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Abstract 
. An implementation of the discontinuous Galerkin 

method for the linearized Euler Equations is presented. 
The emphasis of the paper is on the treatment of 
boundary conditions and their effectiveness for solving 
acoustics problems. For far field non-reflecting bound- 
aries, Perfectly Matched Layer (PML) equations are 
applied and a numerical study on the effectiveness of 
the PML is carried out. It is found that, when an up- 
wind split flux is used in the discontinuous Galerkin 
method, the PML equations can offer a numerically 
stable and effective absorbing boundary condition. In 
addition, solid wall boundary condition is also dis- 
cussed. It is shown that not imposing wall boundary 
condition explicitly will affect the accuracy of the so- 
lution. 

1 Introduction 

Compared to finite difference methods, which has been 
a favorite choice for many recent studies on com- 
putational acoustics5~13,15, the discontinuous Galerkin 
method has the advantage of being more flexible for 
complex geometries2~3~4J2. Coupled with its capac- 
ity and relative ease of implementation in high order 
polynomials, it has been recognized as an attractive 
alternative method for acoustic problems2T12. In this 
paper, we discuss an implementation of discontinuous 
Galerkin method for the linearized Euler equations. 
Emphasis will be given on the treatment of bound- 
ary conditions and its effectiveness for solving acoustics 
problems. 

Recently, an analysis on the wave propagation prop- 
erties of the discontinuous Galerkin method has been 
carried out”. In that work, the numerical dispersion 
relation implied in the discontinuous Galerkin method 
was investigated for a one-dimensional advection equa- 
tion and a two-dimensional wave equation. It was 

‘Associate Professor, Senior Member AIAA. Copyright c 1999 
by F. Q. Hu. All rights reserved. 

found that for a scheme with given order N, there 
are in general N modes of waves that are supported 
by the scheme, one physical and the rest non-physical 
( or numerical parasite modes). Further, the numer- 
ical dispersion relation is dependent on the flux for- 
mula used in the discretization process. When an up- 
wind type split flux is used, the physical mode can ad- 
equately approximate a finite range of low-frequency 
(long wavelength) waves and is dissipative for high 
frequency (short wavelength) waves. This is in con- 
trast with the central difference schemes which is non- 
dissipative for all frequencies and sometimes extra dis- 
sipation are introduced to damp the high frequency 
waves not resolved in the discretization. 

In this paper, an implementation of the discontinu- 
ous Galerkin method for the linearized Euler equations 
with a uniform mean flow is presented. In particular, 
we will investigate the effectiveness of the boundary 
treatments at solid walls and far field non-reflecting 
boundaries by the PML technique. 

The paper is organized as follows. In section 2, a 
discretization of the linearized Euler equations is pre- 
sented. Details on the implementation of numerical 
boundary conditions are given in section 3. Numerical 
results are presented in section 4. Section 5 contains 
the conclusions. 

2 Formulation 

2.1 Euler equations 

The two-dimensional linearized Euler equations in con- 
servation form are written as 

$+VF(u)=O (1) 

where 
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rM, 1 0 01 

(2) 

(3) 

(4) 

The four elements in the solution vector u in (??) are 
the density, velocities and pressure, respectively. M, 
and Mv are the mean velocities in the x and y direc- 
tions, normalized by the speed of sound. Here, for 
simplicity, the mean velocities will be assumed to be 
constant. 

2.2 Discretization 

The discontinuous Galerkin method is a finite element 
method in which the approximation of u may be dis- 
continuous across the element interfaces. Its applica- 
tion to the Euler and Navier-Stokes equations has been 
studied extensively in many recent works ([2],[3],[4],[12] 
and references cited therein). For completeness and 
convenience of discussion, a brief description of the dis- 
cretization used in the present study is given below. 

Let the computational domain D be partitioned 
into M sub-domains, or elements, denoted as Dci), 
i = 0, 1, . . . . M - 1. In each element Dci), u is approxi- 
mated by an expansion 

L-l 

uqx, y, t) = c cl”(t,pp(x, y) (5) 
c-=0 

in which {py’(x, y) ] e = 0, 1, . . . . L - 1) is the set of 
basis functions for element Dci). 

Then expansion (??) is substituted into (??) and it 
is required that 

JJ [ 

au(i) 

DC’) 
at + V . F(u q] #(x, y)dxdy = 0 

for P = 0, 1, . ..L - 1. Upon applying Green’s Theorem, 
the above can be written as 

- 
JJ 

F . Vp~f’dxdy = 0 
DC’) 

in which aDci) denotes the boundary of element Dci). 
This yields a system of ordinary differential equations 
for the expansion coefficients Cy) (t). We note that no 
evaluation of the spatial derivatives of F is needed in 
(??). By inverting the mass matrix in (6), the ODE 
system can be cast into the form 

dcli) _ (q($)) 
dt (7) 

which will be integrated by a Runge-Kutta time inte- 
gration scheme*. 

