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A three-dimensional time-domain Boundary Element Method is formulated for solving
exact Green’s functions numerically. The use of triangular boundary elements and interior
collocation points allows application of the method to complex boundaries. A March-On-
Time scheme is used to determine exact Green’s functions at several frequencies in a single
calculation. Long-time stability is accomplished via a modified Burton-Miller boundary
integral equation. A Fast Fourier Transform of the time-dependent numerical solution is
used to compare numerical results with the exact solution for a sphere in the frequency
domain. The effects of changing two boundary integral equation parameters and the time
step size are discussed. By decreasing the time step size, the numerical solution becomes
more accurate until a minimum value that depends on the frequency is reached. With
proper parameter choices and time step size, the modified Burton-Miller time-domain
Boundary Element Method produces accurate and stable numerical results.

I. Introduction

A Green’s function that satisfies all the boundary conditions is often referred to as the exact or the
tailored Green’s function. It is well known in the theory of acoustic analogy that when an exact Green’s
function is used, the far field sound can be expressed as a volume integral involving the Lighthill tensors and
the double divergence of the Green’s function. The use of the exact Green’s function allows the development
of noise prediction strategy based on steady flow simulations with direct noise source modelings.! The
computation of the exact Green’s function, as well as its double divergence, becomes an integral part of this
noise prediction strategy.

In earlier studies, a spectral collocation boundary element method for solving the convective wave equation
in the frequency domain with a constant mean flow was developed for arbitrary two-dimensional bodies.? 3
In this paper, we present a time-domain Boundary Element Method for the computation of exact Green’s
functions for general three-dimensional surfaces. The extension of exact Green’s function computation to
three-dimensional geometries is by no means trivial. The main challenge is achieving the computational
efficiency necessary for routine use of the exact Green’s function as a practical tool. This involves overcom-
ing the computational difficulty that results from the extremely large degrees of freedom at mid to high
frequencies of typical airframe acoustic radiation when the body of the entire aircraft, or a large component
of which, is included. The time-domain approach has several advantages. First, the inversion of a large,
dense matrix is not required. Next, exact Green’s functions at all frequencies are contained in a single com-
putation. Finally, the computational complexity can be reduced to O(NN log2 N) where Ny is the number
of time steps and N is the total number of spatial basis functions, making the method feasible for routine
application at mid to high frequencies.®?

The time-domain boundary integral equation will be solved using a spectral collocation method on
triangular boundary elements. The use of triangular elements makes our method flexible and easily applicable
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to complex bodies. The spectral node distribution over the triangle in the parametric plane is chosen to
be the interior points proposed by Strang and Fix.® The corresponding spatial basis functions are linear
combinations of the Proriol orthogonal polynomials.” A March-On-Time (MOT) is developed in which
third order basis functions are used for approximating the time dependency. Long-time stability is achieved
using a modified Burton-Miller boundary integral equation. The temporal point source is modeled by a
finite transient signal and the exact Green’s functions at all frequencies are obtained in a single calculation
through the Fast Fourier Transform (FFT) of the time-dependent numerical solution.

The rest of the paper is organized as follows. In section II, the three-dimensional time-domain Boundary
Element Method used in this investigation is formulated via a March-On-Time approach. The discretization
of the boundary into triangular elements and the choice of spatial and temporal basis functions are discussed.
Numerical solutions are presented in section III for the case of a spherical boundary. In section IV, long-time
solution instabilities resulting from the March-On-Time scheme are eliminated using a modified Burton-
Miller Combined Field Integral Equation. The treatment of hypersingular integrals that arise when applying
the modified Burton-Miller scheme is also discussed in section I'V. Section V contains numerical results for a
spherical boundary using the modified Burton-Miller Boundary Integral Equation. The effects of changing
two parameters in the boundary integral equation along with the effect of changing the time step size are
discussed. Section VI contains the conclusions.

