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An implementation of the discontinuous Galerkin
method for the linearized Euler Equations is presented.
The emphasis of the paper is on the treatment of
boundary conditions and their effectiveness for solving
acoustics problems. For far field non-reflecting bound-
aries, Perfectly Matched Layer (PML) equations are
applied and a numerical study on the effectiveness of
the PML is carried out. It is found that, when an up-
wind split flux is used in the discontinuous Galerkin
method, the PML equations can offer a numerically
stable and effective absorbing boundary condition. In
addition, solid wall boundary condition is also dis-
cussed. It is shown that not imposing wall boundary
condition explicitly will affect the accuracy of the so-
lution.

1 Introduction

Compared to finite difference methods, which has been
a favorite choice for many recent studies on com-
putational acoustics®!3:15 the discontinuous Galerkin
method has the advantage of being more flexible for
complex geometries®3%12. Coupled with its capac-
ity and relative ease of implementation in high order
polynomials, it has been recognized as an attractive
alternative method for acoustic problems®!2. In this
paper, we discuss an implementation of discontinuous
Galerkin method for the linearized Euler equations.
Emphasis will be given on the treatment of bound-
ary conditions and its effectiveness for solving acoustics
problems.

Recently, an analysis on the wave propagation prop-
erties of the discontinuous Galerkin method has been
carried out!!. In that work, the numerical dispersion
relation implied in the discontinuous Galerkin method
was investigated for a one-dimensional advection equa-
tion and a two-dimensional wave equation. It was
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found that for a scheme with given order N, there
are in general N modes of waves that are supported
by the scheme, one physical and the rest non-physical
( or numerical parasite modes). Further, the numer-
ical dispersion relation is dependent on the flux for-

mula used in the discretization process. When an up-
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equately approximate a finite range of low-frequency
(long wavelength) waves and is dissipative for high
frequency (short wavelength) waves. This is in con-
trast with the central difference schemes which is non-
dissipative for all frequencies and sometimes extra dis-
sipation are introduced to damp the high frequency
waves not resolved in the discretization.

In this paper, an implementation of the discontinu-
ous Galerkin method for the linearized Euler equations
with a uniform mean flow is presented. In particular,
we will investigate the effectiveness of the boundary
treatments at solid walls and far field non-reflecting
boundaries by the PML technique.

The paper is organized as follows. In section 2, a
discretization of the linearized Euler equations is pre-
sented. Details on the implementation of numerical
boundary conditions are given in section 3. Numerical
results are presented in section 4. Section 5 contains
the conclusions.

2 Formulation

2.1 Euler equations

The two-dimensional linearized Euler equations in con-
servation form are written as

du
a*‘V'F(U):O (1)

where
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p
u o 0
u= v ’ F= [FI;FQ]a V [a ay] (2)
p
[ M, 1 0 0 ]
0 M, O 1 _
Fl = 0 0 MI 0 u= Alu (3)
[0 1 0 M, |
(M, 0 1 0]
0 M 0 0
F2 = 0 Oy My 1 u= Azu (4)
0 0 1 M,

The four elements in the solution vector u in (??) are
the density, velocities and pressure, respectively. M,
and M, are the mean velocities in the = and y direc-
tions, normalized by the speed of sound. Here, for
simplicity, the mean velocities will be assumed to be
constant.

2.2 Discretization

The discontinuous Galerkin method is a finite element
method in which the approximation of u may be dis-
continuous across the element interfaces. Its applica-
tion to the Euler and Navier-Stokes equations has been
studied extensively in many recent works ([2],{3],[4],[12]
and references cited therein). For completeness and
convenience of discussion, a brief description of the dis-
cretization used in the present study is given below.

Let the computational domain D be partitioned
into M sub-domains, or elements, denoted as D},
i=0,1,..., M — 1. In each element D9 u is approxi-
mated by an expansion

L-1
u(z,y,6) = 3 P ) (z,y) (5)

£€=0

lnwhxch{pt :cy)|£-01
basis functions for element D(?)

