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ABSTRACT

In this paper, sound radiation associated with
a temporally evolving mixing layer is considered.
Numerical simulations are carried out by a vortex
method in which the mixing layer is modeled by
an array of vortex blobs and perturbed with the
wavelength of the most amplified wave. Since the
vortex method computes an incompressible flow, a
methodology of computing the acoustic field based
on matched asymptotic expansions is employed. A
singular perturbation is developed in which the in-
compressible solution obtained by the vortex method
is the inner solution while the acoustic field is the
outer solution. The formal matching process is car-
ried out by introducing intermediate variables. It
is shown that in the limit of zero Mach number,
the leading terms match smoothly. The inner so-
lution of the incompressible flow_thus provides the
boundary condition for the outer solution of radiated
sound. Numerical results of the vortex simulation
and computed acoustic pressure are presented.

I. INTRODUCTION

Vortex methods have many attractive advantages
in numerical simulation of flows of practical interest,
such as mixing layers and jets. They are also of
interest to computational aeroacoustics in connection
with the vortex sound theory of low Mach number
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flows. Powell'® first proposed the concept of vortex
sound in which the source term in Lighthill’s acous-
tic analogy!® is related to the vorticity of the flow
at low Mach numbers. Later, using a method of
matched asymptotic expansions, Crow* showed that
the source term in the acoustic analogy can be com-
puted using incompressible flow variables when the
source is compact. The sound source is considered
compact if £/A << 1 where £ is the turbulent eddy
size and ) is the acoustic length scale. The method
of matched asymptotic expansions has also been used
in many other problems of sound radiation, including
that of two co-rotating vortices3:14,

Since the vorticity field is intimately related to
the sound source in the vortex sound theory, several
studies have emerged recently in which numerical
simulations based on vortex methods are used to
compute the sound radiation. In [7], the acoustic
field associated with the regular and chaotic motions
of three point vortices is computed based on a Powell-
Hardin formulation of the vortex sound theory. In
that work, the motion of three vortices is simulated
using a vortex method and the acoustic pressure is
found by evaluating the source term numerically. In
[6]. the acoustic field associated with the collision of
two vortex rings is computed numerically.

The present work explores the viability of vor-
tex methods for computing sound radiation of low
Mach number flows based on matched asymptotic ex-
pansions. In particular, the induced sound field of

-a two-dimensional- temporally -evolving -planar -mix-

ing layer is considered. Simulations of the mixing
layer are conducted by a vortex method in which
the mixing layer is modeled by an array of vortex
blobs and perturbed with the wavelength of the most



Downloaded by Fang Hu on August 28, 2016 | http:/arc.aiaa.org | DOL: 10.2514/6.1996-875

amplified wave. The mixing layer is assumed to be
periodic in the direction of the mean flow. The
initial exponential growth as well as the non-linear
growth of the mixing layer are computed. However,
the present vortex method, as well as most vortex
methods currently in use, computes an incompress-
ible flow. Furthermore, since the mixing layer has an
infinite extent, the sound source is non-compact. To
compute the radiated sound field associated with the
temporal evolution of the mixing layer, a methodol-
ogy of matched asymptotic expansions is employed.
A detailed analysis of matched asymptotic expansions
for the temporally evolving mixing layer is presented.
The far-field acoustic problem will be treated as a
singular perturbation problem in the limit of zero
Mach number. For the flow field close to the mix-
ing layer, the characteristic velocity and length scales
are the mean velocity and the vorticity wavelength.
The near field flow is incompressible to leading or-
der in a small Mach number expansion. At the far
field, the proper velocity and length scales are the
speed of sound and the acoustic wavelength. There,
the linearized equation for the acoustic waves is the
convected wave equation. A singular perturbation is
developed using the method of matched asymptotic
expansions. In this approach, the incompressible so-
lution obtained by the vortex method is the inner
solution while the acoustic field is the outer solution.
The formal matching process is carried out by intro-
ducing intermediate variables. It is shown that in the
limit of zero Mach number, the leading terms match
smoothly. The inner solution of the incompressible
flow thus provides the boundary conditions for the
outer solution of radiated sound.

In the next section, formulations of the vor-
tex method and matched asymptotic expansions are
given. Numerical results are presented in section 3.
Section 4 contains the conclusions.

II. FORMULATION

We consider the temporal evolution of a planar
mixing layer, modeled by an array of vortex blobs.
The mean velocities are /o and —Uy for the fluids
above and below the mixing layer, respectively.