II. Formulation of the Time-domain Boundary Element Method

II.A. The March-On-Time Method
An exact Green’s function, g(x,y,t,s), is defined as the solution to the convective wave equation

0
(a +U-V)?%g(x,y,t,5) — V2g(x,y,t,8) = §(t — 5)d(x — y) (1)
with boundary condition

n-Vg=0 (2)

on all solid surfaces where n is the normal vector out of the fluid. By using a free-space Green’s function,
the convective wave equation (1), together with the boundary condition (2), can be cast into a boundary
integral equation as

gt — s — |y — ) / 1 0R
4 s RN ERD) = — Un N CRIN ] )
7Cog(zs,y.t, 5) e S[R2[an Un(U- VR)|g(xs,¥. . 5)

1 OR 9g Un
E[% —2Un — Un(U : VR)]E(XSvyvtnv 8) - f[U ’ VQ(Xsayvth 8)]} dx (3)

where R = |x; — 25|, Zs is a point on the body surface S, and x; is the surface integration variable. In
equation (3), Cs is a constant and t,, =t — R. For computational purposes, the time delta function (¢t — s)
has been replaced by a finite continuous function ¢(¢ — s) which has a spectrum of unity over the range of
frequency of interest. Consider the Fourier transform in time

+

1@ = 5- | gttt

:% .

with inverse

o= [ e

— 00
Let
1 lw| < wo
q(w)=1q 05+0.5c08 (“52m) wy<w<wy+2h
0.5 4 0.5cos (%}‘L"Oﬂ) —wg —2h <w < —wy

where wq is the source function frequency and h is a parameter that determines the shape of q. Then,

272

q(t) = EEE—To) sin (wot + ht) cos(ht)
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The boundary integral equation (3) represents a reduction in spatial dimensions from 3D to 2D and hence,
only a surface mesh is required for discretization instead of a volume mesh. Aside from the obvious benefit of
increased computational efficiency, the Boundary Element Method has low storage requirements compared
to 3D volume based methods and the far-field radiation condition is automatically satisfied. Once g(x,y,t,s)
is found, the frequency domain solution §(x,y,w, s) for use in the acoustic analogy formula can be obtained
by a Fourier transform in time, for any given frequency w such that |w| < wgy + 2h.

To solve the boundary integral equation (3), we expand the solution on the surface of the body as

9(%s,¥,1, ) ZZ“ (%) n (t) (4)

n=0 i=1

where {¢;(x5)} is a set of basis functions covering the surface of the body and {,(t)} is the set of basis
functions for time t. By substituting (4) into the integral equation (3), a linear system of equations is
obtained for the expansion coefficients u;'. The advantage here is that this system can be solved by a March-
On-Time (MOT) method, which does not require the inversion of a large dense matrix as in the frequency
domain formulation. Consider equation (3) in the absence of mean flow,

1 OR 10R {39

1
1nCuglony.tos) = talt s =)+ [ S ax [ 250 %) ax, 6
tR

s R? on

where R = |x5 — 25|, r = |y — 25|. By substituting (4) into (5), and forcing the equation to be satisfied at
collocation point z, = x;, and time level ¢;, we get

47 C ZZU (bz Xk "/}n )_ (t —S5— ’I“) /}%2 gfzzun¢z Xs 'wn - )dXS

n=0 {=1 n=0 i=1

]1% ?95 Z Z ul @i (X)) — R)dx;

n=0 i=1
for k=1,2,...,N and j = 1,2, ..., N;. By the property of causality,

Yn(t;) =0 forj>n

the above can be written as a time marching scheme as

J
Bou' =q’ - Y Bpu " (6)
m=1
where u’ represents the vector containing all unknowns at time level ¢;, v/ = { Wl ol wy

Equation (6) relates the solution at the current time level ¢ = ¢; to the solutions at all previous time levels.
Specifically, at time level ¢;, the rows and columns of matrix B, are

1 OR 10R
{Bm}ki = - /S ﬁain(ﬁz (Xs) wj—m (tj - R) dxs - S Eain(éz (Xs)¢;—m (tj - R) dxs

+4mCs¢i (xk) Yj—m(t;) (7)
where R = |x, — x;| and By is formed from B,, when m = 0. At each time level, ¢;, the matrix By is a
sparse matrix, which can be solved using iterative methods in order to improve computational efficiency.

II.B. Triangular Boundary Elements

An open or closed three-dimensional surface can be divided into flat or curved triangles.® Triangular bound-
ary elements are more robust when dealing with arbitrary geometries than quadrilateral elements. Let the
body surface, S, be discretized into a grid of curved or flat triangular elements, E,. Each element is mapped
to a flat right isosceles element, D, in the parametric &, n-plane as shown in Figure 1.° The spectral node
distribution over the triangle in the parametric plane is chosen to be the interior points proposed by Strang
and Fix.® Interior collocation points are used so that the scheme can be applied to any geometry. An inverse
mapping from D onto each element F, determines the location of each node i on the body surface, S.

