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We present a numerical computation of exact Green’s functions for their application in the theory of acous-
tic analogy. The this paper, the exact Green’s function is defined as the solution of the convective wave equation
that satisfies all solid wall boundary conditions. Our numerical method is based on the Boundary Element
Method in the frequency domain. A general three dimensional cylindrical geometry with arbitrary cross sec-
tion is assumed for the solid surfaces. However, the source point in the computed Green’s function can be
either a two-dimensional line source or a three-dimensional point source. In addition, the double divergence of
the Green’s function, to be used in the acoustic analogy formulation, is computed directly from the boundary
element solution. It is shown that in order to compute the double divergence for field points close to the bound-
ary, a better accuracy of the boundary element solution than what is sufficient for the Green’s function itself
is necessary. For this purpose, a spectral collocation method with high-order orthogonal polynomials as the
basis functions is used. Exponential rate of convergence is demonstrated. Numerical solutions are compared
with the known exact solutions whenever possible. Finally, an example of applying the numerically computed
exact Green’s function in the acoustic analogy for a turbulent flow over a circular cylinder is presented.

. Introduction

The free space Green’s function of the wave equation has been used extensively in the theory of acoustic analogy.
For instance, in the Ffowcs Williams-Hawkings equation, through the use of the free space Green’s function, the
far field noise is expressed as the sum of surface integrals of unsteady pressure and a volume integral of turbulent
sources.” "% This has become a very useful approach in recent airframe noise computations.®*? On the other hand, if
one uses an exact, or tailored, Green’s function, which satisfies the wall boundary conditions on all solid surfaces, the
far field pressure fluctuation can be expressed as a single volume integral over the sound producing region.> 813 The
elimination of the need for unsteady surface pressure could be advantageous in developing noise prediction strategies
based on steady CFD calculations. However, except for the very simple geometries, the exact Green’s function has to
be found numerically.

In this paper, we will study the numerical solution of the exact Green’s function by the Boundary Element Method
(BEM). The boundary element method is a meshless method that is well-suited for solving the wave equation with
complex geometries. It also reduces the dimension of the problem by one, making it an efficient numerical tool. With
this method, the mean flow has to be approximated as uniform but it can take full account of the complex geometry.
This may be an acceptable approximation for airframe noise because the mean flow Mach number is usually low, of
the order of 0.2, and the dominant wave propagation effects are the reflection and diffraction by the high lift system, a
feature related purely to the geometry.
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Numerical solution of the convective Helmholtz equation by the Boundary Element Method has been studied previ-
ously.1911.13.15 One of the main points of the present paper is about the the computation of the double divergence of
the exact Green’s function for its use in the acoustic analogy calculations. In most BEM codes in the literature, the
boundary elements are often limited to constant or linear functions. This may be adequate for computing the Green’
function itself. However, as we will demonstrate in this paper, in order to compute the spatial double divergence of
the Green’s function for flow regions close to the solid boundaries, a higher accuracy than what is sufficient for the
Green’s function itself is necessary. We present a spectral collocation boundary element method for the solution of
the convective Helmholtz equation where orthogonal polynomials (the Chebyshev polynomials) are used as the basis
functions. Furthermore, discontinuous boundary elements are used so that the order of the scheme can be increased
easily. Exponential rate of convergence is achieved.

A second point of the paper is on the modeling of three-dimensional point source for cylindrical bodies. Our for-
mulation starts with the three-dimensional convective wave equation. The general formulation is then reduced to
applications where the surfaces of solid bodies can be regarded as two-dimensional, as is often the case in wind tunnel
tests for aircraft slat noise where the slat brackets and other supporting structures are neglected. This differs from the
standard truly two-dimensional equations, because the far field locations, corresponding to microphones, can never be
two-dimensional.

The rest of the paper is organized as follows. In the next section, the boundary integral equation for the exact Green’s
function is formulated in three-dimensional space with cylindrical bodies. In section Ill, the spectral collocation
method is described in detail and the treatment of kernel singularities is discussed. Numerical solutions are presented
in section 1V and the spectral accuracy of the method for the exact Green’s function as well as its double divergence is
demonstrated. An example of applying the exact Green’s function in the computation of acoustic radiation generated
by a turbulent flow over a circular cylinder is presented in section V. Section VI has the concluding remarks.