In the next two sub-sections, formulations of
the vortex method for simulating the mixing layer
and the method of matched asymptotic expansion for
computing the far-field acoustic waves are given.

A. Vortex Method

Since the generation, growth and merging of the
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large scale mixing layer vortices is dominated by in-
viscid mechanisms, we employ a two-dimensional vor-
tex dynamics technique for the simulation of Euler’s
equations. These methods, as reviewed by Leonard?,
are well established and offer an efficient and con-
ceptually straightforward way to capture the large
scale features of evolving free shear flows. A brief de-
scription of the particular variant employed in this
study is given in the following. The rotational por-
tion of the fluid is discretized into a row of N vortex
blobs of radius ¢ and circulation I'; (f = 1, N). The
basic assumption that the flow field is inviscid then
allows one to make use of the theorems of Kelvin and
Helmholtz to advance the blobs as material elements
according to the Biot-Savart law?, while maintain-
ing their circulation I'; as being fixed. We consider
the case of a streamwise periodic, temporally evolv-
ing mixing layer. This model captures all of the
dominant features of a mixing layer, including the
instability of the vorticity layer, the formation and
subsequent pairing of the large scale spanwise vortices
and the inherent strain field. Furthermore, the tem-
porally evolving case is numerically more efficient and
it avoids the problem of assigning inflow and outflow
boundary conditions. We obtain a smooth vorticity
field by employing an invariant vorticity distribution
of the form

w(r) =I‘,~/(7r0'2)exp(—-r2/0'2) (1)

in which » is the radial distance from the blob
center. For the calculation of the velocity field, the
Biot-Savart law requires integration over the entire
vorticity field. Therefore, the far field effect of
the streamwise periodic images of the blobs must
also be taken into account. This can be evaluated
analytically by treating the images of the vortex blobs
as point vortices, so that the overall velocities in the
streamwise and cross-stream directions respectively,
are given by

N
wz,y) =Y { LYY, exp(—r?/o?)

i=1 El" r?
_Ii sinh[27(y — :)/ L]
2L cosh[27(y — y;)/ L} — cos[2n(x — x;)/ L] }
(2a)
N 1 z—-2; 2
o) = 3 {5 S Tresp( /0%
=1
Ti sin[27(z — x;)/L]
2L cosh[27(y — 4:)/ L] — cos[27(z — xi)/L]}
(2b)



Downloaded by Fang Hu on August 28, 2016 | http:/arc.aiaa.org | DOL: 10.2514/6.1996-875

>

in which (z;, ;) represents the time dependent posi-
tion of each blob and L is the streamwise dimension
of the periodic control volume. We advance the flow
field in time by calculating the velocity induced at
the center of each blob u(x;.t) and by advancing the
blobs' positions x; according to the equation.

%’— = u(x;j,t) (3)
where summation in equation (1) now takes place for
all i not equal to j. A second order accurate predictor-
corrector scheme is used for the time integration of
the blob positions. To determine the optimal spatial
discretization, the number of blobs was increased
until no further change in the maximum vorticity
occurred during the evolution of the flow. Typically,
this resulted in a discretization of 59 blobs per basic
wavelength.

In analogy to forcing the flow in an experiment,
we initially impose a sinusoidal modification to the
strength of the vortex blobs'3. This perturbation
induces the instability and roll up of the shear layer.
It is given by

T; =Tio(1 + .05sinax)

where T';, is the vortex blob strength corresponding
to the unperturbed flow. The wavenumber o of
the perturbation is chosen to be approximately the
maximally amplified wavenumber as predicted by the
inviscid stability analysis of Michalke!!

B. Matched Asymptotic Expansions
B.1 Governing equations of a compressible flow

To study the acoustic field associated with the
temporal evolution of the mixing layer, we consider
the governing equations for the inviscid compressible
flow which include
continuity equation :

op , Opu | Opv

5 T oy (4a)

momentum equation :

Ou Ou  Ou _ 10p
6t +u6_'.r+b?9?/-—_p6x (4b)

dv v ov _ 10p
—a—t'-!-ub;'i‘vég——;'az (4c)
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and the isentropic relation
p=kp" (4d)

where u and v are the velocities in the z and y
directions respectively, p is the pressure, p is the
density and v is the ratio of specific heats. The speed
of sound is a = (yp/p)%.