3 of 18

American Institute of Aeronautics and Astronautics



Downloaded by Fang Hu on August 28, 2016 | http://arc.aiaa.org | DOI: 10.2514/6.2007-3479

X

[

3
0 1 ¢ 0 1

Figure 1. A three-node (left) and a six-node (right) triangle in three-dimensional space mapped to a right isosceles
triangle in the parametric plane.

II.C. Discussion of Basis Functions
II.C.1. Temporal Basis Functions

The temporal basis functions chosen for the time-domain Boundary Element Method are cubic interpolation
functions defined as

P (1) = W (t—t;)

where t; = jAt. The basis functions are defined as

T4 () 4 ()2 + L(L)? for —AE< <0
14+ 1(5) = (£)2—L(£)3 for0<t <At

Ut) =19 1—-3(%)— (H)2+3(H)?P for At <t <2A¢
1= (5 +(5)? - 2(H)? for 2At <t < 3At
0 elsewhere

and the nonzero part is shown graphically in Figure 2. Then, the expression for the B matrices can be
written as

1 OR 1R
{Bm}ki == /S ﬁ%‘bz (Xs) v (tj - R- tj—m) dxs — o E%@ (Xs) 14 (tj - R- tj—M) dx
+471'Cs(,25¢ (Xk) \I/(tj — tj—m)

o 1 OR 1 0R
e [ . J— J— — . / —
(Budii= = [ g () WAt = Ry, — [ 5500, () W (mAt - R dx,
+47Csp; (x) U (mAL) (8)

In equation (8), the B matrices are independent of time ¢. As a result, each B matrix is computed only once
and stored in computer memory for future use.
Furthermore, by the definition of the temporal basis functions, ¥(mAt — R) = 0 when

mAt — R > 3At
or

s R+ 3At
At
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Figure 2. Temporal Basis Function ¥(t).

This implies that all entries of a B,,, matrix are zero when

Rmax
At

where R,.x is the maximum dimension of the three-dimensional body. For the case when m = 0, the matrix
By is given as

+3

m >

1 OR 10R
== | —=——0¢; (x5)V (— = | === (x5) V' (— :
{Bo}k}z S R2 an (bl (X-S) ( R) dxé p R an ¢1 (Xb) ( R) dxé
+47Cs; (x1) ¥(0) (9)
If the time step is chosen such that
At < Rmzn
then
U(—R)=0

except when R = 0, i.e., k = i. Consequently, By will be a diagonal matrix when At is chosen to be less
than the minimum distance between collocation point and quadrature points.

I1.C.2. Spatial Basis Functions

The spatial basis function for node i, ¢;(xs), satisfies

e

for k =1,..,N and i = 1,..., N where N is the total number of spatial basis functions. Hence, ¢;(x;) is
non-zero only on one element since ¢ is an interior node. Let the quadrature formula for the surface integrals

in the B matrices be N
/ F(xs)dxs = Z wpF'(x3)
Ea =1

where xj and wg are the quadrature points and weights on element E,. Then, the integrals in the By,
matrices have the form

1 OR 1 aR
/Sﬁangb(xg) (mAt — R)dx, = Z/ 735, ©i(X:) U (mAL = R)dx,
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_ZZ Wy ZR X3)U(mAL — R).Jo (10)

where R = [x§ — x;|. In equation (10), E, is the element that supports node i and 3 is the quadrature
point index for the element after it has been mapped to the base right triangle, i.e., domain D. Also, J, is
the Jacobian for element F, when it is mapped to the base right triangle.

The basis function for each node corresponds to a linear combination of a set of independent polynomials

in the parametric plane defined as
P

=Y aTuln) (11)

{=1

for j = 1,..., P. One suitable basis set for the functions Ty(&, n) is the set comprised of Proriol’s orthogonal
polynomials.”® The Proriol polynomials involve monomials of the form &7y P+ with combined order
m+gq,forp=1,2,....mand ¢g=1,2,...,n and are given by

Pmn = Lm(fl)(l - U)er(LQmH’O)(TI/)

where

6———1, n=2n-1,
n

L., are Legendre polynomials and J,(fmﬂ’o) are Jacobi polynomials.