[I. Exact Green’sfunction and the boundary integral equation

A. Formulation of the Boundary Integral Equation

For the present paper, the exact Green’s function is defined as the solution to the convective wave equation

0 U ? 2 -5 5 1
(&+ .v> (%, v, t,5) — V2g(x,y.t,5) = 0t — $)d(x — y) (1)

with boundary condition for its normal derivative

99 = 0 on all solid surfaces I" @)
on

Here, y is a fixed source point, or the far field observation point, and x = (z1, z2, x3) is the field point for the solution.
The uniform mean flow is assumed to be in the direction of z; with U = (M, 0,0) where M is the Mach number.
The exact Green’s function is also referred to as the “tailored” Green’s function,® as it is specific to the geometry of
the acoustic problem under investigation. When y is a far field observation point, the adjoint equation of (1) is implied
with U replaced by —U. Throughout this paper, the bold face letters indicate vectors or matrices.

We will find the solution of (1) in the frequency domain. After a Fourier transform in time, the equation for the
frequency domain Green’s function g(x,y,w, s) is

(—iw + U - V)?§ — V2§ = e™*5(x — y) (3)
with a boundary condition similar to (2) for g.

To cast (3) into a Boundary Integral Equation (BIE), we use a direct formulation procedure.*® Consider the free space
Green’s function for the adjoint problem,

(—iw—U-V)%Go — V3§ = 6(x — 2) (4)

where go(x, z,w) satisfies only the far field radiation condition. The solution for g is well-known as
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Ry V(@1—21)2/ 824 (22— 22)2+ (w3 —23)2

4B/ (x1 — 21)2 /3% + (x2 — 22)% + (w3 — 23)2

iwM (z1—21)/8>

®)

Jo(x,z,w) =€

where

5= VI

By multiplying (3) with go(x, z, w) and (4) with §(x,y,w, s) and subtracting the two equations, it can be shown that

V[-2iwgogU+ (50U Vg —gU Vgo)U —(§o Vg —3Vio)] = Go(x, 2, w)e™ d(x~y) — §(x,y,w, 5)d(x —2) (6)

By integrating the above over the body of fluids external to all solid bodies and applying the Divergence Theorem, we
will get

g0y, 2,w) — §(z,y,w,s) = / n - [—2iwgogU + (§oU - VG — gU - Vgo)U — (§oVg — §Vgo)ldxs  (7)
s
where S denotes all solid surfaces and x, is a point on S. In our derivation, we will assume that the normal vector
n is out of the fluid and into the solid bodies. After further simplification of (7) and an application of the solid wall
boundary condition for g, we have the following integral relation for the exact Green’s function, with the arguments
of all functions given explicitly,

g(Z, Yy, w, S) = go(ya Z7w)eiws + / |:2iWUn§O(X57 va)§<xsa Y, w, S) + UH[U ! ng(X57 z, w)]g(xs, Y, Ww, S)

S

96
—%(XS, z7w)§(xs,y,w, 3) - UngO(XsazaW)[U ’ Vg(xsvy7w7 S)] dx (8)
where

Up=n-U

Equation (8) shows that §(z, y,w, s) at any field point z can be found through an integral that involves only the value
of g on the solid surfaces, namely, §(xs,y,w, s). By the limit z — z, where z, is a boundary point, (8) will yield a
boundary integral equation for §(x,y,w, s).

B. Cylindrical Bodies

uniform mean flow
\\ U

field point
Cross section )
contour C oy source point

Figure 1. Schematic of a cylindrical body in a uniform flow.
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We will consider a special case where all the surfaces have a constant cross section in the 21 -z plane, i.e., the equation
for the solid surface is independent of a third variable 3, as illustrated in Figure 1. Now consider the Fourier transform
of g(z,y,w, s) in z3 as

g(27 k37y7w7 S) = / g(z7 y7w7 S)GZkSZSd'Zg (9)
and its inverse
~ 1 > ~l= —iksz
9(z,y,w,s) = p 9(z, ks, y,w, s)e” "3 dksg (10)
7T — 00

where a hat denotes the transformed function and z = (21, 22).

