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A spectral collocation boundary element method (BEM) is used to solve for the exact
Green’s function and its double divergence numerically. Exponential rate of convergence
is demonstrated for smooth boundaries. The advantage of using high-order orthogonal
polynomials as basis functions is shown through a Nodes per Wavelength calculation. For
field points close to the boundary, the double divergence is computed both by direct differ-
entiation and by using finite difference stencils. The preferred method for calculating the
double divergence at all field points is found to be direct computation. Results of using the
spectral collocation BEM on a square boundary without proper treatment of corner singu-
larities are shown with non-exponential rates of convergence. Geometric discontinuities are
dealt with by means of an exponentially graded mesh refinement on corner elements. Sev-
eral refinement strategies are compared. Exponential rate of convergence is demonstrated
for a square boundary using a refinement ratio of 0.35. Finally, an example is presented
comparing the predicted sound field obtained by using the exact Green’s function with
that of a direct time-domain finite difference solution.

I. Introduction

A Green’s function that satisfies all the boundary conditions is often referred to as the exact or the tailored
Green’s function. It is well known in the theory of acoustic analogy that when an exact Green’s function
is used, the far field sound can be expressed as a volume integral involving the Lighthill tensors and the
double divergence of the Green’s function. Although it is not necessarily more efficient computationally to
use the volume integral compared to the surface integral in the Ffowcs Williams-Hawkings equation in which
the free space Green’s function is employed, the use of the exact Green’s function allows the development
of noise prediction strategy based on steady flow simulations with direct noise source modelings.® The
computation of the exact Green’s function, as well as its double divergence, becomes an integral part of this
noise prediction strategy.

Recently, a high-order boundary element method for the exact Green’s function using Chebychev polynomials
has been proposed in [5]. Although the Boundary Element Method has been applied to the Helmholtz
equation for several decades, most existing numerical methods were limited to the use of constant or linear
elements. The use of high-order basis polynomials has several advantages. In addition to a significant increase
in computational efficiency and accuracy, the use of high-order basis functions can accurately approximate
the tangential derivative of the unknown function in the presence of the mean flow; Since the collocation
points are chosen to be interior Gauss points, evaluation of the boundary integral equation on the corner
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points are avoided; The accuracy of the solution can be quickly assessed by the magnitudes of the expansion
coefficients; The use of high-order basis functions does not increase computational complexity when compared
with constant or linear elements, because the final linear algebraic systems always have dense matrices in all
methods.

In the present paper, we further improve the spectral collocation method proposed in [5]. In particular, with
a proper treatment of solution singularities at geometric discontinuities, exponential rate of convergence will
be demonstrated by the use of a graded element refinement near the corner points.® 19 Different refinement
strategies are studied and compared. Moreover, effective computation of the double divergence of the Green’s
function will be studied and the best strategy for its numerical evaluation for field points near boundaries
will be recommended. In particular, we offer numerical results of the double divergence by the direct integral
method and the finite difference method without requiring any body fitted volume grid.

The rest of the paper is organized as follows. In section II, the spectral collocation method used in this
investigation is described and its application to problems with smooth boundaries is studied. We will
demonstrate the exponential rate of convergence of the method and estimate Nodes per Wavelength required
for a given order of the basis functions used. Computation of double divergence of the exact Green’s function
will also be discussed. In section III, we focus on the treatment of geometric corners of the boundary and
study in detail the element refinement technique. In section IV, an example of applying the exact Green’s
function in a linear acoustic wave generation problem is presented in which the far-field sound obtained by an
acoustic analogy equation is compared with that of the direct time-domain finite difference solution. Section
V has the conclusions.

II. Spectral Collocation Boundary Element Method

A. Boundary Integral Equation for the Exact Green’s Function

The boundary integral equation is formulated from a partial differential equation (PDE) for an exact Green’s
function, g(x,y,t,s), which is defined as the solution to the convective wave equation®

(54U P9 3,1,5) ~ Vglx.y,1,5) = 8(t — 9)3(x ) 1

with boundary condition for its normal derivative

99 _
on

A R )
V=(a—a—a—)

