shown in Figure
20, which agrees very well with the exact solution. This
example, hence, demonstrates that it is possible to apply the
PML equations (31.1)-(31.8) with highly accurate results
even when the exact mean flow is not available.

10

6. Concluding Remarks

A Perfectly Absorbing Technique (PAT) is proposed
for numerical solutions of the Euler equations. Perfectly
Matched Layer equations have been constructed for linear as
well as non-linear Euler equations as an absorbing boundary
condition. Plane wave solutions to the PML equations are
developed for a uniform flow in an arbitrary direction. It is
shown that the proposed PML equations are reflectionless
(theoretically) for out-going acoustic, vorticity and entropy
waves for any angle of incidence and frequency of the
wave. Numerical absorption factors are also estimated.
The effectiveness of the absorbing boundary conditions is
shown to be independent of the wave frequency/wavelength.
Moreover, by introducing a “pseudo mean flow”, PML
equations for non-linear Euler equations are constructed.
They can be applied without the exact mean flow being
available at the boundary. Finally, the effectiveness of
the proposed PML equations have been demonstrated by
numerical examples.

The PML equations have been presented here with the
Euler equations being written in primitive variables. In a
recent work, the current technique has been extended to
equations written in conservation form and to axisymmetric
calculations as well [18]. Compared with numerical bound-
ary conditions based on the characteristics or asymptotic
solutions, the Perfectly Absorbing Technique employs more
equations at the boundary. However, the present technique
applies to both the radiation and out-flow boundaries and
to both the linear and non-linear out-going waves. It is not
necessary to apply the proposed absorbing conditions at a
far field. The PML equations also apply where an asymp-
totic solution is not available. Thus it is a more general
technique. Numerical results indicate that it is also a highly
accurate technique. As such, it is especially suitable for
time accurate calculations such as those in computational
aeroacoustics.

Appendix
A. Numerical Stability

Introduction of absorption coefficients in the PML
equations warrants additional stability consideration in
choosing the time step for a given time integration scheme.
Consider convective wave equation modified by an absorp-
tion coefficient o :

ﬂ+c—a—f-+

ot Or of=0

(A1)

where ¢ denotes the wave speed. Using Fourier analysis
[16], the semi-discrete equation yields

= t+ick*f+of=0

- (A2)
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where f is the spatial Fourier transform of f and k* is the
effective wave number of the central difference scheme used
in the spatial discretization [14]. For numerical stability,
the time step At should be chosen such that AA¢, where A
is the eigenvalue of the semi-discrete equation, is within the
stability limit of the time integration scheme.
Let the stability boundary of the time integration

scheme, e.g., the Runge-Kutta scheme, be denoted as

ArAt = =S(X\AL) (A1.3)
where A\; and A; are the real and imaginary parts of
A, as shown in Figure 21. For equation (A2), we have
A = —ick™ — 0. Then, it follows that, for numerical
stability, we need

oAt < S(ckmazAt) (A1.4)
where kj,qz is the maximum effective wave number. This
gives an additional condition for the time step At, or
conversely, a restriction on the maximum value of o allowed.

B. Numerical Filtering

Consider a numerical filtering process

N
fi=fi- Z de fiye (B1)

¢=—N

where f; is the value of the original function on a grid
with uniform spacing of Az and f; is that of the filtered
function. The above can be regarded as a special case of
the continuous relation

N

f@)=f@)= > def(z+tAz). (B2)

£=—-N

Applying a Fourier transform to the above equation on both
sides, we obtain

N

f(k) = (1 - dee"*“) f(k) (B3)
=—-N

where f and f are the Fourier transforms of f and f,

respectively.