We assume that the vorticities are confined in-
side a layer of thickness 2d such that the flow is
irrotational for |y| > d. Outside this layer, we can in-
troduce a potential function ¢ for the velocity field,

ie., 9 P
_o9¢ _0¢
o T By (5)
By substituting (5) into (4), an equation for ¢ can be
found®:1? .
¢ 5, _ 0% 10609 10409 2 2
G Y = T T3 8s s 35y oy 1O %)V S
(6)
in which
_ (96’ (0¢)2 2, _ 0% 8%
@-(ax> + By and V¢_5—+%-

and a, is the mean speed of sound in the far
field. Moreover, upon integrating the momentum
equations, we get

3¢ ¢>3 (&zs)z dp _

ata [(ax + dy t p ®
where C(t) is a function of time. By letting y — oo
and utilizing (4), we further get

0¢ 1 6¢)2 <6¢)2 y p_1 Y P

3t+2 [(Bx + 8y +'y—1p 2U°°+ —1 poo
(Ta)

where po and p are the reference pressure and

density of the far field. On the other hand, for
incompressible flows, where p is constant, we have

0, 1|(80\* (94 P _ 1l Peo
E”Li{(a_z)J’(ay) N LE,
(75)

B.2 Inner solution

For simplicity, we will consider the flow field
above the mixing layer, i.e., the upper half-plane.
The lower half-plane can be treated analogously.
Close to the mixing layer, the characteristic velocity
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M2

and length scales are the mean velocity Uy, and
wavelength L of the instability wave. Let the scaled
inner variables be

i 2mz . 2wy i _ 27t
L’ L’ L/Uy
. u i v K 27l‘¢
W= V== =
Ueo Uee UL
i P = Peo ; P — Peo
= R =
g pU3, g Poo

where a superscript ¢ has been used to indicate
the inner variables. For convenience, the non-
dimensionalized wavelength is taken to be 27. Then,
equation (6) becomes

9%t 2 L0801, [04° 0" 08¢ 0
e TR L P
a?—a% _.2 .
+ —5=V¢ (8)
aOO

where M = [/ /ac is the Mach number and is
assumed to be a small parameter. It can also be
shown that the coefficient of the last term in (8) is of
order A°.
We now express ¢' as a power series in M2 as
follows.
=t 4o+ MW 4
where the first term represents the mean flow. From
(8), it follows that, for the leading term,
.2 .
V7 ¢y =0 (10)
Thus, to the leading order, the flow field near the
mixing layer is the same as that of the incompress-
ible flow, which can be computed using the vortex
method. Upon a linearization of equation (7b), it is
found that the leading order pressure, p’y, is related
to the potential ¢'; as
8¢,
+ Ozt )

i 3¢io
Po= ot

for y* large. Moreover. p'; also satisfies the Laplace
equation

(11)

V¥ ply=0 (12)

The asymptotic form of piy for y* large will
be considered next. Since the vortex simulation is

|

periodic in ', we express the inner solution for the
pressure as a Fourier series in z* as

b ~
Z pik(yz , tt)eikx'

k=—o00

Polat, v, ) = (13)

By substituting the above into (12), it follows that,
for yi large,
Py’ 1) = piy(t)e™IHIY'

Thus, the asymptotic form of the inner solution, for
the leading term, as y* — oo is

' o
po(a, ¢, ') = Z pi(th)e tkly gika

k=—co

(14)

B.3 Outer solution

In the far field, the characteristic velocity and
length scales are the sound speed a, and wavelength
A. We define the following outer variables :

2= 2T 2 e 2
’ A At
u":—-u—-, UO:L ¢°=27r¢
oo oo Qoo A
o . p — Peo o __ p— pOO
p - 27 -
Poolco Poo

where a superscript o has been used to denote the
outer variables. The length scale for the acoustic
waves is chosen as

(15)

Consequently, the scaled time for inner and outer
solutions is the same, i.e., t* = t°. In outer variables,
equation (6) for the velocity potential becomes

BY _Gorge 0 1[06°08° 69" 0%°
of2 T8t 2|08z° 8z Oy Oy°
2_ 2
+ SRyt e (16)
A%

Again, we express ¢° as a power series of M2 as
follows,

¢0=Mxo+¢oo+1w2¢ol+
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t°—y
PRy 1) = fult® —y") = /0 fulr)

where the first term represents the mean flow. By
substituting (17) into (16), we get the equation for
the leading term ¢°¢