2.3 Quadrilateral elements and basis 
functions 

In this paper, only quadrilateral elements will be con- 
sidered. We assume each element is mapped into a 
local coordinates of Z and g in [-1, 1) x [-l,l] by a 
transformation (see Figure 1 and Appendix) 

3 = z(x, y), ?j = y(x, y). (8) 
For simplicity, the basis functions will be assumed to be 
the same for all elements when expressed in the local 
coordinates, denoted as {F~(z, jj) ( C = 0, 1, . . . . L - 1). 
Furthermore, the basis functions will be taken to be 
the Legendre polynomials: 

where Pa denotes the Legendre polynomial of order o. 
The number of polynomials in the basis, L, is re- 

lated to the order of the scheme, N. For a basis formed 
by the tensor product of Legendre polynomials up to 
order N, L = N2. For a basis formed by retaining 
only those necessary for the completeness of the order, 
L = $N(N+l). As shown in reference [ll], wave prop- 
agation properties of the scheme improves significantly 
as the order increases. For this reason, order-complete 
basis will be used in this paper. 

Under the transformation (??), we have 

dxdy =( J ( d%dg 

where J is the Jacobian a. Due to the orthogonal- 
ity properties of the Legendre polynomials, the mass 
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matrix in (??) will be a diagonal matrix when trans- left/lower and right/upper of the boundary respec- 
formation (??) is linear and J is constant. When Ja- tively. 
cobian J is not constant, the mass matrix will not be , Such a discretization is dissipative and has “built-in” 
in general, a diagonal matrix. For the transformation dissipation for short wavelength waves”. 
given in the Appendix, Jacobian J is constant only if 
the element is a parallelogram. 

In addition, all integrals in (6) will be evaluated nu- 3 Boundary Conditions 
merically using quadrature rules. 

2.4 Numerical flux 

One of the major difficulties of the discontinuous 
Galerkin method lies on the evaluation of the flux F. n 
appeared in the middle term in (??). An upwind ap- . 
preach will be used in the present paper. For the lin- 
earized Euler equations considered here, we split the F 
vector according to the eigenvalues of the matrices Ai 
and A2 in (??) and (??). Specifically, we have 

Boundary treatment is an integral part of computa- 
tional acoustics. We will describe the implementation 
of two types of boundary condition, i.e., the solid wall 
boundary condition and far field non-reflecting bound- 
ary condition. 

3.1 Solid wall boundary condition 
At a solid wall boundary, the normal component of 
the velocity field becomes zero. This condition is 
imposed implicitly (or weakly) in the discontinuous 

Ai = A;+A, = 
7 a:;! ; 

_ ;M, + f Galerkin method-through the flux calculation along 

0 0 2 Mz 
$M,+$ that boundary2,3. Let the normal vector on the solid 

0 
I 

boundary (outward from the computational domain) 
0 ;M,+$ 0 $M,+; be denoted as n = (ni, ng). Then we have 

0 -$M,+$ 0 

+ I 
$M,-+ 

O I&-$ 2 

0 
-$M,+; 0 0 0 0 1 

and 

A2 = A,++A, q 

%I 0 $M9+i -;M,+; 
OMy 0 0 
0 0 
0 0 

u.7L1 +v.nz =o 

for the perturbation and 

(11) 

0 0 -iMY+: $M?/-$ 
0 0 

+ 00 1 0 0 
;MY-$ 

0 0 -$MY++ 
-$MY+; 
AM,-; 2 1 

in which A: and Athave only non-negative eigenval- 
ues and A, and A, have only non-positive eigenval- 
ues. Then the F vector at the boundary of the element 
is evaluated as 

F1 = A+u+ + A- l 1 u- (9) 

and 

F2 = A+u+ + A-u- 2 2 (10) 

where u+ and u- denote the values of u calculated 
using the expansion coefficients of the element to the 

M,.nl+M,.nn=O (12) 

for the mean flow, assuming it also satisfies the bound- 
ary condition. By (??) and (??), it follows that 

0 

F.n= P. 711 I 1 P. n2 
(13) 

0 

on a solid wall boundary. The effectiveness of (??) will 
be studied in the numerical calculations in Section 4. 

3.2 Absorbing boundary condition 
At the far field of computational domain, the numerical 
boundary condition must be such that the out-going 
waves are not reflected. For this purpose, Perfectly 
Matched Layers (PML) will be applied at those non- 
reflecting boundaries. PML domains are added to the 
exterior of the truncated physical domain so that the 
out-going waves from the interior computational do- 
main are absorbed without significant reflection. 