II.D. Treatment of Kernel Singularities
Consider the first integral in equation (8), given by

1 OR
/R28 i (x5) ¥ (MAL — R) dx,

and note that R = |x, — x| and
1 OR  n,-(x; —Xp)

R2on  |x,—x,]

Hence, the integral kernel is singular when integration is being performed on the element containing x;. Let
the element be parameterized as

x(&,m) = a+ b +cn +de* + en® + £y

so that
xi(&,m) = a+ b& + cny, + d&f + enj + £
x5(€,m) = a+b&, + cns + déZ + en? + £Em,
Then,
1 6R S Xs —
; "2 8n¢ i(xs)¥(mAL — R)dx, = // n — Xk| )qbl(xs) U(mAt — |xg — xi|) - |xe X x| d€dn)
Note that
Xe —Xp =b (& — &) +cns —me) +d (& — &) +e(n —ni) +F (Eens — &)
Let
& — & =rcosf, ns—mnp=rsind
to get

Xs — X = brcosf + crsinf +d ((rcos@+§k)2 —f,%) +e ((rsin&—&—nk)z —n,%)

+f ((rcosf + &) (rsind + ng) — Eeni)
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=r(bcosf +csinf)+d (7“2 cos? 0 + 2&,r cos f) +e (7"2 sin? @ + 21,7 sin 9)
+f (7"2 cos0sinf + &7 sin € 4 ngr cos 9)
=0(r)
With the above change of variables, ng becomes

_ XexXy,  (b+2d& +fn,) x (c + €, 4 2en,)
ng = = (12)
xe x x| [(b+2d& + ) X (c + £& + 2en,)|

For points x4 on the same element as xj, the numerator of equation (12) can be written as
(b +2d¢&;s + ;) x (c + £& + 2en;) = (b + 2d&g, + 2dr cos§ + £y, + frsin6)

x (¢ + £& + ¢ + frcos 0 + 2en;, + 2ersin§)

From here it can be shown that
(xe X x) - (%5 — x5) = O(r?)

and 1 OR 1
Sl (1)

R2on  |x,—x,]° \r

Thus, the integrand is integrable when the first integral in equation (8) is written in polar coordinates
centered at (£, mx) as

02 () 1 9R
/01 /0 ﬁ%%(xs)lﬂpm(tj - R) ‘Xg X Xfi‘ rdrdf

III. Results of Time-domain Boundary Element Method on Sphere

Consider a sphere of radius 0.5 with a boundary consisting of N = 760 curved triangular elements. Figure
3 shows the expansion coefficient, u], corresponding to the node located at zs = (0.0514,0.00814,0.497)
versus time obtained by the time-domain boundary element method at two source function frequencies wy.
The source point is located at y = (0,0,10) and the mean flow Mach number is M = 0. The basis function
order is P = 0, therefore, there is only one interior collocation point associated with each element. The time
step size is At = 0.05.

0.25 w ‘ ‘ 0.5
0.2r
0.15¢

0.1}

u(t)
u(t)

0.05¢

—-0.05¢

05 5 10 15 20 0 5 10 15 20
t t

Figure 3. Transient numerical solution u(t) at z, = (0.0514, 0.00814, 0.497). The source function frequency is wo = 27 (left)
and wo = 47 (right).

Unfortunately, one well-known drawback of March-On-Time schemes is the tendency towards long-time
instability.*'© For example, consider again the sphere of radius 0.5 as described above. Figure 4 illustrates
the instability caused by the MOT scheme when wg = 67. Long-time instabilities will eventually occur for all
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Figure 4. Transient numerical solution u(t) at z, = (0.0514,0.00814,0.497). The source function frequency is wo = 67.
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Figure 5. Transient numerical solution u(t) at z, = (0.0514,0.00814,0.497). The source function frequency is wo = 4.

source function frequencies at varying times. Figure 5 shows the instability beginning at approximately ¢ = 30
when wy = 4m. It is common knowledge that the frequency-domain solutions to Helmholtz integral equations
are not unique at certain resonance frequencies. The corresponding time-domain solutions are unique by the
presence of initial conditions, but due to discretization inaccuracies, resonant modes of the scatter become
excited causing these solutions to contain oscillations as time marches on.? The loss in accuracy is more severe
for higher frequencies.!? Several methods are available to overcome long-time instabilities in time-marching
numerical solutions. Some examples are time-averaging, modified time stepping, implicit MOT schemes and
Galerkin approaches. The method utilized in this paper is based on Burton and Miller’s formulation.!!