0 0 2 ] 02 .o
5t7+1\{8x° % — V8% =0 (18)

The leading acoustic pressure disturbances, p°,,
can also be found from the potential function by
linearizing equation (7a) as

o _ 6(250 a¢o
P% = <6t° + M ) (19)

Moreover, p°; also satisfies the convective wave equa-
tion

ate dx
To facilitate the matching of the inner and outer
solutions, we apply the following Fourier expansion
to the outer solution

d 8\’ v o
(—+M—o) P —VIip%h=0 (20

[o0]

Z 15";..(3/". tO) eik/M(:r°—Mt°)

k=—co

P’(2%,y’.1%) =
(21)
By substituting (21) into (20), it is easy to see that

the amplitudes of the expansion, p®;(y°,t°), satisfy
the equation

0’p° _ 8°p° TP
6t oyt

kL k=0 (22)

where & = k/M. This is the Klein-Gordon equation.
The solution to equation (22) is uniquely determined
with the following boundary conditions!® :

at y* =0, p°r(0,%) = fi(t?)  (23)

at y® — oo, p°(0.t°) satisfies the radiation condition

(24)
and initial conditions :

at t°=0, $y°,0)= ¥°,0)=0 (25)

T
in which fi{#°) is to be determined in the matching
process.

The above initial-boundary value problem can
be solved using Laplace transforms!®. It is found
that, in terms of the boundary condition fi(¢°),

I%y"

x Ji(k\/(T—19)2 —yo2 )dr  (26)

(.,. - t°)2 — yo.?

Copyright ©1996, American Institute of Aeronautics and Astronautics, Inc.

where J; is the Bessel function of order unity. By
means of Laplace Transform (see Appendix), the
above can also be expressed as

15°k(t°,y°)=% /C Fr(@)e™v"VE-“?qy, (26"

where fk(w) is the Laplace Transform of fi(t°).

B.4 Matching of inner and outer solutions

To show that the inner and outer solutions match
as M — 0, we introduce the intermediate variables €
and 7 such that

xi = A’Io’—lf, yi — A'[a_ln
and
"= M€,y =M

where o is some positive number and 0 < o < 1.
We consider the intermediate limit A — 0 with &
and 75 fixed. The matching will be carried out by
expressing the inner and outer solutions in terms of
the intermediate variables.

In the limit M — 0, the inner variables z¢, 3’ —
oc. Thus, the inner solution, by (14), has the form of

o0
S Pt e HIMT T n ik e oy
k=—n0

The outer solution of (21), on the other hand,
can be expressed as

o
Z y fO)eskItI" le—ikt® (28)

By introducing Laplace Transforms (see Ap-
pendix), the leading term of p°,(y°,1°), in the limit
M — 0 is found to be

PPy 1) & fo(t )eIHIM™ (29)
Thus, (28) is of the form
Poo — Z Fult° )e—lkM["'lr] eikM‘*-ls-ikt" (30)
k=—co

Upon comparing (27) and (30), it is seen that the
outer and inner solutions will match smoothly when

Fe(t0) = M2 piy(t) et (31)
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Thus, the boundary condition of the outer prob-
lem is related to the inner solution by (31).

III. NUMERICAL RESULTS

In this section, numerical results of the vor-
tex simulation and the acoustic pressure computed
by (26) will be presented. The simulation of the
Kelvin-Helmholtz instability wave is shown in Figure
2, where the contour plots of vorticity are given for
selected time steps. In Figure 3, the evolution of the
vortex blobs and the contours of the induced incom-
pressible pressure field are shown for selected time
steps. The incompressible pressure is computed using
(11) in which the potential is obtained as the sum-
mation of all the potential functions corresponding
to the blobs. Then, a Fourier transform is performed
in the z direction on the pressure field to extract the
amplitudes pi(y, '), as in (13). The amplitude as a
function of time at y* = 5 is shown in Figure 4 for
k =1 to 5. We note that k£ = 1 is the wavenumber
of the fundamental mode, i.e., the forcing wave. It is
seen that the fundamental mode grows exponentially
as a function of time with a growth rate of 0.3947.
On the other hand, the amplitudes p};(yi,ti) decay
exponentially as functions of y* outside the mixing
region, as shown in Figure 5.

