On using Perfectly Matched Layer for the Euler
equations with a non-uniform mean flow

Fang Q. Hu*
Department of Mathematics and Statistics
Old Dominion University, Norfolk, Virginia 23529

A Perfectly Matched Layer (PML) for linearized Euler equaitons with a non-
uniform mean flow is presented. The PML is formulated following a proper space-time
transformation so that in the transformed coordinates all dispersive waves have con-

sistent phase and group velocity.

It is shown that the parameter for the proper

space-time transformation has to be determined through a study of the dispersion
relations of linear waves supported by a non-uniform mean flow. PML equations for
both bounded and unbounded flows are given. Furthermore, the stability of the pro-
posed PML equations is also considered. Numerical examples that demonstrate the
validity and effectiveness of PML as an absorbing boundary condition are presented.

Introduction

Non-reflecting boundary condition is necessary in
any computation involving wave propagation to an
open physical domain. It remains a significant chal-
lenge particularly for fluids related problems hav-
ing non-linear or non-constant coefficient governing
equations. The need for accurate non-reflecting
boundary conditions has become even greater af-
ter the substantial progress in recent years in the
discretization methods, such as the utilization of
high-order schemes and unstructured meshes as well
as orders-of-magnitude improvement in high perfor-
mance computing power. Non-reflecting boundaries
are often the sources of most significant numerical
errors in practical computations.

In this paper, we develop non-reflecting boundary
conditions for the linearized Euler equations with
a non-uniform mean flow based on the Perfectly
Matched Layer (PML) methodology. PML was orig-
inally designed as an absorbing boundary condition
for computational electro-magnetics.% % 11,26,31,33
The significance of the PML technique lies in the
fact that, for multi-dimensional problems, the ab-
sorbing zone so constructed can be theoretically re-
flectionless for electro-magnetic waves of any angle
and frequency. However, early works on the exten-
sion of the PML technique to the Euler equations in
fluid dynamics indicated that a direct adaptation of
the original split formulation could lead to numerical
instability problems.!: 617,27

Substantial progresses have been made in re-
cent studies regarding the PML for fluids dynam-
ics.?:5-13,18,27 Tt has now been recognized that the
cause for instability in previous PML formulations
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is that the Euler equations, with a convective mean
flow, support waves that have opposite signs in their
phase and group velocities and these waves are ac-
tually amplified and become unstable waves under
the original PML formulation.'® Consequently, a
necessary condition for a wave to be absorbed, and
not amplified, in the PML zone is that the phase
and group velocities of all dispersive waves must
be consistent. The stability of PML is thus inti-
mately linked to the underlying physical waves and
their phase and group velocities. Recognizing this,
new formulations of PML have been proposed re-
cently.®1%13:18 For instance, in [18], a stable PML
for the linearized Euler equations with a wuniform
mean flow was proposed. It employed a proper
space-time transformation before applying the PML
technique so that in the transformed coordinates all
waves have consistent phase and group velocities.
This has led to a dynamically stable and highly accu-
rate absorbing boundary condition for the linearized
Euler equations with a uniform mean flow. The
method used in [18] has also been recently applied
to the shallow water equation in geophysics.?

The focus of this paper is on the formulation of
stable PML for Euler equations with parallel non-
uniform mean flows. Recently, in [13], a formulation
of PML for linearized Euler equation with a uniform
mean flow was extended to non-uniform flows, in
which one parameter of the layer was adjusted nu-
merically to maintain stability. The main issue, as
we will show in this paper, is how to choose a pri-
ori the proper space-time transformation when the
mean flow is non-uniform so that all waves supported
by the governing equations have consistent phase
and group velocities in the transformed coordinates.
In this paper, we will show that the proper space-
time transformation can be determined based on the
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study of dispersive waves of the Euler equations, so
that in the transformed coordinates all waves have
the same sign for the phase and group velocities.
After the application of such a space-time transfor-
mation, stable PML equations will be constructed
following the technique used in [18].