In equation (1), y is a fixed source point or far-field point and x = (21, z2,23) is a field point where the
solution is desired. Bold-faced variables indicate vectors or matrices. The uniform mean flow is assumed
to be in the direction of 7 only, and is defined as U = (M, 0,0) where M is the Mach number. For this
paper, only cylindrical bodies with constant cross-sections will be considered, making the resulting boundary
integral equation (BIE) independent of a third variable, x3. A BIE for g(x,y,t,s) in the frequency domain
with reduced dimension, given by G (X,¥,©), is®

0 (2)

on all solid surfaces, where

CSGB(Zsay7 w) =Gy (yu Zsaw) + / iWUnGO(isvzsvw)GB (isvyv w)dis

C
_/ Gl (isazsaw)GB (isaya w)dis - / UnUtGO(isuz&w)wdﬁs (3)
. o 0T
where ;
— = — _ b iwM(y1—21)/8% (1) (s
Go(¥,%,0) = 15° Hy (@) )
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and ( ' ( )
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G =—— 2 — H
1 (X7 Z, w) 4ﬂ € 7 1
In equations (4) and (5), ay (wr) is the nth-order Hankel function of the first kind and 8 = v1 — M?2.
Throughout this paper, a barred variable denotes a two-dimensional vector. The terms U,, and U; are the
normal and tangential components of the mean flow and z; is a point on the boundary of the scatterer. The
coefficient, C, in equation (3) is 1/2 on smooth boundary points. In order to solve the boundary integral
equation for the exact Green’s function, a spectral collocation boundary element method will be used.

(@r) (5)

B. Formulation of the Boundary Element Method

After obtaining the boundary integral equation (3), the boundary is discretized into N “elements”. The BIE
is then required to be satisfied at fixed points, called collocation points, along each element. This leads to
a system of linear equations, which are then written in matrix form in order to solve the BIE for the exact
Green’s function numerically.

Consider a boundary contour shown in Figure 1. Let the boundary of each element, I';, be parameterized as
is = rj (t)vt € [07 1] (6)

where t is the local parameterization variable and r;(¢) is the shape function for the jth element. The
exact Green’s function on each I'; is approximated by an expansion in a set of basis functions, {¢,(t),n =
0,1,2,..., P}, giving

P
Gp(%..¥,0) = Gp(r;(1),7.@) = Y_ u{u(t) (7)
n=0
where ug-") signifies the expansion coefficients and P represents the order of the expansion polynomials.

Let the set of collocation points be defined as

0

i

on element I'; where AR ri(ty),=0,1,..,P

Zs =7 =

2 %
;2

Figure 1. Schematic diagram showing boundary elements and collocation points
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By substituting (7) into (3) and requiring (3) to be satisfied on the set of collocation points, the linear system

of equations for the expansion coefficients, ug-n), becomes®

1SN Nt n
5D uou(te) = Go (727,2) + 3 / iwlnGo(r;(1), 2", ) [Z uf ot ]\r t)| dt
n=0 =170

n=0

—Z/ G (r;(t Zu%n REAC \dt—Z/ UnUsGo(r; (t),7.", @) [Zu(")qﬁ 1 ®8)

for £ =10,1,...,P and i = 1,..., N. Chebyshev polynomials will be used as the basis functions and the
collocation points will be the interior Gauss-Chebyshev points. The free-space Green’s function (4) and its
normal derivative (5) both have a logarithmic singularity when j = 4, i.e., when the collocation point is on
the element being integrated. However, these singularities can be removed as described in [4] and [5].

Once the expansion coefficients are computed, the exact Green’s function can be found using equation (7).
Finally, the second-order derivatives of the exact Green’s function can be calculated and substituted into the
acoustic analogy to determine the sound pressure.

C. Numerical Solutions of a Circular Cylinder

1. Two-dimensional Solutions

Once the expansion coefficients, u§"), in the linear system are found, the value of the exact Green’s function

at any field point Z located in the exterior domain is given by

Gp(z,5,0) = Gy (V,Z,@) — Z/ G1(r;(t),Z,)

P
3 @”’%(t)] |, (¢)| dt

n=0

—i—Z/ iwU,Go(r;(t),2,w) Zu("an ]]r ]dt—Z/ U, UGo(r(t),z,w) lZu(" O ( 1 (9)

The double divergence of the exact Green’s function is then calculated by taking spatial derivatives of
equation (9). This results in®