The associated acoustic pressure at the far-field
is computed by (26), in which the function fi(¢°)
is obtained by (31), i.e., the results of the vortex
simulation. Here, we discuss some numerical consid-
erations in evaluating the expressions in (26). First,
the numerical evaluation of the integral in (26) re-
quires a high order of accuracy since the value of
the acoustic pressure is several orders of magnitude
smaller than that of the individual terms in (26). An
8th-order numerical quadrature is used to compute
the integral. The numerical results are also veri-
fied with refined integration intervals. Second, for
the initial-boundary conditions given in (23)-(25) to
be consistent, it is required that fi(0) = 0. How-
ever, this is not satisfied by (31) since the vortex
simulation is started with a non-zero initial perturba-
tion. Our numerical computations have shown that
when the results of the vortex simulation, p*(t*) as
shown in Figure 3, were used directly, large acous-
tic pressure was resulted near {° = y° as an artifact
of p'1(0) # 0. We thus modify the initial time in
the integration to be ¢° = —Tp such that P e(=To) is
less than 10720, The values of pi,(¢!) for ¢ < 0 are
obtained by extrapolation, assuming an exponential
decay as t! — —oo.
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In Figure 6, the associated acoustic pressures are
shown as a function of time £° at y° = 20 for the first
mode, i.e., for £ = 1. The Mach numbers are 0.08
and 0.16 respectively. The spectrum of p°,(y°,°) is
shown in Figure 7 for several Mach numbers. As the
Mach number increases, the amplitude increases and
the spectrum shifts to the left. We also note that, for
a given Mach number M, the peak of the spectrum
is found for w > k/M (here k = 1 for the first mode)
as indicated in dashed lines. That is, considering
the expression (21), the radiated sound waves have
supersonic phase speed relative to the mean flow.

Numerical results of p°.(y°,t°) for the second
mode, k£ = 2, are also shown in Figure 8 and 9
for M = 0.2. In general, we found that the sound
pressure induced by the second mode is significantly
smaller than that of the fundamental mode. Again,
the spectrum indicates that the radiated sound wave
has supersonic phase speed relative to the mean flow.

IV. CONCLUSIONS

A singular perturbation is developed in which
the incompressible solution obtained by the vortex
method is the inner solution and the acoustic field is
the outer solution. It is shown that in the limit of zero
Mach number, the leading terms match smoothly.
The inner solution of the incompressible flow thus
provides the boundary condition for the outer solu-
tion of radiated sound. Numerical results indicate
that the amplitude of the radiated acoustic waves in-
creases with the Mach number. The spectrum also
shows that the radiated waves have supersonic phase
speed relative to the mean flow.

APPENDIX

In this appendix, we give the estimate of the
outer solution p°.(y°,1°) as M — 0. For convenience,
let

S 1) = —m Ly (k17 = 2B (e — )
' V10T — o2

(A1)
where H(t” — y°) is a step function which equals
to unity for positive arguments and zero otherwise.
By utilizing the convolution theorem of the Laplace

Transform, (26) can be written as
o
P90 = filt = y) = | fe(7)S(y°,t° — 1)dr

1 < ~ . e
= £lt" =) - 3= [ 080 e d
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where fi(w) and S(y°,w) are the Laplace transforms Similarly, it can be shown that
of fi(1") and S(y°,1°), and the inversion contour €'
is above all the poles of fi and S. Furthermore, we v
" . o oy ol «® —Dk/A (AR
note that the Laplace Transform of S(y”. (°) is AR)

27r1)

S(y° w) = " — VR e ()
Thus, p?,(1°, y°) can he expressed as
Pty = fx-(f” - ¥°)

/i2 P 2 i 2
/ Je(w) [ ent ey "_wg] e dw M/ f[,, —w? = M y|k| (%)

—_ —y" k-2 Foa) 2
~ o /’ fl‘(w)f y dw (Ag) — Ma_l'll“ (1 - l <§_[__‘t.> +)

For s, we note that, since now jw| < |k]/A,

2\ k

For the asymptotic form of p?p (1, y*) as Al — 0, we

substitute y* = My and k = k/A into (A3) and = M ylk] ~ {n+17lw
obtain k]
pe it "y = L/ fx-(w)!‘—“"""/“'/“’""“'Jn_i“"o(lw .