Then expansion (?7) is substltuted into (??) and it
is required that

/1.5

for ¢ =0,1,...L — 1. Upon applying Green’s Theorem,
the above can be written as

— 1} is the set of

+ V- F(u®) Pz' (:1:, y)dzdy =0

C() N G
/ / P dzdy + / Eplds (6)
D

- // F. Vpﬁf)dzdy =0
D

in which 8D denotes the boundary of element D®.
This yields a system of ordinary differential equations
for the expansion coefficients Cg’)(t). We note that no
evaluation of the spatial derivatives of F is needed in
(?7). By inverting the mass matrix in (6), the ODE
system can be cast into the form

acy
dt

which will be integrated by a Runge-Kutta time inte-
gration scheme®.

= G(C}") ()

2.3 Quadrilateral elements and basis
functions

In this paper, only quadrilateral elements will be con-
sidered. We assume each element is mapped into a
local coordinates of Z and § in [-1,1] x [-1,1] by a
transformation (see Figure 1 and Appendix)

z=12(z,y), §=1i=y). (8)
For simplicity, the basis functions will be assumed to be
the same for all elements when expressed in the local
coordinates, denoted as {p,(Z,y)|£=0,1,...,L —1}.
Furthermore, the basis functions will be taken to be
the Legendre polynomials:

I—)l(iag) = Pn(j)Pm(l_/)

where P, denotes the Legendre polynomial of order a.

The number of polynomials in the basis, L, is re-
lated to the order of the scheme, N. For a basis formed
by the tensor product of Legendre polynomials up to
order N, L = NZ2. For a basis formed by retaining
only those necessary for the completeness of the order,
L =1N(N+1). Asshown in reference [11}, wave prop-
agation properties of the scheme improves significantly
as the order increases. For this reason, order-complete
basis will be used in this paper.

Under the transformation (?7), we have

dzdy =| J | dzdy

where J is the Jacobian 3%’_"——;% Due to the orthogonal-

ity properties of the Legendre polynomials, the mass
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matrix in (??) will be a diagonal matrix when trans-
formation (?7?) is linear and J is constant. When Ja-
cobian J is not constant, the mass matrix will not be ,
in general, a diagonal matrix. For the transformation
given in the Appendix, Jacobian J is constant only if
the element is a parallelogram.

In addition, all integrals in (6) will be evaluated nu-
merically using quadrature rules.

2.4 Numerical flux

One of the major difficulties of the discontinuous
Galerkin method lies on the evaluation of the flux F-n
appeared in the middle term in (??). An upwind ap-
proach will be used in the present paper. For the lin-
earized Euler equations considered here, we split the F
vector according to the eigenvalues of the matrices A;
and A, in (??7) and (??). Specifically, we have

M, %Mz+% 0 -—-sM.+1%
- 0 3M;+5 O IM, + 1
= A7 = 2z T3 2z 3
A, = AT+A]7 0 0 M, 0
0 tM,+1 0 IM,+}
0 M.+t 0 M-}
SHECS R
0 —iM, 4+l 0 im, -1
and
Agy J\(4) %Ms(l)‘*'% _%Moy‘*'%
At A~ = y
Ar=A;+A2 =1 o o %Mﬂ-% %My+%
00 piy s+l g -
+ 1
0 0 §1My_%l _I%My'*‘l%
00 —3My+3 My—3

in which AT and A7 have only non-negative eigenval-
ues and A7 and A have only non-positive eigenval-
ues. Then the F vector at the boundary of the element
is evaluated as

F;=Atut +Aju” (9)

and

Fy=Afut +Aju™ (10)

where ut and u~ denote the values of u calculated
using the expansion coefficients of the element to the

left/lower and right/upper of the boundary respec-
tively.

Such a discretization is dissipative and has “built-in”
dissipation for short wavelength waves!!.

3 Boundary Conditions

Boundary treatment is an integral part of computa-
tional acoustics. We will describe the implementation
of two types of boundary condition, i.e., the solid wall
boundary condition and far field non-reflecting bound-
ary condition.

3.1 Solid wall boundary condition

At a solid wall boundary, the normal component of
the velocity field becomes zero. This condition is
imposed implicitly (or weakly) in the discontinuous
Galerkin method through the flux calculation along
that boundary?®3. Let the normal vector on the solid
boundary (outward from the computational domain)
be denoted as n = (n1,n2). Then we have

u-n+v-ny =0 (11)

for the perturbation and

M,-n1+My-n2=O (12)

for the mean flow, assuming it also satisfies the bound-
ary condition. By (??) and (?7?), it follows that

0
F-n=|? (13)

on a solid wall boundary. The effectiveness of (??) will
be studied in the numerical calculations in Section 4.