IV. Burton-Miller Formulation

One of the most successful and robust approaches for overcoming the non-uniqueness problem of the
frequency-domain boundary element method was introduced by Burton and Miller in 1971.*' Their method
produces a Combined Field Integral Equation (CFIE) made up of the Helmholtz integral equation and its nor-
mal derivative. The linear combination of the two equations ensures a unique solution at all frequencies.'! 2
In this section, an extension of the Burton-Miller formulation is derived following the recent analysis in [4]
and [10] for the exact Green’s function solution in the time-domain.
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IV.A. March-On-Time Formulation

Consider the boundary integral equation derived previously, given by

gt —s—r) / 1 OR 1 OR [0g
4 == - 7 = aldebl 4
Wng(Zs,y,t’S) r s RZ 0n [g]tR Xs + s Ron | ot . dx
R
Since
1 OR 1 0R [0g J |1
®on T Ran o], = on | R e
R
the integral equation can be re-written as
1 o [1
4 —Za(t—s—1)— | = |= 1
7 lanyitis) = valt—s =)~ [ 25wl ax, (13)

Consider the integral relation obtained by a time derivative of equation (13),

dg 190q o |1 [og
AnC 2L (zg,y,t,8) = —— (t—s—1)— | — |= |=2| |dx, 14
iy (B ts) = L (Ems =) /Sf)n R{at ol 1)
where R = |x5 — zs| and © = |y — z5|. The Burton-Miller time-domain CFIE is a linear combination of
equation (14) and the normal gradient at the boundary of equation (13), given by'?
0 0 |1 0 o [1
dr 2 = Sqt—s—r)| - 1= 1
ro Ca it o) = o Fate—s =] = 5 [ 2w, ax. (15)

In equation (15), % is the normal derivative with respect to z at boundary point z;. By the boundary

condition involving the exact Green’s function,

S 7t7 -
anzg(z y;t,8) =0

equation (15) reduces to

0C
dr g(ZS7yat7S) =

on., aiz [:,Q(t o _”)} - 8?12 /S a% [113 [g]tﬁ} dx (16)

A combination of (14) and (16) results in

09 0Cs _ 10¢, O 11 o
(1 —a)4nCs5 (25,y ¢, 9) +actm o " 9(zs,y,t,8) = (1 —a) = (t—s—7) + W [T(J(t s 7“)}
o [1[og o [ 01

where a € (0,1) is a coupling parameter and ¢ is chosen so that all terms in the equation have comparable
orders of magnitude.!® The Burton-Miller formulation yields unique solutions for all frequencies.!?

IV.B. Treatment of Hypersingular Integrals

The main difficulty in using any Burton-Miller formulation is dealing with hypersingular integrals that arise
when taking the normal derivative of the original boundary integral equation. With arguments written
explicitly, equation (17) is

0 oc. e [l
(1—a)47rCsa(zs,y,t,s)—|—ac47ranzg(zs,y,t,s)—(1—a)rat (t—s r)+acanz [Tq(t s 7")}
0 [1 [dg 0 o1
—(1—a)/Sa—n {R [8t (xs,y,t—R,s)” dxs—aca—m/sa—n [R [g(xs,y,t—R,s)]} dx, (18)
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In equation (18), the last term will involve a hypersingular integral because

25 1] (3) o

To reduce the singularity, the hypersingular integrals are regularized by an approach used by Liu et. al.!3

and Hwang'? for the frequency-domain Burton-Miller formulation. Consider the relation for determining
0813
Gy

where Gy = %. Multiplying both sides of equation (20) by g (z,y,t,s) results in

0Gy

. on ——9(z,y,t,5)dx,

47Csg (2,y,t,8) = 4ng (2z,y,t,5) —

By taking the normal derivative with respect to z at the boundary, and using the boundary condition for g,
the above becomes

on, on, 671
Equation (21) is substituted into equation (18) to get

179% 20yt 5) = =2 / 0G0 1 (2,.y.t,5) dx, (21)
S

dg Gy 19q
(1—a)47rC’sa (zs,y,t,8) — acy / (zs,¥,t,9) o ax, = (1 —a);g(t—s—r)

e R A T

[ 3 Golaxyt = Ros)a,

+ac

—ac

on,

Rearranging the terms, we get

9g _ 10q o 1
B 0= s [
Gy g
(1 a)/sm [9 (Xs,y,t — R, 5) +R§ (x5,y,t R,s)} dx
0 0Go dg
‘“Canz /s on [9 (Xs,y,t = R,5) — g(zs,y,t — R,s) + RE (xs,y,t — R, s)} dx, (22)