27 Jo Thus, for the leading term as Al —0),

(A1)
Here the branch cuts of \/(k/A)? —w? will be spec-

VB
ified such that | e

o Sr(w)e
real(\/(F/A)? —w?) >0 —{k|/A+B4ic

[k{/AL—~5+4i€
LA [A]/ Folw)e—iot
— Sr(w)e ™ dw
|k1/M+5+4ie

o=l 00l g
~M n|l.l() iwt g,

~—
e
il

To estimate expression (Ad), we delorm the contour
(" to be slightly above the real axis of the w-plane

and express the integral as i A (/m+u /~IL~[/M+6+ir /m+ic
N . = —f —_ —
~\k| /M b4 k/AI=d4i¢ o~ B
PRt ) = </ o +”+ /l e +/ i ) " ot oot ki3t =bic

[/ M —b4ie

ll

~otie S IVEYER ER TS

s felw)e ™V VR =gy = 1 4 Iy + I3 (AD) x fi(w)e™ ™ duw
where ¢ and 8 are infinitesimally small. Furthermore, ) _ . )
[t is easy to verify that the first integral is fi.(¢°) and
the last two integrals are of order ¢=#/M _Fhys, o
leading order,

we assuiine that
[ etw)] < el (46)

for |w| > Qq where ' and D are positive constants
.. b % e, _Aago—1.11
and ’Q‘n is some large valu . I=e M ”“'fk(t") (A9)
Then, integrals I}, I2 and I3 can be estimated as
follows. For Iy, we have

| oM s sty SIS —iwt® By comparing (A7), (A8) and (A9), it is seen
Ihf < — e frlw)em MV IRIMPwRo—iwl®) gyt I and I3 are exponentially smaller than Ia.

| _ATHI/{,\H,;“, . ) Thus, we gel the leading term of p°,. as
< — f‘.(w)l(-" dw

2T f_nogie ‘o — A nlk| 0

o [ S Dl Prre Te(t?) (A1D)
< —pf / e dw
T iw —rutie

~k1/M 45

= rl—f’d"/ ('(‘“’)["‘"i"ds

2 —ro ACKNOWLEDGMENT
< | I ~kI/A 44 (oDt g This work was supported by the National Aero-
=957 . s nautics and Space Administration under NASA Clon-
i st D) Iz C =DM a7y tract NAS¥-19480 w{ule the au(.hor.? were in res‘l(!vnce
=57 oD s at the Institute for Computer Applications in Science



Downloaded by Fang Hu on August 28, 2016 | http://arc.aiaa.org | DOI: 10.2514/6.1996-875

- -

and Engineering, NASA Langley Research Center,
Hampton, VA 23681.

REFERENCES

1. M. Abramowitz and 1. A. Stegun, lHandhook of
Mathematical Functions. Dover, New York, 1965.

2. (. K. Batehelor, An Introduction to Fluid Me-

chanics (Cambridge University Press, 1967).

o

. D. G. Crighton, “Basic principles of acrodynamic
noise generation”, Prog. Acrospace Sci, 16, No.
I, 31-96, 1975.

4. S, CL Crow, “Aerodynamic sound emission as
a singnlar perturbation problem™, Stud.  Appl.
Math.. 49 (1), 21-, 1970.

5. M. S Howe, “Contribution to the theory of
aerodynamic sound, with application to excess
jet noise and the theory of the flute”, Journal of
Fluid Mcechanics, T1 (1), 625-673, 1975.

6. 'T. Kambe, “Aerodynamic sonnd associated with
vortex motions : observation and computation™,
Theoretical and Applied Mechanices, Bodher et al
(editors), Elsevier, 1993,

O. Knio, L. Collorec and D. Juve, “Numerical

-~

study of sound emission by 2D vegular and chaotic
vortex configurations™, Journal of Computational
Physics, 116, 226-246, 1995.

& J. Laufer, J. E. Flowes Williams and S. Childress,
“Mechanism of noise generation in the turbulent

houndary layer”, AGARDograph 90,, 1964.

0. A. Leonard, “Vortex methods lor flow simulation™,
Jowrnal of Clomputational Physies, 37, 289, {980,

10. M. J. Lighthill, “Oun sound generated aerody-
namically. . General theory™, Proe. Roy. Soe.
Lond., 211, 564-, 1952,

11. A. Michalke, “On the inviscid instability of
the hyperbolic-tangent velocity profile,” J. Fluid

14.

16.

Copyright ©1996, American Institute of Aeronautics and Astronautics, Inc.