By applying the Fourier transform to (8) , we get

Q(Z, k37va7 'S) = go(yvzv k3vw)eiws + /

|:2Z(.UUng0 (x87 z, k37 w)g(XSv y,w, S) +Un [U : vgo(x87 z, k37 w)]g(XSy y,w, 'S)
S

——n(xs, Z, k3, w)§(xXs,¥,w, 8) — Ungo(Xs,Z, k3, w, $)[U - Vi(xs,y, w)]} dx, (11)

The first term in (11) is the Fourier transform of the free space Green’s function go(y, z,w) , which is the following,

e’i%\/(111*21)2/52+(y2*22)2+(93*23)2 ir ik
€38 dzs = "V Go(y,2,w0) (12)

oo
g Z — iw _ /52
Go(y, 2, k3, w) _/ i@ M(y1—21)
) ) o 47rﬂ\/(y1 —21)2/B2 + (y2 — 22)% + (ys — 23)2

where

) = ﬁewM(yl—m)/ﬁzHél)(W) w

and an over bar denotes two-dimensionalized variables,

€l

GO(S’727

y = (yhy?)a r= \/(yl - 21)2/ﬁ2 + (y? - 22)27 and w= \/ w2/52 - k%

Further, since the surface cross section is independent of z3, the surface integral in (11) can now be written as follows,

o0
g(i7k37y7w’s):eik3y3eiwsG0(y,Z,(ﬂ)+// |:2iWUn6ik313Go(xs,z,@)g(xs,y,w,s)+Un[U-Veik3z3Go(xs,z,u‘;)]g(xs,y,w,s)
C J -0

e 00 (2. 0) (%, 7,,5) — Une™ 5 Go(%,2,8)[U - V(xs,y,0)] | drsd

where C' is the contour of the surface cross section. Upon carrying out the integral for =3, we get an equation for
g(i7 k37 y,w, S) as

9@, ks, y,w,8) = ei’““‘y“‘e”“"Go(97i7w)+/

[inUnGo (Xs,2,0)§(Xs, k3,y,w, 8)+Un[U-VGo(Xs,2,0)]§(Xs, k3, y,w, 5)
C

_%(i37i7@)g(25, k37Y7w7 8) - UnGo(is7i7@)[U : Vg(xﬁ k37y7w)] dXs (14)
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Finally, it is convenient to express §(z, k3,y, w, s) as

(@, ks, y,w,5) = "™ G p(2,7,w) (15)

and, after further simplifications, equation (14) can be written in terms of Gg(z,y,®) as

GB(Zv}_’7L"_)) = 6iwsG0(y7 27("_}) + / [iWUnGO(isa Z,U_J)GB()ZS,}_’,(D) - Gl(isa Za@)GB(isava)

c

0Gp(Xs,¥,0)7 ,_
—UnUsGo(%s, 2, @) M} d%, (16)
0%
where Gy (X5, Z, @) is that given (13) and
') swM(zy—21) (¥ — 7).
G (X,2,0) = —;—C;ez 52 le(l)(W) an

Here w in (16) is the tangential derivative of G'g on the contour C' and Uy in (16) is the tangent component
of the mean velocity U. It is easy to show that (16) is equivalent to the integral relation for the true 2D convective
Helmholtz equation with k3 = 0, e.g., in refs[1,9].

By the limit z — z, in (16) where z is a point on C, we have the following boundary integral equation

CSGB(Zsayv(D) = Go(}_’,zs,@) +/

iWUnGB(isava)GO(isaisa‘D)dis_/ Gl(isaisaw)GB(isava)dis
C C

- / UnUt MGO (isa Zsa ‘D)dis (18)
C 3:65

In the above, C is a constant resulted from the singular kernel G (X5, zs, @) in the limit process. Its value in general
depends on the smoothness of the boundary.® %> For two-dimensional boundaries, the value for C, is given explicitly
in ref[9]. On a smooth boundary point, the value of C, has been found to be 1, independent of the mean flow
Mach number. In the spectral collocation method to be discussed below, the collocation points are the interior Gauss-
Chebyshev points and thus will always be smooth boundary points.