In particular, note that the last term in equation (22) is

a / % |:g(XG7Yat_ R?S) —g(Zs,y,t,S) +R% (Xsay7t_R7S):| de

on, Jg On
= i aangon {g (xs,y,t — R, 8) — g(2s,y,t,5) +R% (Xs,y,t — R,s)]
+% {g‘z (X5, y,t — R, 5) <_g7i) + 81 [Rg‘(; (xs,y,t— R, 3)” dx,
- /S ai%(; {9 (Xs,y,t = R,s) — g(2s,y,t,5) +R% (X, ¥, t — R,s)} dx
— / Réaio gfz g; (X, ¥, — R, 8) dx, (23)

Note that the first integrand in equation (23) becomes (Appendix)

0%,
on,on

0
|:g (X87Yat - R? S) -9 (Zsay7ta3) =+ Rai‘z (Xsayvt - R7$):|
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9%Gy
8nz8

which renders the above integrable with a principal value. Thus, the regularized integral equation is

2 o=

~a-a) [ o[G0 [H eyt - o) x - TG0 1) (xory t— R.s)

Vg (zs,y,t,8) R

10q

O (anyta) = (1= @) 190 (5~ 1) ac

(1—a)dnC, 9t

on 0 5 On,0n
9g 0Gy OR 8%
-9 (Zs,y,t,S) +Ra (XsayatfRa S):| dXS 7aC/SRWanZ@(XSay7t7R7S) dXs (24)
o 0 10 g |1
99 (1Y _ Zolt—s—
(1 —a)4rC, 5t (zs,y,t,8) = (1 —a) B (t—s—r) +acanz [Tq(t s r)}
8G0 89 8G0 32
_(l_a) Saing(xsa}“ RS)—"_Raiw( 87Yat_Rﬂs)dXs
%Gy 99
—ac s 8nz8n |:g (styat - Ra S) —-4g <Z57y7ta S) + Ra (XS7Y7t - R7 S):| dxs
0Gy OR 0%g
—ac /R on on. 02 ( Xs,¥,t — R, 8) dx, (25)

At collocation point zj and time step ¢;, equation (25) becomes

10q a |1
(1 —a)dnC; nz:o;u @i(zg) Y, (t) = (1fa)rat(t —5— )Jracanz{rq(tjsr)}
—(1—a /8GOZZu i (X)) +R%ZZU ¢i (%) (t; — R)dxs
n=0 i=1 n=0 i=1
—ac Gy iZu P i (X5 )Un (t; — —ZZU i (2k)Un( —l—RZZu ¢i(x R)| dx
58nzann011 R n=0 i=1 l ! n=0i=1 i) |
8G0 OR n o

+a/ B 8nZZZu bi(xs)y (t; — R)dx, (26)

=01i=1

Equation (26) can again be written as a time marching scheme, i.e.,

J
Bouw =q’ — Z B,u/ ™™
m=1
which results in
oG
(Buudis = (1= ) 4nCuumn)s 1)+ (1 =) | G0 x)0 oty = R,

oG 0%Gy
=) [ R0ty = R +ac [ S0 60005t~ )

aG OR
i) (1) + BRIVt = R)] e —ac [ RS0ty — Rx, (2)
Note that since ¢;(xs) is non-zero only when x; € S;, the terms belonging to the matrix B,,, are

0Gy

{Bm}kz (1 - a) 47TCS¢Z (Zk) 1/} (tj) + (1 - a‘) 87
Si

o (XS) @[’;—m (tj - R) dx
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oG , 892G
+(1—a) /S Rain()@' (xs) ¥5_,, (tj — R) dxs + ac /S aniﬁon [0i (Xs) Yj—m (tj — R) — ¢i (2k) Yj—m (t;)
0Goy OR
+Ro; (x5) ¢;7m (t; — R)] dxs — ac/S. Ra—nOaT(;si (Xs) %Lm (t; — R) dx,
0G
_ac/s_&, 37127821@ (21) ¥ —m (t;) dx, (28)

As in the original time-domain formulation, the matrix By is a sparse matrix.