Mech. 19, 543, 1964,

. L. Morino and M. Gennaretti, “Boundary integral

equation method for aerodynamics™, Compula-
tional Nonlinear Mecechanics in Acrvospace Engi-
neering, edited by S. N. Atluri, 279-320, 1992,

. Y. Nakamura, A. Leonard and P, Spalart, “Vortex

sinulation of an inviscid shear layer,” ATAA
Paper No. 82-09:18, 1982.

E.-A. Muller and F. Obermeier, “The spinning
vorlices as a source of sound”™, AGARD CP22,
Paper 22, 1967.

A. Powell, “Theory of vortex sound™, .J. Acoust.
Soc. Am., 16, 177-195, 1964.

K. Zauderer, Partial Differential Fquations of
Applicd Mathcmatics, John Wiley & Sons, 1983,



Downloaded by Fang Hu on August 28, 2016 | http://arc.aiaa.org | DOI: 10.2514/6.1996-875

-

Copyright ©1996, American Institute of Aeronautics and Astronautics, Inc.

(NS N LN
Ou}é/uuv x

10?
107
104 /\—\;L\m
Figure 1. A schematic of the mixing fayer and vortex = 10" 2
blobs. _; o AN e N\,
~ e NNy B
& // RN
23 < //
N
10 /TN~ o 4
107 / ’ N - -
- / I// 5
1o L AT T
.0 50 100 150 200 250 300
time step
Figure 4. Amplitudes of the pressure as functions of
time ¢ for Fourier modes with & = 1,2,3,4,5.
T
10’
i . 107
X x ~—
10 T
a1~ k=l
Figure 2. Coontours of vorticity at selected tine steps =0T
. . . . oy e SN
showing the growth of Kelvin-llelmholtz instability LU SN \\\\ s
- 6
wave, g 10 ~ S g
- ‘07 AN N \\
6 * \\ N3 N
6 g K N N ~
5 () s 1y \ S ~ \\
4 4 ]()" 5 \‘\‘ \\ \\\
3 3 10 N S
‘»21 “%21 2 3 4 5 6 T & 9 0
0 i} y'
-1 -1
-2 -2
0 1 2 3 4 5 6 0 1 2 3 4 5 6
< < Figure 5. Amplitnde of the pressure as a function of
o 6 y* for Fourier modes with £ = 1,2,3,4,5.
s s )
4 4 /‘\ Lo
3 3 N\ /oI
3 ; - 2l ZEERNN TN
! 40000000, [ 00072900,
0 o & M 0pe”" g d 00
-1 00600009 R 0 o"g 0000°°
2 2 . N
i 2 3 4 5 6 0 1 2 3 4 5 6
i i
X X

Figure 3. Vortex blob positions and the contours of
the induced pressure field above the mixing layer al
selected time steps,

9



Downloaded by Fang Hu on August 28, 2016 | http:/arc.aiaa.org | DOI: 10.2514/6.1996-875

Copyright ©1996, American Institute of Aeronautics and Astronautics, Inc.

- -

S5e-12 eS| r - —
4e-12
3e-12
212 Le-07
§ jen 8.c-08
g ool- 608
2 -le2 408
“2e-12 § 2c08
3e-12 E 0.0
-de-12 H'd.f -2.c-08
-5.e-!2g ; - . —— - ~d.e-08 |
50 60 70 80 ] 90 100 1o 120 Ge08
t -8.e-08
-1.e-07 .
50 60 70 80 9 100 1o
¢
<4.e-07 ) ~—
3.e-07 Figure 8. Acoustic pressure as a function of time ¢°
2,07 for £ =2 aud Al =0.2.
5 1e07
Q.
g 00
2a 1607
-2.e-07
-3e-07
-4.e-07 - — : . : ,
50 60 70 80 90 100 10 120
o
107
Figure 6. Amplitude of the acoustic pressure as a . /
function of time ? for k& = 1. (a) M=0.08, (h) 19 M=0.2. k=1
M=0.16. o
- 10
3
& ot
107 w"
-
10 M=0.2 10"
10" 1
> a6 o S
_ ™ — 0 2 4 6 8 10 12 14 16 1R 2
3 " w
Cu Figure 9. Spectrum of the acoustic pressure for & = 1
— -12 . . . .
10 and k£ = 2 with Af = 0.2. Dash lines indicate the
T sonic phase speed w = k/M.
-1 ;
10 / M=0.08
L}
10" :
10.m L N L N s .

Figure 7.  Spectrum of the acoustic pressure for
k= 1. The dashed lines indicate the sonic phase
speed w = k/AI.

10

120