3.2 Absorbing boundary condition

At the far field of computational domain, the numerical
boundary condition must be such that the out-going
waves are not reflected. For this purpose, Perfectly
Matched Layers (PML) will be applied at those non-
reflecting boundaries. PML domains are added to the
exterior of the truncated physical domain so that the
out-going waves from the interior computational do-
main are absorbed without significant reflection.
Since the discontinuous Galerkin implementation is
not restricted by any particular coordinate system, it
is sufficient to consider only the PML equations for
the Cartesian coordinates. We will, thus, assume that
any interface between the Euler equations and PML
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equations is perpendicular to either z or y axis. Inside
the PML domain, the solution vector u is split and the
following PML equations are solved®%:10:

6u1 (9F1 (u) _

Ouy O0F3(u)

ot + oyuy + By =0 (15)
u=u; +uy (16)

In the above, Fy and F; are the same as those in (7?)
and (?7). o, and o, are the absorbing coefficients in-
troduced for the attenuation of waves. Here they are
taken to be constant within an element. We note that
equations (?7)-(??) recover the Euler equation (?7)
when o; = o, = 0.

The PML equations (?7) - (??) will again be dis-
cretized using the discontinuous Galerkin method. Ex-
pand u; and u; as

L-1

ui(z,9,t) = Y Cre(t)pe(,y) (17)

=0

L-1
t) =Y Ca(t)pe(z,y) (18)

=0

u2(zayy

in each element in the PML domain. By substituting
(??) and (?7?) into (?7?) and (?7), we get

— [/dC
Z ( 1 +U:zcll> // Pzpe'dl'dy‘*'/ n1Fipepds
D, . oD,

£=0
/ / a”‘ TP Jrdy (19)
for Cy, and

— [/dC
Z ( 2t +UyC2l) / / pepedzdy+ / noFapeds
me, BDPm,

=0
// anp‘ drdy = 0 (20)

for Cs4. Here, D, ., denotes an element in the PML
domain. Equations (??) and (??) can be readily solved
in a manner similar to (6).

The values of 0, and oy are such that o, is the same
across an interface perpendicular to z and o, is the
same across any interface perpendicular to y. Since
we have 0, = 0, = 0 in the interior domain, this will
result in o, = 0 for the left and right PML domains
and o, = 0 for the upper and lower PML domains, as

shown in Figure 2. For the corner PML domains, both
o and oy are not zero.

We note that PML equations (12)-(14) with split
variables have been shown to be only weakly well
posed’ ™4 and, indeed, numerical instabilities has
been observed in their finite difference implementa-
tions. The numerical instabilities, however, are weak
and could be overcome by introducing damping or fil-
tering in the finite difference schemes®1%14. As indi-
cated in numerical results in section 4, due to the “built-

” numerical dissipation of the upwind split flux, nu-
merical stability has been observed for (12)-(14).

4 Numerical Results

Three numerical examples will be shown in this section.
Unless stated otherwise, all calculations are carried out
using square elements with a length of 2 on each side
and 5th order polynomials.

In the first example, the reflection of an acoustic
pulse by a circular cylinder is simulated. The cylin-
der has a radius of 2 and is located at £ = —4, y = 0.
The acoustic pulse is located at z = 4, y = 0. The
pulse is defined by these initial values:

p:pze——(ln2)1‘2’ u=v=0

where r is the distance to the center of the pulse.
Square elements are used through out the computa-
tional domain, except the region near the cylinder.
Near the cylinder, elements are adjusted to fit the
boundary. Figure 3(a) shows the grid used in the cal-
culation in the Euler domain of [-10,10] x [-10,10].
Contour plots of pressure at ¢t = 2,4 and 8 are shown
in Figure 3(a)-(c). For this calculation, the PML do-
main has a width of two elements and the values of the
absorption coefficients are taken to be 5.

The contour plots show very little reflection as the
wave exits the computational domain. To further as-
sess the reflection error, the calculation is compared
with a reference solution found using a larger compu-
tational domain. The maximum difference between the
numerical solution of Figure 3 and the reference solu-
tion along the vertical line z = 9 is shown in Figure 4.
Since the exiting wave has a magnitude larger than 0.1,
the reflection error at the interface between the interior
and PML domains is about 1%.