52 52 N 1 52 o n)
MGB(ZJM):WGO(Y?Z,W) Z:/ mGl(rj(t)azaw) Z bn(t) ‘r )‘dt

N 1 (92 P
+Z‘/O sznaz—aszo(rj(t),Z,w) [Z u;”)¢n(t)] ‘r;(t)‘ dt
j=1 !
N 1 82 P .
_Z/O UnUs—=—Golr; (1), 2.0) [Z ul >¢;(t)] dt (10)
=1 R

Equation (10) does not contain any logarithmic singularities because the field point, Zz, is not located on
the boundary. Therefore, the integrals in equation (10) can theoretically be determined using Gaussian
quadratures. A problem arises, however, when dealing with a field point that is very close to the boundary
of the circular cross-section. The integral kernels in equation (10) are nearly singular on the element closest
to the field point. To improve the accuracy of the double divergence, the interval of integration corresponding
to the element closest to the field point is refined into subintervals that are grouped around the boundary
point closest to the field point Zz. The integrals for each subinterval are then calculated using a 20-point
Gaussian quadrature. The nearly singular integral kernels caused by the small distance between field point
and element increase the error in the solution ugn). Consequently, the order P of the basis functions used
when calculating the second derivatives of the Green’s function must exceed the order of those used to
calculate the Green’s function to maintain the same accuracy.?
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2. Ezponential Convergence for the Circular Cylinder

To demonstrate exponential convergence, consider a circular cylinder with constant cross-section of radius
0.5. Let the source point be located at ¥ = (0,—20) and the frequency be w = 47. For this example, 16
boundary elements are used. In the case of the two-dimensional circular cylinder, the exact solution for
M = 0 is well known and therefore it is utilized in this section as the basis of comparison. For M = 0.2,
the numerical solution is compared with the values obtained using much higher order basis polynomials
(P = 15). The numerical errors at two sample field points for M = 0 and M = 0.2 are shown in Figures 2
and 3 respectively. The first field point (A) is located close to the boundary, at zZ = (0.51,0), and the second
point (B) is farther from the boundary, at Z = (0.75,0). Figures 2 and 3 show the spectral accuracy of the
collocation method. For point (A), the errors corresponding to the second derivative of the Green’s function
are larger than those of the Green’s function. This is a result of the nearly singular integral kernels discussed
previously.
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Figure 2. Relative error as a function of the order of basis polynomials for M = 0. Circles: zZ = (0.51,0); Squares:
z = (0.75,0).

3. Nodes per Wavelength Calculation

One advantage of using the spectral collocation BEM is that increasing the order of the basis functions
increases the solution accuracy for a fixed number of nodal points. To demonstrate this property, a “nodes
per wavelength" calculation will be performed. This is done by using the equation

NPW:&

(11)

In equation (11), N = N(P+1) where N is the number of elements and P is the order of the basis functions.
N,, is defined as the number of waves on arc length L and is given by

Ny, =
A

_ 2 :
where A = =T for a given frequency w.

Consider again the circular cylinder with constant cross-section of radius 0.5, and choose twenty equally
spaced field points for a given radius. Let the combined maximum allowable relative error be 0.005 when
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Figure 3. Relative error as a function of the order of basis polynomials for M = 0.2. Circles: z = (0.51,0);
Squares: z = (0.75,0).

compared with the exact solution for M = 0 and frequency 407. Tables 1 and 2 contain results for the
Green’s function and its second derivative with respect to x; respectively. According to Tables 1 and 2,
the computation time for field points at radius 0.51 is always greater for the same order than that for field
points at radius 0.75. This is due to the computation time necessary for a refinement of the intervals of
integration for a field point located close to the boundary. Also, in each case there is an optimal order in
terms of computation time that is not necessarily the highest order. This is due to the number of quadrature
points, 2(P + 1), required to compute each integral in equation (8).

4. Finite Difference Approach

All spatial second derivative calculations of the Green’s function thus far have been done using direct dif-
ferentiation, as shown in equation (10). As previously discussed, for a field point close to the boundary, the
integral kernels are nearly singular. Therefore, the solution errors are quite large, especially for smaller order
basis function approximations.