Since the discontinuous Galerkin implementation is 
not restricted by any particular coordinate system, it 
is sufficient to consider only the PML equations for 
the Cartesian coordinates. We will, thus, assume that 
any interface between the Euler equations and PML 
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equations is perpendicular to either x or y axis. Inside 
the PML domain, the solution vector u is split and the 
following PML equations are solved6~g~‘0: 

In the above, 
and (??). (T, 

au1 aFl(l.4 
dt+O”Ul+~= 

ax 
0 04) 

au2 aF2 (4 
dt + cTyu2 + ay = 0 (15) 

u = Ul + u2 (16) 

Fi and Fz are the same as those in (??) 
and uy are the absorbing coefficients in- 

. traduced for the attenuation of waves. Here they are 
taken to be constant within an element. We note that 
equations (??)-(??) recover the Euler equation (??) 
when crZ = uY = 0. 

The PML equations (??) - (??) will again be dis- 
cretized using the discontinuous Galerkin method. Ex- 
pand ui and u2 as 

L-l 

Ul b, 31, t) = c Ge(t)Pe(x, Y) (17) 
e=o 
L-l 

u2(x,Y,t) = c Cze(t)Pe(x,Y) of4 
I=0 

in each element in the PML domain. By substituting 
(??) and (??) into (??) and (??), we get 

shown in Figure 2. For the corner PML domains, both 
u, and uy are not zero. 

We note that PML equations (12)-(14) with split 
variables have been shown to be only weakly well 
posed’*7l14 and, indeed, numerical instabilities has 
been observed in their finite difference implementa- 
tions. The numerical instabilities, however, are weak 
and could be overcome by introducing damping or fil- 
tering in the finite difference schemesg~10~14. As indi- 
cated in numerical results in section 4, due to the “built- 
in” numerical dissipation of the upwind split flux, nu- 
merical stability has been observed for (12)-( 14). 

4 Numerical Results 
Three numerical examples will be shown in this section. 
Unless stated otherwise, all calculations are carried out 
using square elements with a length of 2 on each side 
and 5th order polynomials. 

In the first example, the reflection of an acoustic 
pulse by a circular cylinder is simulated. The cylin- 
der has a radius of 2 and is located at x = -4, y = 0. 
The acoustic pulse is located at x = 4, y = 0. The 
pulse is defined by these initial values: 

p = p = e-(‘“2)TZ, u = v = 0 

where T is the distance to the center of the pulse. 
Square elements are used through out the computa- 
tional domain, except the region near the cylinder. 

)JJ 
pepe~dxdY+ 

nlFiPl,dsNear the cylinder, elements are adjusted to fit the 
D Pm1 J C3D Pm1 boundary. Figure 3(a) shows the grid used in the cal- 

culation in the Euler domain of [-lo, lo] x [-lo, lo]. 

JJ Contour plots of pressure at t = 2,4 and 8 are shown - 
D 

Fi $dxdy = 0 (lg) in Figure 3(a)-(c). For this calculation, the PML do- 
F-1 main has a width of two elements and the values of the 

for Cie and absorption coefficients are taken to be 5. 

L-1 dC21 
The contour plots show very little reflection as the 

CC 
pepel dxdy + M’zpe~ds 

wave exits the computational domain. To further as- 

e=o 
dt + O&2! 

)JJ D Pm1 J l3D sess the reflection error, the calculation is compared 
p-1 with a reference solution found using a larger compu- 

- JJ F2*dxdy = 0 
tational domain. The maximum difference between the 

a9 
(20) 

D 
numerical solution of Figure 3 and the reference solu- 

Pm{ tion along the vertical line x = 9 is shown in Figure 4. 
for Cze. Here, Dpm, denotes an element in the PML Since the exiting wave has a magnitude larger than 0.1, 
domain. Equations (??) and (??) can be readily solved the reflection error at the interface between the interior 
in a manner similar to (6). and PML domains is about 1%. 

The values of cZ and cy are such that oY is the same In the second example, the propagation of an acous- 
across an interface perpendicular to x and (T, is the tic pulse in a uniform mean flow is calculated. Here, 
same across any interface perpendicular to y. Since M, = 0.5, MY = 0 and the pulse is initially lo- 
we have us = (T~ = 0 in the interior domain, this will cated at (0,O). The pressure contours at t = 0,8 
result in ‘TV = 0 for the left and right PML domains and 12 are shown in Figure 5. The Euler domain is 
and (T, = 0 for the upper and lower PML domains, as [-lo, lo] x [-6,6] and the PML domain has a width of 
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2 elements. The calculation has been carried out for a 
much longer time and no numerical instability has been 
observed in the PML domains. A comparison with the 
exact solution is given in Figure 6. Very good agree- 
ment is found. The reflection error is shown in Figure 
7 for PML domain width being 1, 2 and 3 elements. A 
larger error is seen when the width is only one element. 