V. Results of Time-domain BEM using Burton-Miller Formulation

Consider a sphere of radius 0.5 with a boundary consisting of N = 760 curved triangular elements. Figure
6 and Figure 7 represent the results obtained when the time-domain BEM is revised using the modified
Burton-Miller formulation for wy = 67 and wg = 47 respectively. For comparison purposes, the expansion
coefficient plotted corresponds to the node located at z; = (0.0514,0.00814,0.497), the basis function order
is P = 0, the source point is at y = (0,0, 10) and the time step size is At = 0.05. All calculations involving
the Burton-Miller formulation were performed with ¢ = —1. Compared with Figure 4 and Figure 5, Figure

0.6

0.5r 1

0.4r 1

0.3r i

0.2r 1

u(t)

_0'30 5 10 15 20 25 30 35 40

t

Figure 6. Transient numerical solution u(t) at z, = (0.0514,0.00814, 0.497) using Burton-Miller Formulation. The source
function frequency is wy = 67 and the coupling parameter is a = 0.5.

0.5

0.2 . . . .
0 20 40 60 80 100

t

Figure 7. Transient numerical solution u(t) at z, = (0.0514,0.00814, 0.497) using Burton-Miller Formulation. The source
function frequency is wy = 47 and the coupling parameter is a = 0.5.

6 and Figure 7 show the effectiveness of the Burton-Miller formulation in dealing with long-time instabilities
that arise in many March-On-Time schemes.

12 of 18

American Institute of Aeronautics and Astronautics



Downloaded by Fang Hu on August 28, 2016 | http://arc.aiaa.org | DOI: 10.2514/6.2007-3479

To demonstrate the accuracy of the time-domain Boundary Element Method with a modified Burton-
Miller Combined Field Integral Equation, consider again the sphere of radius 0.5 with 760 curved triangular
boundary elements. Let the source point be located at y = (0,0, 10) and let the spatial basis function order
be P = 0. A Fourier transform of u(t) gives the solution at all frequencies. In this case, the exact solution
in the frequency domain for M = 0 is well-known and therefore it is utilized in this section as the basis
of comparison. Figure 8 shows comparisons with the exact solution for w = 27 and w = 47 with source

function frequency wy = 4w, a = 0.5, c = —1 and h = 0.27.
0.25 " ; . 0.2
frequency=4m 0.18f frequency=2m

(0]

5 02r g
< <
& &
c c
S 015t S
£ c
: g
Q [0}
g | o
% 0.1 g—
» 3
® L
= 0.05( >

9 : : : 0.04 : : :
-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
z z
3 3

Figure 8. Comparison with exact solution (solid line) at selected frequencies.

V.A. Effects of Changing Parameter c

Until now, the parameter affecting the relative magnitudes of the time derivative and normal derivative parts
of the Burton-Miller boundary integral equation has been set at ¢ = —1. Figure 9 illustrates the effects of
changing c¢ for frequency w = 27. Again, the exact solution in the frequency domain is used as the basis
of comparison. The results in Figure 9 are for source function frequency wg = 2w, a = 0.5, h = 0.27 and
At = 0.05. Figure 9 demonstrates that the choice of the parameter ¢ does not have a large effect on the
accuracy of the results.

V.B. Effects of Changing At

As stated previously in section II.C.1, if the time step is chosen so that At < R,.;, where R,,;, is the
minimum distance between collocation point and quadrature points, then the matrix By in the March-On-
Time scheme will be a diagonal matrix. For the case of the spherical boundary of radius 0.5 with 760 curved
triangular elements, the maximum time step value that will make Bq diagonal is At &~ 0.0096. A diagonal
matrix By causes a significant decrease in computation time over a non-diagonal By, and so the diagonal
matrix is preferred. This section contains a study of the effects of changing At on the accuracy of the
numerical Burton-Miller results when compared with exact solutions.

All results in this section correspond to a source point location of y = (0,0,10) and a spatial basis
function order of P = 0. Other terms kept constant are a = 0.5, ¢ = —1 and h = 0.27. Figure 10 is a plot of
the numerical results versus the exact solution for frequency w = 27 and source function frequency wy = 47
at several time step values. Figure 11 shows similar results for frequency w = 47, also with source function
frequency wg = 4m. For frequency w = 27, decreasing At does not improve the accuracy of the numerical
results. However, for frequency w = 47, At = 0.025 and At = 0.01 result in improvements in accuracy over
At = 0.05. Both figures illustrate the effects of At on the accuracy of the results. As At decreases, the
numerical results will become more accurate until a minimum value is reached. This minimum value of At
varies with frequency.
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Figure 9. Comparison with exact solution (solid line) for w = 27 and selected values of c.
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Figure 10. Comparison with exact solution (solid line) for w = 27 and selected values of At.