An alternate method for calculating the double divergence is to use a finite difference method. For this
paper, two finite difference stencils were applied to several field points, all located at a radius of 0.51 from
the center of a circle of radius 0.5. The schemes used were a fourth-order central scheme given by

0%G
Wf (,Tl,l'g) = [—GB (1’1 + 2A$, xz) + 16GB ($1 + A:v, CEQ) — 3OGB (,Tl,xg)
1
+16G g (71 — A, x3) — Gp (21 — 24z, 12)]/12A27 (12)

and a fourth-order forward scheme given by

0°G
—85023 (z1,22) = [11GB (z1,22) — 20G B (x1 + Az, x2) + 6G  (x1 + 2Ax, 22)
1
+4Gp (21 + 3Ax, 13) — Gp (21 + 4Ax, 12)]/12A27 (13)

In the central scheme, the finite difference approximation was computed using Az = 0.0005. In the forward
scheme, two values for Az were used; (a) Az = 0.05 and (b) Az = 0.005. Basis functions of orders P = 2 and
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Table 1. Nodes per wavelength and computation time required for a maximum relative error of 0.005 as the
order of the basis polynomial P increases. The frequency is 407 and the mean flow Mach number is M = 0.
Results for 20 field points at radius 0.51 for (a) Green’s function and (b) its second derivative with respect to
x1 are shown.

(a)Green’s Function

Order | Number of Nodes per Computation Time
P Nodes, N | Wavelength, NPW (seconds)
1 3800 60.4789 535.1094
2 855 13.6077 29.5313
3 432 6.8755 12.5156
5 360 5.7296 11.8281
7 312 4.9656 14.6406
9 300 4.7746 15.9375
11 276 4.3927 17.7813

(b)Second derivative of Green’s Function with respect to

Order | Number of Nodes per Computation Time
P Nodes, N | Wavelength, NPW (seconds)
1 4200 66.8451 689.6875
2 897 14.2762 32.2813
3 492 7.8304 15.4219
5 396 6.3025 15.4063
7 320 5.0930 13.7188
9 310 4.9338 15.9531
11 288 4.5837 18.1563

P = 3 were used to calculate the Green’s functions at the locations needed for equations (12) and (13). The
scheme given by equation (12) produced similar values to the direct second derivative calculations. When
equation (13) was used, both (a) Az = 0.05 and (b) Az = 0.005 gave improved results, however, none were
significantly better. Hence, direct calculation is the preferred method for determining the double divergence
of all field points, even those close to the boundary.

ITI. Treatment of Geometric Discontinuities

A. Nature of Corner Singularities

The spectral collocation boundary element method is very successful when applied to problems with smooth
boundaries. However, when sharp angles such as corners are introduced into the boundary, the BEM alone
will not result in exponential convergence because of these singular locations. The exact Green’s function
will not be analytic on corner elements and therefore, it cannot be adequately represented by Chebyshev
polynomials. In fact, most standard methods for solving boundary value problems provide slow convergence
and inaccurate solutions in the neighborhood of a corner singularity.®

For the case of a two-dimensional exterior domain governed by a Helmoltz equation with homogeneous
Neumann boundary conditions on the corner edges, the asymptotic expansion of a singular solution at a
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Table 2. Nodes per wavelength and computation time required for a maximum relative error of 0.005 as the
order of the basis polynomial P increases. The frequency is 407 and the mean flow Mach number is M = 0.
Results for 20 field points at radius 0.75 for (a) Green’s function and (b) its second derivative with respect to

x1 are shown.

(a)Green’s Function

Order | Number of Nodes per Computation Time
P Nodes, N | Wavelength, NPW (seconds)
1 3140 49.9747 314.8594
2 774 12.3186 17.3594
3 420 6.6845 6.7031
5 354 5.6341 7.3281
7 312 4.9656 7.8906
9 300 4.7746 9.3281
11 276 4.3927 9.9219

(b)Second derivative of Green’s Function with respect to

Order | Number of Nodes per Computation Time
P Nodes, N | Wavelength, NPW (seconds)
1 4200 66.8451 665.8281
2 894 14.2285 22.7344
3 484 7.7031 8.5938
5 360 5.7296 7.2813
7 320 5.0929 7.9531
9 300 4.775 9.0156
11 288 4.5837 10.2656

corner is

g(r,0) = Z apgp(r,8) = Z apJpe (krp(8)) cos (1)
p=0 p=0

(14)

where v = ¢ and 7 is a function of 6.8 In equation (14), ¢ is defined as the exterior angle of the corner. For
Re(pa) > 0, the Bessel function of the first kind in equation (14) can be approximated by its asymptotic

) -0

expansion for z — 0 as

Jpa(z) ~

I'(pa+1) \2

(15)

where z = krp(f). Since « is not always an integer, the singular solution given in equation (14) could
contain irrational expressions of r. The convergence of a spectral series for a function is controlled by the

“singularities" of that function.