[11. Spectral collocation Boundary Element Method

We will use a spectral collocation boundary element method to solve the boundary integral equation (18). Let the
boundary C' be discretized into elements I'; as

N
c=Ury

j=1

On each element I';, let the boundary be parametrized as

%, =1;(t),t €[0,1] (19)

where ¢ is the local parameterization variable and r(¢) is a cubic spline connecting grid points on the boundary with
continuous tangential derivatives on smooth boundaries. The solution G 5 (X, ¥, ) on each I'; as a function of ¢ is
approximated by an expansion in a set of basis functions {¢,(¢),n =0, 1,2, ..., P} as

.
Gp(%.,7,@) = Gp(r;(t),5,) = >_ uln(t) (20)
n=0
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(n)

where ;" are the expansion coefficients and P is the highest order of the polynomials in the expansion.

By substituting (20) into the right hand side of (18), we get

P

%GB(Z&S’? ) GO yuzsa Z/ Gl r] ZS7 ) lz ¢" ‘| ’I‘ )’dt

n=0

N 1 P N 1 P
+>° / iwUnGol(r; (1), s, ®) [Z u§”>¢n(t)] ()| dt = > / UnUGol(r;(t), 25, @) lz u§">¢;(t)] dt
=iJo n=0 j=1"9 n=0

(21)
where a prime indicates the derivative with respect to ¢. (Note that for the tangential derivative of GG g appeared in the
last term of (18), we have

0Gp(Xs,5,w0) r(t) 1 0Gp
0T 5 = VG ()] @) ot )

In the spectral collocation method, we force (21) to be satisfied on a set of collocation points (Appendix)

= ZEL)) on element I"; where ZEL)) =r;(ty),£=0,1,..,P

NI
»

Figure 2. Schematic diagram showing boundary elements and collocation points.

This yields immediately the following linear system of equations for the expansion coefficients,

1 .
52’&1( )¢n(tl) Go(y7 1 a / Gl rg , 7, , [ZU )(bn ]‘I‘ ‘dt

n=0

P
+Z/ iwUaGo(r; (1), 2", @ [Zu%n ]‘r \dt—Z/ UnlUGo(r; (), 2", )lZ@%N)} dt

n=0
(22)
for{=0,1,..,P,i=1,...,N. The system of equations (22) can be written as

Hu=g¢g (23)
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where u is a vector that contains all the expansion coefficients u§"),

(0)
(1)

(P)
Uy N(P+1)x1

The entries for matrix H and g are

1
{H},, = (bn(tf dij +/ Gi( r] )7 z; 7 W) (t ‘r |dt_/0 iwl, GO(rJ() Z ,@)én(t) |r;-(t)|dt

1
+ [ UaliGoley 01,54, )6, (1) (24)
0

{g}, = Goly, 2", @) (25)
withI =@ —-1)(P+1)+/¢andJ=(j —1)(P+1)+n,forl{,n=0,1,2,..., P.
For results reported in this paper, Chebyshev polynomials will be used as the basis functions and the interior Gauss-

Chebyshev points as collocation points (Appendix). To achieve spectral accuracy, it is important to treat properly
the singularities present in the integrals in forming the H matrix from (24) When the collocation point is on the

element of integration, i.e., when j = i, the kernel functions Go(r;(t),z,; ', @) and Gy (r;(t), f )@ @) in (24) will have
a logarithmic singularity.® Specifically, recall that by (13), we have

=(0)
y 2Ly

L i (@r) (26)

in which E = eiMi()-2"11/5% gng

F = JIr®) = 201/82 + fra() — 273 = \Jira(0) = ra00)12/5 + [ma(0) — mi(80)3

~ Jt — tel /Il (01382 + (e (8 (27)
In the above, [-]; and [-]o denote the first and second components of the vector in the brackets. For Hankel function of
the first kind H\" (), we have