In the third example, the reflection of an acoustic 
pulse by a solid wall is simulated. The solid wall is 
located at y = 0 and the pulse is initially at z = 0, y = 
6. A mean flow of M, = 0.5, My = 0 is imposed in this 
example. Figure 8 shows the contour plots of pressure 
for t = 8 and 12. Again, the reflection error are quite 
small. However, a comparison with the exact solution 
reveals the inadequacy of the wall boundary condition. 
Figure 9 shows the comparisons with the exact solution 
along a vertical line through the center of the pulse at 
x = 4 and t = 8. Large differences are seen near the 
wall at y = 0. Increasing the order of polynomials from 
5 to 6 dose not reduce the error. The error, however, 
decreases when the size of the element is reduced from 
2 x 2 to 1 x 1. This is believed to be related to the fact 
that the solid wall boundary condition, i.e., v = 0, is 
not imposed explicitly. In fact, v is not zero along the 
wall. Figure 10 shows the normal velocity v along the 
wall at y = 0 and t = 8. It is seen that v decreases 
when smaller elements are used. The magnitude of v is 
about the same as that of the errors of pressure along 
the wall. 

5 Conclusions 

A numerical study on the application of the discontin- 
uous Galerkin method to computational acoustics has 
been carried out. It is found that Perfectly Matched 
Layer (PML) equations can offer a numerically stable 
and effective non-reflecting boundary conditions for the 
out-going acoustic waves. In addition, since the solid 
wall condition is not imposed explicitly, it affects the 
the accuracy of the numerical solution. 
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Appendix Z-0 

Mapping of a quadrilateral element 
. 

Let r = (z, y) and the four points of a quadrilateral 
be denoted as re, rr , rs and rs. The a mapping to 
[-1, l] x [-1, l] in (3, jj) can be expressed as 

-- 
+i(-r0-rl+rz+r3)+F(rO-rl+rZ-r3) 

Figure 1. Mapping of a quadrilateral. 

PML 

(W) 

Euler 

NJ% 0) 

PML 

Figure 2. Schematics of PML absorption coefficients. 

x 

Figure 3. Reflection of an acoustic pulse by a cir- 
cular cylinder. Shown are the pressure contours and 
Galerkin elements used. Contour levels at fO.l, f0.05, 
f0.01, f0.005, fO.OO1. (a) t = 2, (b) t = 8, (c) t = 12. 
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Figure 4. Reflection error, maximum difference be- 
tween the numerical and reference solutions along x = 
9. 

5(c) t = 12 

Figure 5. Propagation of an acoustic pulse in a uni- 

6 

4 

form mean flow M, = 0.5, My = 0. Shown are the 
pressure contours at levels fO.l, f0.05, fO.O1, 310.005, 
and fO.OO1. (a) t = 0, (b) t = 8, (c) t = 12. 

-4- 

I 

(4 
0.1 

-6 
-10 -6 -6 -4 -2 0 2 4 6 6 10 0.05 8 t 

x 

c, 

5(a) t = 0 -0.11 -10 -8 .6 -1 -1 0 2 4 6 s 10 
x 

-10 -8 -6 -4 -2 0 2 4 6 6 10 
x 

5(b) t = 8 

0.15 

0.1 

0.05 
x 

0.0 

-0.05 

4.1 
-10 4 4 4 -2 0 1 4 4 B 

x 

Figure 6. Comparison with exact solution. Solid 
line: numerical; symbol: exact. (a) t = 8, (b) t = 12. 
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Figure 9. Comparison with exact solution. dashed 
Figure 7. Reflection error, maximum difference be- line: order 5 and 6; solid line: order 5: symbol: exact. 

tween the numerical and reference solutions along x = 
9. dashed line: 1 element; dotted line: 2 elements; solid 0.015 

line: 3 elements. . element size=?, order 5 I 

0.01 o 
element aize=Z, order 6 

- element sim=l, order 5 f-X 
: 0 

12 - 

10 

6 

X 6 

4 

2 

O.CC-5 

> 0.0 

4.005 

401 

4.015 

. . 

-10 -6 -6 -4 -2 0 2 4 6 6 10 
x 

Figure 10. Normal velocity v along the solid wall 

8(a) t=8 
y = 0 at time t = 8. The size of the elements are 2 x 2, 
symbol, and 1 x 1, solid line. 

X 6 

-10 -6 -6 -4 -2 0 2 4 6 6 10 
x 

8(b) t=12 
Figure 8. Reflection of an acoustic pulse by a solid 

wall at y = 0. M, = 0.5, M3/ = 0. Shown are the 
pressure contours at levels fO.l, 1tO.05, f0.01, f0.005, 
and fO.OO1. (a) t = 8, (b) t = 12. 
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