1

and discontinuities of the function or its derivatives.

B. Results of Spectral Collocation BEM on a Square Boundary

The term “singularities" includes poles, fractional powers, branch points,

To demonstrate the slow convergence of the collocation method when applied to non-smooth boundaries,
consider a square centered at the origin with corners located at (0.5,0.5), (0.5,—0.5), (—0.5,—0.5) and
(—0.5,0.5). The two sample field points analyzed will again be (A) Z = (0.51,0) and (B) Z = (0.75,0). The
source point location is ¥ = (0, —20), the frequency is w = 47 and the number of elements is N = 16. Table
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Figure 4. Relative error as a function of the order of basis polynomials for square boundary with M = 0.
Circles: z = (0.51,0); Squares: z = (0.75,0).

. . . . . 2
3 shows the relative errors for the Green’s function, G, and its second derivative, 68523 when compared

with a high order (P = 15) solution. The data for Table 3 are also plotted in Figure 4. Table 3 and Figure

Table 3. Relative errors of exact Green’s function and its second derivative with respect to z; as the order
P increases. The number of elements on the square’s boundary is N = 16 and the frequency is 47. The mean
flow Mach number is M = 0.

Order Point A Z = (0.51,0) Point B z = (0.75,0)
P Gp S Gp g
1 0.0973225 133.980 0.0353173 1.30873
2 0.0392499 120.398 0.0308039 1.09711
3 0.00272320 10.4763 0.00212314 0.0704248
b) 0.000510972 0.183188 0.000371261 0.00917916
7 0.000231130  0.00350694 | 0.000170683  0.00394068
9 0.000119278  0.00197095 | 0.0000890705  0.00197641

4 show that a non-exponential rate of decay occurs as the order of the basis polynomials increases. In the
attempt to improve these results, an exponential grading mesh refinement will be performed on all corner
elements.

C. Exponential Grading Mesh Refinement
1. Results for a Fized Refinement Ratio

Many approaches have been used to reduce the discretization errors associated with geometric singulari-
ties. A common approach involves the use of singular elements that require the orders of the singularities
to be included at the corresponding singular nodes. Ong and Lim® successfully applied this method to
three-dimensional potential problems. Another technique used to overcome corner singularities incorporates
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complex mapping into the BEM. This method has been explored by Wang and Tsay!'! as well as by Boyd.?
A third technique developed in recent years by Igarashi and Honma® and Marin et al.® involves subtracting
the singularities from the original potential function. These singularities behave like ) for p = 0,1,2, ...,
as shown in equation (15). If « is not an integer, many terms may have to be subtracted to successfully
utilize this approach, which can make finding a solution more tedious.

One of the most successful techniques is the h-version mesh refinement method. In this approach, the order
of the basis functions is kept constant, while the number of elements in the neighborhood of the singularity
is increased. The resulting singular elements make up a small percentage of the total number of elements,
thereby decreasing the errors caused by the singularities. In general, a power convergence rate is obtained
when the h-version is applied in solving a Helmholtz equation problem.” If h is the element size, the
error decreases as hF+) for b — 0, where P is the order of the basis functions. One advantage of mesh
refinement methods is that no prior knowledge of the singularity behavior is required. Only the locations of
the singularities must be known. This property, along with the convergence rate, makes the h-version mesh
refinement method a more robust method for dealing with changes in geometry.

For this paper, an exponential grading mesh refinement is applied to the square described in the previous
section. The refinement is given by p™¢, where p is the refinement ratio and N, is the level of refinement. The
value of p is in (0, 1] where p = 1 would produce the original number of elements. In the following example,
each element containing a corner point is refined using the same refinement ratio and level of refinement.

For the 16-element square, let p = 0.35 and Ny, = P + 2, where P is the order of the basis functions. The
frequency is w = 47 and the source point is located at y = (0, —20). For comparison purposes, we will again
look at field points (A) z = (0.51,0) and (B) z = (0.75,0). Table 4 shows the relative errors for the Green’s
9°Gp

2
ox3

function, Gp, and its second derivative, when compared with an order P = 15 solution for M = 0.

The results are also plotted in Figure 5.