Hél)(z) = Jo(z) +iYo(2) = %m(z)Jo(z) + smooth terms (28)

where “smooth terms” denotes analytic and infinitely differentiable functions. This will result in a logarithmic sin-

gularity for G at t = ¢, as given in (26). To separate the singular and smooth parts in Go(r;(t),z; ', o), following
ref[8], we rewrite it as

yZ; s

21 iE 2
5 [H @) = Zin(le -t o(@n)] + 752 In(l — te Jo(@r)

= 6P 0.20.0) + 6P, 0.2 @)t — 1

yZ; s y 2L

Go(ri(t) 2( ) (:J) =

Then, an integral involving G on a singular element, when j = 4, will be carried out as follows,
' ' (A) o(B)
/ (1) Go (ri(8), g@,@)dt:/ U(t)Gy <ri<t>,z§-“,w>dt+/ WGy (ri(t), 2 @) n [t — to|dt - (29)
0 0 0
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where the first integral is evaluated by a regular Gauss-Legendre quadrature and the second integral is to be evaluated
using a logarithmic quadrature.

Similarly, it can be shown that G (r;(t), z ’“) ,w) as defined in (17) has also a logarithmic singularity at ¢t = ¢, see

ref[8], even though G4 (r;(¢), Z( ), ) actually remains finite. To accurately evaluate the integral, by the asymptotic
(0)

expansion of H;(z), we again rewrite G (r;(t),z,; ’,w) as
_(0) _ 1wk o 24 o Wk 24 -
Gi(ri(t), 2", @) = W[Hl(l)(wr) = It = te) 1 (@n)] = S (e = te) i (@)

= P ;(0),20,0) + 6B (r,(1), 29, 0) In |t — ¢,

where F = E[(r; — z( ) - n]/7 by the definition in (17). Then, the integral involving G1(r;(t), E ) @ @) in (24) is
carried out in a similar manner as in (29).

Once u is found, G(z,y,®) can be computed by (16) and the 3D Green’s function g(z,y,w, s) by (10). Further
computational details are given in the next section.

IV. Numerical solutions

A. Two-dimensional (2D) solutions

We will first show examples of the spectral collocation method in 2D cases, i.e., the numerical solutions of (18) with
ks = 0.

After the expansion coefficients u\™ are found from the linear system (23), the value of the Green’s function at any
field point z = (21, 22) is computed as the following, with all the arguments given explicitly,

N 1

Gp(2,¥,0) = Go(y,2,0) = > _ | Gi(r,(t [Zu(")@l ] L(t)| dt
j=1
N 1
+Z/ iwUnGol(r;(t), 2, ) lz ul™ @, (t) ]|r |dt—Z/ UnUsGo(r; (1), 2, &) [Zu% ]dt (30)
j=1"9

where G1(ro(t),z,w) and G1(r;(t),z, @) are known functions, defined in (13) and (17) respectively. The double
divergence of the Green’s function is found by taking directly the spatial derivatives of (30) as follows,

o? o H? o _ Z (n) ’
WGB(ZJ’W) 9207, = Go(¥,2,0) Z/( 9205, é)zJ i(t),2,0) lZO u M on (t) | |r()| dt

0

N 1 2
wlUa—2 G
+Z/O Wn 0,
Jj=1

N 1 2 P
_ (n) 0 P (n) o
,Z,0) [Zu on(t ‘| r (t)’ dt—zl/o UnUtmGo(r] (t),z,w) [ZO u; ngn(t)] dt

Jj= n=

(31)

Since the field point z is off the boundary, all integrals in (31) are theoretically well-defined and can in principle be
evaluated accurately using Gauss quadratures.
One, however, has to be careful when the field point z is very close to the boundary. In such cases, the double
divergence of the integral kernels in (31), %;Z],G(J(rj( ), Z, ) and az Bz G1(r;(t),z,w), will be nearly singular
on the element close to the field point z. This has two consequences First, to ensure the accuracy of evaluating the
integrals in (31), the integration interval [0, 1] for the element nearest to the field point is refined into sub-intervals
clustered around the point on the boundary that has the minimum distance to the field point z. Then, the integrals for
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Re(Gp) Re(Z5x)