The function inside the parentheses of (B3) represents
the modification to the amplitude for wave number k. It
is desirable that the numerical filtering reduces only the
amplitude of the short waves (with large k) that are not
resolved in the finite difference scheme. In this paper, we
have chosen the coefficients d, such that

N
1- Z dpe'*PT = 1 — sin” (k;&x) (B4)
=—N

11

where n is the order of the filter. It yields exactly N = n/2
and dy =d_,y. For n = 6, 8, 10, we have

n=6 N =3,dy = %,dl =“g-d2= %7
1
d3=—éz. ) )
n=8 N =4,dy = %,dl =*3‘—2,d2 = é»
1
g
10¢ 5
n=10,N=5,d0=m, 1="ﬁ,d2=11.7387
45
d3=—m,d4:m1 Sz_ﬁ-

It is, of course, also possible to further optimize these
coefficients. In the present calculations, the 10th order filter
has been used in all the examples. For grid points near
the boundary where the central stencil does not apply, an
“odd” extrapolation of function is carried out for simplicity.
Specifically, if z = 0 is the left boundary, we use

f(z) =2f(0) = f(-x)
for z < 0.

C. Point Source/Sink Flow

We consider the steady flow due to a point source
located at (z,y) = (0,0). In polar coordinates (r,6), the
solution depends on r along. Thus, by the continuity
equation, we have

purr = Q (c1)

where u, is the radial velocity and 27Q is the total mass
flux (source flow if Q@ > 0 and sink flow if Q < 0). Applying
the momentum equation in the radial direction

2

10 > Op _ v
12 (putn) + 22 =, (c2)
and the isentropic relation
p=1p’ (C3)
Y

an ordinary differential equation is obtained for p :

(,,v_Q_2>d_p_Q_2=0 (c4)

pr? | dr r3

(Here, variables have been non-dimensionalized by a~
P and pooago for the velocity, density and pressure,
respectively.)
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From (C4), it is easy to find that the asymptotic form
of p for r large is
Q‘Z

22 for
-

px1-— r— 00. (C5)
Thus p can be found by integrating (C4) numerically using
(C5) as the starting value for a large r. Alternatively,
(C5) can also be used as an approximate solution for p at
boundary. Once p is found, u, and p can be determined by

(C1) and (C3), respectively.
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Figure 1. A schematic of the interior and PML domain.

Figure 4. Instantaneous contours of the instability wave.
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Figure 5. Comparison of the numerical (circle) and linear
instability (solid) solutions at £ = 194 at a given time. (a)
y u-velocity, (b) pressure.

10
o
(le' Gy) Q)[ (GXZ’ c’y)
A
2
2
0 % ‘
2
10°
x=0 0 20 4 6 8 100 120 140 160 180 200
X
Figure 6. Amplitude of u-velocity along the centerline
Figure 3. Angles of incident, reflected and transmitted y = 0. The solid line represents the exponential growth rate
acoustic waves. of the linear instability solution.
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Figure 7. Maximum pressure difference of the computed
and reference solutions along r = 194. Indicated are the Figure 10. Density variation of the acoustic wave along
width (grid points) of the PML domains used. y=0. w=1. ——— numerical, - - - - - - exact.
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Figure 8. Mean velocity vector field of the source flow,
showing non-uniform out-flow boundaries.
Figure 11. Density variation of the acoustic wave along

y=0. w=0.2. ——— numerical, - - - - - - exact.
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Figure 9. Instantaneous density contours of the computed Figure 12. Maximum density difference between the com-
acoustic wave. Az = Ay =1. w = 1.0. ¢t = 200. puted and the reference solutions along z = 46. w = 0.2.
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Figure 13. Density variation of the acoustic wave along

y = 0 for a sink mean flow. w = 0.6. numerical, - -
- - - - exact. i
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Figure 16. Time evolution of u-velocity distribution along
é y = 0. Dotted lines denote the location of PML domains.
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Figure 14. Time history of the maximum residue of the
Euler equations.
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Figure 17. Density distribution along y = 0 after 2000 time

_/ X steps. numerical, - - - - - - exact.
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Figure 18. wu-velocity distribution along y = 0 after 2000

Figure 15. Time evolution of density distribution along time steps. numerical, - - - - - - exact.

y = 0. Dotted lines denote the location of PML domains.
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Figure 19. Density fluctuation as a function of time at two
locations. (a) (z,y) = (=70,0), (b) (x,y) = (70,0).
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Figure 20. Instantaneous density distribution of the acoustic
wave along y = 0 computed directly from the non-linear
Euler equations. w = 1.0, ¢t = 200. numerical, - - - -
- - exact.

16

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com



http://www.pdffactory.com