Table 4. Relative errors of exact Green’s function and its second derivative with respect to z; as the order P
increases. The frequency is 47, p = 0.35 and Ny = P 4+ 2. The mean flow Mach number is M = 0.

Order Point A Z = (0.51,0) Point B z = (0.75,0)

P G ys Gy g
1 1

1 0.0763597 132.533 0.0188810 1.23859
2 0.0584410 139.445 0.0300076 1.09480
3 0.000764934 21.4354 0.000255573 0.0510741
5 0.000161642 2.35153 0.0000276648  0.00172533
7 0.0000118897  0.0801876 | 2.51755E —06  0.000184259
9 | 3.57358E — 07 0.0000460827 | 3.91149E — 08  3.45152E — 06
11 | 7.31339E —09 0.0000895887 | 6.93006E — 10 2.67518FE — 08

2. Effects of Changing the Refinement Ratio

All calculations made for the previous section were done for a fixed refinement ratio, p, and level of refinement,
Ngy. To determine the best mesh refinement strategy, many values of p and IV, have been tested. Of course, a
value of p that is too close to one (1) would not be ideal because there would not be enough of a refinement.
Also, any increase in N, causes an increase in the number of elements, resulting in higher computation time.
Therefore, lower levels of refinement are preferred.

Consider the square boundary discussed previously. Table 5 illustrates the effects of changing p and N,. The
order of the basis functions was kept constant (P = 7) for this comparison. According to Table 5, changing
the refinement ratio has a greater effect on the relative errors than increasing the level of refinement.
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Figure 5. Relative error as a function of the order of basis polynomials for square boundary with M = 0. Mesh
refinement with p = 0.35 and Ny = P + 2. Circles: z = (0.51,0); Squares: z = (0.75,0).

Another strategy is to keep the last refinement on each corner element, given by p’V¢, constant. Two values
for the refinement, (a) p™¢ ~ 0.05 and (b) pY¢ ~ 0.008, were studied, and the results are given in Figures
6 and 7. In both cases, the field point is located at z = (0.75,0). Figure 6 shows that for all values of p

and N, the results for both Gp and 6;523 are improved over the results of no mesh refinement. However,
1

according to Figure 7, p = 0.09 with N, = 2 gives the largest errors for both the Green’s function and its
second derivative, showing that there is a minimum as well as a maximum value for the refinement ratio.

IV. An example

There are very few exact solutions that can be used for validating an acoustic analogy calculation. Compari-
son with experimental results has been an important means of evaluating noise predicting strategies. In this
section, we formulate an acoustic analogy example for the linear Euler equation and compare the predicted
sound field obtained by using the exact Green’s function discussed above with that of a direct time-domain
finite difference solution.

Consider the continuity and momentum equations in conservation form as

Table 5. Relative errors of the Green’s function using exponential grading mesh refinement for the square
boundary. The frequency is 47, the mean flow Mach number is M = 0 and the source point is located at
y = (0, —20).

Level of Refinement p=0.85 p=20.5 p=0.35
Ng=2 6.30136 F — 05 | 2.01483F — 05 | 1.07959F — 05
Ng=3 5.24537F — 05 | 1.14010F — 05 | 5.53004F — 06
Ny=14 4.39122F — 05 | 7.59983F — 06 | 3.73803F — 06
Ng=5 3.70199F — 05 | 5.85945F — 06
Ny=6 3.14598F — 05
Ny=7 2.69720F — 05
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Figure 6. Relative error as a function of the order of basis polynomials for square boundary with M = 0. Mesh
refinement with pVs ~ 0.05. Cross: p = 0.223 and Ny = 2; Circle: p=0.37 and Ny = 3; Plus: p =0.55 and N, = 53
Star: p =0.65 and Ny = 7; Diamond: No mesh refinement.
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Figure 7. Relative error as a function of the order of basis polynomials for square boundary with M = 0. Mesh
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where effects of viscosity are ignored. To form the acoustic analogy equation with the convective effect of a
far-field constant mean flow included, we re-write the above as

=0 (18)