6Z1 3Z2

Figure 3. Contour plots of computed Green’s function and its second order spatial derivatives. w = 4w, N = 16.
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0.015 b O : order P=2 ,
~ : order P=3
A O : order P=5
. 0.01 solid: exact solution
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g 0.005 |
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= 0.0 |
.\VJ
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©)
-0.01 b )
-0.015 | )
-0.02 ‘ ‘ ‘ : : ‘ ‘

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 4. The computed Green’s function along line z2 = 0. The order of basis polynomials used is as indicated. Solid line is the exact
solution. w = 47, N = 16.
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solid: exact solution

Second derivative 9° Gg/ 3x12
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Figure 5. The computed second derivative of Green’s function with respect to z; along line zo = 0. The order of basis polynomials used
is as indicated. Solid line is the exact solution. w = 4w, N = 16.
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each sub-interval is evaluated by a 20-point Gauss quadrature. Second, when the integral kernels in (31) are nearly

singular, any numerical error in the solution of ulg.") will be magnified by the kernel. As a result, better accuracy on
the BEM solution is required than that for the Green’s function itself, as we will illustrate further next.

In Figure 3, the contour plots of the Green’s function and its double divergence for a circular cylinder of radius 0.5 are
shown. The source point for this calculation is located at y = (0, —20) and the frequency w = 4x. For this example,
16 elements are used on the cylinder. Comparison with the exact solution along x> = 0 is shown in Figures 4 and 5,
of numerical results obtained with basis polynomials of order P = 2, 3 and 5. For the values of the Green’s function
in Figure 4, excellent agreements are found in all three calculations. For the second derivative of the Green’s function
in Figure 5, however, the agreements are good for all the points except those close to the boundary at x = 0.5 when
the order P = 2 and 3. This shows that to compute the second derivatives at field points close to the boundary, more
accurate boundary element solutions than what are sufficient for the Green’s function itself are necessary. Since the
spectral collocation method can easily increase the order of approximation, it is well-suited for this purpose.

To demonstrate spectral accuracy of the collocation method, we show the decaying of the numerical errors at two
sample field points as the order of the basis polynomials is increased. The first point (A) is at z = (0.51,0), very
close to the boundary, and the second point (B) is at z = (0.75,0). Tables 1 shows the relative errors for the Green’s

function G'g and its second derivative a;ff with Mach number M = 0 and M = 0.2 respectively. For the case
of M = 0.2, the numerical solution was C(l)mpared with the values obtained using a much higher order of the basis
functions (P = 20). The data for Table 1 are also plotted in Figure 6. We see that as the order of the basis polynomials
increases, exponential rate of decaying of the error is observed. We also see that for point A, close to the cylinder, the
second derivative of the Green’s function shows an error larger than that of the Green’s function. This is due to the

near singular behavior of the integral kernels as discussed previously.

@M=0
Order Point A z = (0.51,0) Point B z = (0.75,0)
l G ok G Ot
1 0.1038886239 7.603432629 0.01406251098 0.02500180801
2 0.007133658417 4.152256752 0.004734834074 0.008134659324
3 0.0002528658918 0.4196262382 0.0002109935459 0.0003695661646
5 6.91008971x 106 0.003938548894 2.962834071x10~7  4.406201266x10~"
7 6.371851995x10~?  8.215799946x 107 | 1.883536454x10~°  2.417209797x10~°
9 3.369739287x 10710  1.586442069x 107 | 4.653065184x10~ !  1.352390864x 1019
(b) M =0.2
Order Point A z = (0.51,0) Point B z = (0.75,0)
P Gp or Gp Ger
1 0.1521241197 9.476813276 0.04833708689 0.09978817813
2 0.001772183931 5.013024225 0.01375715913 0.01511443759
3 0.0003319125013 0.5012060291 0.0006810750366 0.0007443177948
5 4.631392271x1076 0.005235725259 4.390344602x107%  5.546163906x 10~
7 1.225071762x10~8  1.250007101x10~° | 6.626610248x10~%  8.564798501x 108
9 6.328697464x 10710  8.757772821x10~% | 8.681963092x 1010  1.224935822x10~°

Table 1. Relative errors of computed Green’s function and its second derivative with respect to =1 as the order of the basis polynomial P
increases. In all calculations, the number of elements on the cylinder N = 16. The mean flow Mach number is (a) M = 0; (b) M = 0.2.