V.C. Effects of Source Function Shape

In a final study, consider again the sphere of radius 0.5 with N = 760 curved triangular elements. Let
y =(0,0,10), P =0, a = 0.5, c= —1 and At = 0.025. As stated previously, the source function, ¢(t), has a
spectrum of unity over the frequency range of interest. The parameter h determines the shape of the source
function and can be adjusted as the source function frequency, wg, changes in order to maintain a spectrum
of unity over the desired frequency range.

Figure 12 compares the numerical Burton-Miller results with the exact solution for several points located
on the sphere’s boundary. The graph on the right in Figure 12 shows a loss of accuracy for many of the
boundary points when wg = 27 with h = 1.27. In order to ensure an accurate solution, the source function
frequency wp should be greater than or equal to the desired solution frequency w.

VI. Conclusions

A three-dimensional time-domain Boundary Element Method has been presented for computing exact
Green’s functions in acoustic analogy. A March-On-Time scheme was formulated to solve the time-domain
boundary integral equation. Numerical examples showed the long-time instabilities associated with the time-
marching scheme. Using a modified Burton-Miller Combined Field Integral Equation, long-time instability
problems were corrected. Hypersingular integrals arising from the Burton-Miller formulation were regularized
by a normal derivative of the boundary integral constant. Examples of the time-domain Boundary Element
Method with the Burton-Miller modification compared numerical results to the exact solution for a sphere
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Figure 11. Comparison with exact solution (solid line) for w = 47 and selected values of At.
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Figure 12. Comparison with exact solution (solid line) for w = 4n. The source function frequency is wy = 47 with
h = 0.27 (left) and wo = 27 with h = 1.2 (right).
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with good agreement. The effects of changing the parameters ¢ and h were discussed. No significant
improvement in accuracy resulted from changes in ¢. In the last example, the results worsened for higher
values of h. Therefore, wy should be at least as large as w. The effects of changing At were also studied.
For each frequency, a decrease in At causes improvements in numerical solution accuracy until a minimum
value is reached. As a result, the matrix By can be formulated as a diagonal matrix without loss of accuracy.
With the correct choice of At, the modified Burton-Miller scheme gives both accurate and stable results.

Appendix
The regularized integrand for the hypersingular integral, given in section IV.B, has the form of

9*Gy g

anzan [Q(X57y7t - R7 S) - 9(Z7y7ta 8) + R@t (XS7y7t - R,S)]
0*G
= 5 - [Vo(z.y.t.5) R+ O(R) (29)

Therefore, if constant element spatial basis function is used, i.e., P = 0, we have Vg = 0 and (29) is integrable
in the regular sense. When linear or higher-order spatial basis functions are used, (29) becomes integrable
using the Cauchy principal value.!?

Recalling the element parametrization form given in equation (19), we can evaluate the integral for (29)
by the polar coordinates centered at the nodal point x;. Denote its integrand by F'(r,0) as

8%Gy
on,on

9
ot

F(T‘,Q): [g(xsayatfRas)79(Z7y7ta5)+R (styatvas)ng XX??| (30)

and the limit

lim r2F (r,0) = G(0)

r—

where it has been found that

(n, - ng)Vy(xk,y,t,8) - [(b+ 2&d + nif) cos 0 + (¢ + &xf + 2nx.e) sin 6]
[[(b 4+ 2&kd + nif) cos 0 + (c + &pf + 2ne) sin 6]|3

G(6) = xe X Xglmo  (31)

Then, the integral on a hypersingular element Sy can be evaluated as follows,

2 pr(0)
/ F(r,0)dS = liH(l) / F(r,0)rdrdd
Sk €= 0 €

= lim

e—0 r

2 pr(0) .2 A ~
O / CEEN=G0.0 | GO0, ,

2 r(@) 2 _ 2 =~
_ / / r F(?“, 9) G(O, 0) drdf + lim G(O) 0)[]11 r(@) —In G]dtg
0 0 -

T 0Jo

2 r(0) .2 -G " e
:/ / B0 =G0 gy [ G0.0)mr(0)d0
0 0

r 0

where it is easy to verify that

27
/ G(0,0)d0 =0
0
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