Op dp  Opluy —u_) Opuz
- _r oo =0 19
ot "U~om T om | om 19
dpuy Opur  Op(ur —u_)u;  Opuius Op
= = =0 20
o "= m T om | 0w | 0m (20)
dpus Opus  Op(ur —u_)us  Opugus Op
= — =0 21
ot " "=m ' om | Om | 0 (1)
where u__ is the constant mean velocity in the z;- direction. By taking the operation (% +u, 8%1) (19) —
6%1(20) - 6%2(21), it is straight-forward to obtain the following acoustic analogy equation:
8 8 2 2 82p 82[) 82T11 82T12 82T22
il — - LT i R 22
G =g PG Y 5 T o T lanom T o (22)
where
T = plur —u)(ur —u,) +p—ap
T12 = p(u1 — UOO)UQ
Toy = pugus +p —a’ p
and a__ is the speed of sound. We will consider a perturbed flow
p:ﬁ+p', U1 :ﬁl—i-u/l, u2:122—|—u'2
where the mean velocity field is given by the potential flow over a circular cylinder as
_ . _ 3.
i =u_(1— 2 cos(20)), U2 = —u_ 2 sin(26) (23)

The perturbed flow is initialized with a vortex far away from the cylinder where the mean flow is close to
the uniform velocity u«o, i-e., at t = 0, we have

(21+2.5)2 +(x2—0.85) (11+2‘5)2+(I2*0'85))

71n(2)( - ) 7ln(2)( -
P =0, u} = (x2 — 0.85)e oo L ubh = —(z1 +2.5)e oo (24)

The perturbed flow is solved first by linearized equations of (16)-(18) using a finite difference scheme. The
linearized equations in primitive variables are
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in which we have assumed, for simplicity, p’ = a? p'.
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Figure 8. Instantaneous density contours.
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Figure 8 shows the time-domain finite difference solution by (25)-(27). Initially, the vortex will be in a
translational motion without significant sound emission. As it passes the cylinder, due to the non-uniform
mean flow around the cylinder, acoustic waves are generated as shown in Figure 8 (a)-(d).

The far-field acoustic wave can also be obtained through an acoustic analogy equation. From (25)-(27),
it can be easily verified that the density perturbation will satisfy the following linearized acoustic analogy
equation

0 o, o 0% 0% 0Ty, 0°T], 0Ty,
_ _ 5 28
Gt =g P G T 5 T T 200, T a2 (28)

where 17, T{, and T}, are the linearized stress tensors,

/

Ty, = 2p(t1 —u)uy + (G —u ) (1 —u_)p
Ty = plin — u )b + pligu) + (a1 — u_ )iigp'

Tyo = 2ptiguly + Ustizp’
To find the far-field sound by the acoustic analogy equation (28), we use its frequency-domain solution

?Gp(x,y,w)
/ — ! D A
oy,w) = /VTZJ(x7w) Dri0r,; dv (29)

where Gp(x,y,w) is the exact Green’s function discussed in previous sections using y as the source (receiving)
point with U = (—0.2,0,0). The frequency-domain stress tensor 7;;(x,w) is obtained by the Fast Fourier
Transform (FFT) of the time-domain simulation. The volume integral of (29) is carried out in a finite region
surrounding the cylinder, namely, 0.5 < 7 < 1.5, where T};(x,w) make the most significant contribution, as
shown in Figure 9.

Figure 10 shows the density perturbation, p'(y,w), versus frequency for far-field points located at (A)
y = (—6,0) and (B) y = (0, —6) along with experimental results at both points. In general, the numerical
results for point (A) are consistent with experimental data. However, at point (B), the numerical results are
not as accurate. Future work will be done to try to reduce the errors at point (B) by enlarging the radius of
integration and/or increasing the number of field points.

V. Conclusions

The spectral collocation boundary element method proposed in [5] has been applied to both smooth and
non-smooth boundaries. For smooth boundaries, exponential convergence has been demonstrated. A Nodes
per Wavelength calculation was made to illustrate the benefits of using high-order basis functions. A finite
difference approach for computing the double divergence has been introduced and compared to the direct
differentiation approach, with direct calculation being the preferred method for all field points. To treat
the geometric singularities of non-smooth boundaries, an exponential grading mesh refinement method was
applied to a square boundary. Different mesh refinement strategies were compared and the effects of changing
the refinement ratio were reported. It has been shown that proper mesh refinement yields exponential
convergence for the square boundary. Finally, an example was done to compare the far-field sound density
calculated using the acoustic analogy to direct numerical simulation results at two far-field points.
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Squares: acoustic analogy results; dotted line: direct numerical simulation results.
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