B. Three-dimensional (3D) point source
The Green’s function of a 3D point source will be constructed using the 2D solutions discussed above by the Fourier

inverse integral given in (10). In carrying out the integral in k3, we will include only the “propagating” modes of the
2D solutions , namely, for |k3| < w/8. Recalling (15), this gives
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Figure 6. Relative error as a function of the order of basis polynomials. Open symbol: at point A; Filled symbol: at point B; Circles: G g;

. 9%ap
Squares: T

1 w/B X . .
2y, w,8) = / ¢k G (2, 3, @)e 97 diy
~w/pB

= Gg (3_’, Z, (IJ) COS[]{Z3 (2’3 - yg)]dkg (32)

™ Jo
where G 5(z,y,) is the 2D solution presented in the previous section with frequency w = \/w?/3? — k3.

To evaluate the integral in (32), we note that G5(¥,z, @) varies rapidly as ks — w/3. To ensure accuracy, instead
of using a simple trapezoid rule,’* we use high order Gauss quadratures. The interval [0,w /3] is divided into sub-
intervals, i.e., [0,w/B] = UL, [yi,7vi+1], and each sub-interval is evaluated by a Gauss quadrature formula. More
specifically, (32) is evaluated numerically as follows,

I Yi+1 iw I J
97 y,08) = — / Galy:2,0) coshlzs —ynlldbs = == 33 1w} ) G(y,2,;) cosl()” (25 — )]
(33)
where Q(l and w ) are the abscissas and weights of the quadrature for interval [7;, v;41] and @; = \/w?/5% — Z) 2,

We will show the calculation of a point source with a circular cylinder where the exact solution is known.* The cylinder
has a radius of 0.5 and the point source is located at y = (0, —20,0). The frequency is w = 4x. Figure 7 shows the
contours slices of the computed Green’s function. For this calculation, I = 20 and J = 32. The comparison with the
exact solution along a line parallel to the cylinder is shown in Figure 8. The agreement is excellent.
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Figure 7. Contour slices of computed Green’s function for a point source with a circular cylinder. Top: z2 — 23 slice at z; = 0; Bottom:
z1 — z2 slices at z3 = 0 and 2.5. The source point is at y = (0, —20, 0).
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Figure 8. Comparison with the exact solution along points in z3 direction, parallel to the cylinder, with fixed (21, z2) = (0, —0.75). The
source pointis at y = (0, —20, 0).

C. Far fi eld approximation

The computation of Green’s function g(z,y,w, s) for the three-dimensional point source can be considerably sim-
plified when the source point y is located at the far field away from the surface and unsteady flows, as in the case
when y denotes the microphone location in the application of the Green’s function in the acoustic analogy. Assuming
ly| >> |z|, we have

Vi —21)2/82 + (y2 — 22)2 + (y3 — 23)2 = |lyl| — 9121/8 — 9222 — G323 (34)

N Y1 N Y2 N Y3 A . A
Iyl = \/9i/B* + 3 +v3, h = o Ge = =, U3 = - and g1 + Jo + g3 = 1
! z Bllyll |y !l |y !l

Consequently, we have the far field approximation of the free space Green’s function (5) as

where

;eMlIlyllo ez B Uyll=9121/B—9222—9a23) By II+MGi]

—igzliitM]z1—ig 9222 —i G gazs (35)

gO(Y7 z, w) ~e

4| yl| — Anplyll
and its Fourier transform in z3 as
~ = >~ ~ 1ksz = W
Go(x,2, k3, w) = / Go(x,2,w)e* 3 dzy ~ Fy(y,z,w)d (ks — BZB) (36)

where

G IyII+Mg]

26|Iyll

FO (ya Za W) = —i/;"’—z[g)1+ﬂf]zl _i%l)zZz (37)