In the second example, the propagation of an acous-
tic pulse in a uniform mean flow is calculated. Here,
M, = 05,M, = 0 and the pulse is initially lo-
cated at (0,0). The pressure contours at ¢t = 0,8
and 12 are shown in Figure 5. The Euler domain is
[-10, 10] x [—6, 6] and the PML domain has a width of
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2 elements. The calculation has been carried out for a
much longer time and no numerical instability has been
observed in the PML domains. A comparison with the
exact solution is given in Figure 6. Very good agree-
ment is found. The reflection error is shown in Figure
7 for PML domain width being 1, 2 and 3 elements. A
larger error is seen when the width is only one element.

In the third example, the reflection of an acoustic
pulse by a solid wall is simulated. The solid wall is
located at y = 0 and the pulse is initially at z = 0, y =
6. A mean flow of M, = 0.5, M, = 0 is imposed in this
example. Figure 8 shows the contour plots of pressure
for t = 8 and 12. Again, the reflection error are quite
small. However, a comparison with the exact solution
reveals the inadequacy of the wall boundary condition.
Figure 9 shows the comparisons with the exact solution
along a vertical line through the center of the pulse at
z = 4 and t = 8. Large differences are seen near the
wall at y = 0. Increasing the order of polynomials from
5 to 6 dose not reduce the error. The error, however,
decreases when the size of the element is reduced from
2x 2 to 1 x1. This is believed to be related to the fact
that the solid wall boundary condition, i.e., v = 0, is
not imposed explicitly. In fact, v is not zero along the
wall. Figure 10 shows the normal velocity v along the
wall at y = 0 and ¢t = 8. It is seen that v decreases
when smaller elements are used. The magnitude of v is
about the same as that of the errors of pressure along
the wall.

5 Conclusions

A numerical study on the application of the discontin-
uous Galerkin method to computational acoustics has
been carried out. It is found that Perfectly Matched
Layer (PML) equations can offer a numerically stable
and effective non-reflecting boundary conditions for the
out-going acoustic waves. In addition, since the solid
wall condition is not imposed explicitly, it affects the
the accuracy of the numerical solution.
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Appendix

Mapping of a quadrilateral element

Let r = (z,y) and the four points of a quadrilateral
be denoted as ro, ry, rs and r3. The a mapping to
[-1,1] x [-1,1] in (Z,§) can be expressed as

(—ro+r14+r2 —13)

R

1
r:z(r0+r1+r2+r3)+

_ 0
+%(—r0 —-r;+ry+r3)+ —f(ro —r) +ry—13)
y y
r /\ 1
r r 1 0 T 5

Figure 1. Mapping of a quadrilateral.
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Figure 2. Schematics of PML absorption coefficients.
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Figure 3. Reflection of an acoustic pulse by a cir-
cular cylinder. Shown are the pressure contours and
Galerkin elements used. Contour levels at +0.1, +0.05,
+0.01, £0.005, £0.001. (a)t=2,(b) t =8, (c) t = 12.
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Figure 4. Reflection error, maximum difference be-

tween the numerical and reference solutions along r =

9.
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Figure 5. Propagation of an acoustic pulse in a uni-
form mean flow M, = 0.5, M, = 0. Shown are the
pressure contours at levels +0.1, £0.05, £0.01, £0.005,
and £0.001. (a) t =0, (b) t =8, (c) t = 12.

(a)

(b)

Figure 6. Comparison with exact solution. Solid
line: numerical; symbol: exact. (a) t = 8, (b) t = 12.
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reflected wave | p-pe |

time

Figure 7. Reflection error, maximum difference be-
tween the numerical and reference solutions along z =
9. dashed line: 1 element; dotted line: 2 elements; solid
line: 3 elements.
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Figure 8. Reflection of an acoustic pulse by a solid
wall at y = 0. M; = 0.5, My, = 0. Shown are the
pressure contours at levels +£0.1, £0.05, £0.01, £0.005,
and £0.001. (a) t =8, (b) t = 12.
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Figure 9. Comparison with exact solution. dashed
line: order 5 and 6; solid line: order 5: symbol: exact.
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Figure 10. Normal velocity v along the solid wall
y = 0 at time t = 8. The size of the elements are 2 x 2,
symbol, and 1 x 1, solid line.