14 0of 18

American Institute of Aeronautics and Astronautics Paper 2005-2986



Therefore, by applying (36) to the first term in (11), we can assume the Fourier transform of the Green’s function for
ly| >> |z| to be of the form

3(Z, ks, y,w, 5) ~ €0 (ks g;;g)GB(z,y,w) (38)
where Gg(z,¥,w) is the 2D boundary element solution of (18) when the first term on the right hand side of (18),
Go(¥,z,w), is replaced by Fy(y, z,w) given in (37). This gives the Green’s function for the far field approximation
as follows,

1 o0 ) 1 . w o .
g(zvvav S) = %/ Q(Z, k37y7w7 S)eilkazsdk3 ~ %elwseilEySZSGB(i7y7Q*) Wlth (D* = % 1- gg (39)

— 00

As a result, only a single 2D computation is necessary for each far field point y. This significantly reduces the
computational time.

V. An example of application in acoustic analogy

The wave equation appeared in the acoustic analogy is often solved by using the free space Green’s function, for
instance, the Ffowcs Williams and Hawkings equation. However, with the use of exact Green’s function, the far field
acoustic solution reduces to a volume integral alone, where in the frequency domain we have

0%4(z,y,w, s)
/ — Tz Y M d 40

p (y7w) ‘/V J(z7w) azzazj Z ( )
in which T;;’s are the Lighthill tensor and the geometrical effects of solid boundaries on noise propagation are auto-
matically included in the computed exact Green’s function.>®

In this section, we will show briefly an example of applying (40) to the problem of finding the acoustic radiation
generated by a turbulent flow over a circular cylinder. A time dependent RANS (Reynolds Averaged Navier-Stokes)
simulation is obtained by using the simulation code CFL3D from NASA Langley Research Center. The free stream
Mach number is M = 0.2 and the Reynolds number based on the mean flow is Re = 10,000. Figure 9 shows the
instantaneous flow streamlines and the density contours (in color). Also shown are the contour maps of the maximum
T;;’s. The volume integral of (40) is carried out over a region of 0.51 < r < 2 which covers the areas that have the
most significant contribution of T7;’s.

Figure 10 shows the density spectrum at far field points as indicated. The tonal variation as a result of the vortex
shedding is clearly visible. The fundamental frequency is at Strouhal number fD/U = 0.2239. Figure 11 shows the
directivity of the acoustic radiation at the fundamental and the first harmonic frequencies. The radiation pattern at the
fundamental frequency closely resembles that of a dipole indicated in dashed lines.

V1. Conclusions

A spectral collocation boundary element method has been presented for computing the exact Green’s function in the
frequency domain. Numerical examples showed an exponential rate of convergence. It is also demonstrated that the
use of high order basis function increases the accuracy of the spatial double divergence of the Green’s function for field
points close to the solid boundaries. In addition, we have showed that the Green’s function for a three dimensional
point source can be synthesized by the two-dimensional solutions where the Fourier inverse integral is to be evaluated
by high order quadratures. Finally, an example of applying the exact Green’s function to the noise generation by a
flow over a circular cylinder is presented. The predicted far field directivity shows expected dipole pattern.

Acknowledgement: This work is supported by a grant from NASA Langley Research Center, NAG1-03037. The
technical monitor is Dr. Mehdi R. Khorrami.

150f 18

American Institute of Aeronautics and Astronautics Paper 2005-2986



Figure 9. Instantaneous Streamlines and density contours (top left). Also shown are the contours of maximum T7;;.
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Figure 10. Spectrum of density fluctuation at » = 20. Angle 6 is measured from the forward direction.
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Figure 11. Directivity of the far field density at the fundamental frequency (left) and its harmonic frequency (right). The dotted line
indicates the dipole directivity.
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Appendix: basisfunctions

The basis functions are

6u(t) = T(2t — 1)

where T;,(€) is the Chebyshev polynomial
T, (&) = cos(n arccos§)

The collocation points are the Gauss-Chebyshev points:

1 20+ 1
P s ,gg_cos< + w),ﬁ_O,I,Q,...,P

2 2P +2
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