The rest of the paper is organized as follows. In
the next section, recent progresses are reviewed and
the importance of understanding the dispersion re-
lations of linear waves on the construction of stable
PML is discussed. Then, a detailed study on all
dispersive waves supported by the Euler equations
with a wall bounded non-uniform mean flow is pre-
sented. Following a proper space-time transforma-
tion, derivation of PML equation is given, followed
by a study on the stability of the proposed PML
equation. Finally, numerical examples are presented
that demonstrate the validity and efficiency of the
PML as an absorbing boundary condition.

Dispersive waves and the stability of
PML

In this section, we give a brief review of recent
works on PML for the Euler equations (see, e.g.,
[1,3,5,12,13,18,27]). It shall become obvious the im-
portance of understanding the dispersive waves of
the physical system in the construction of stable
PMLs.

One view of the PML technique is that it is a
complex change of variables in the frequency do-
main”> % 11:26:31 and this view will be assumed in our
investigation. For simplicity, all discussions in this
section will be limited to the construction of a ver-
tical z-layer which involves a PML complex change
of variable for z as
. x
1—>L—|—i/ o.dr (1)
W Sy
where o, > 0 is the absorption coefficient (a func-
tion of z) and zg is the location of the PML/Euler
interface. Other alternative forms of (1) are possible,
such as the one given in [4] for long time stability,
but they will not alter the basic arguments provided
below. As a heuristic argument, consider a wave
ansatz of the form

ei(kmfwt) . (2)

Under the complex change of variable (1), it becomes
pilke—wt) ;=% [, ozdz (3)

The second factor in expression (3) indicates that
the wave amplitude decays exponentially in the PML
zone if and only if the condition

k x
—/ ogdr >0 4)

w ’

2 orF 11

is satisfied as the wave propagates from any arbi-
trary location x’ in the PML zone. This means that
the PML is only absorbing for a wave that propa-
gates to the right (x increasing) with k/w > 0 or
propagates to the left (v decreasing) with k/w < 0.
In other words, for the amplitude of the wave to be
reducing (and not increasing) in the PML domain,
the direction of wave propagation should be consis-
tent with the sign of k/w or, equivalently, the phase
velocity w/k.>'® Since the direction of propagation
of a dispersive wave is determined by the group ve-
locity, this necessary condition has been expressed
nicely in [5] as

w dw

kdk
That is, for the PML technique to yield stable ab-
sorbing boundary conditions, the phase and group
velocities of the physical waves must be consistent
and have the same sign. Conversely, any wave of the
original physical system having opposite signs in its
phase and group velocities will be amplified and re-
sult in instability in the PML domain. Condition
(5) links intimately the construction of stable PMLs
to the dispersion relation(w = w(k)) of the physical
waves under investigation.

0. (5)

This necessary condition for stable PML was rec-
ognized in several recent studies.’>131827 For in-
stance, in [18], it was pointed out that, in the pres-
ence of a convective mean flow, the Euler equations
support acoustic waves that have a positive group ve-
locity but a negative phase velocity and these waves
were actually amplified in previous PML formula-
tions. It was further proposed in [18] that a proper
space-time transformation be applied to the Euler
equations before applying the PML technique so
that under the transformed coordinates all linear
waves supported by the Euler equations have consis-
tent phase and group velocities. For the linearized
Euler equation with a wuniform mean flow in the z-
direction, the proper space-time transform involved
a transformation in time of the form

t=t+ fz, (6)
where
— UO
= ™)

in which Uj is the uniform mean flow Mach num-
ber.!® Tt follows that the corresponding transforma-
tion in the frequency-wavenumber space is

k=k+ fw,o=uw. ()
The value of 3 in (7) was determined so that the

dispersion relation of the convective acoustic waves,
namely,

(w — Uok)? — k2 — k2 =0
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becomes the following in the transformed space
D*/1-U5) -1 -U5)k* =k =0

for which the phase and group velocities are con-
sistent.!® This transformation is the same as the
“Prandtl-Glauert” transformation in aerodynamics.
In [18], a new PML equation was formulated by
applying the complex change of variable (1) in the
transformed coordinates. The new PML formula-
tion was dynamically stable and perfectly matched
to the Euler equation for the acoustic, vorticity and
entropy waves. The importance of the space-time
transformation (6) and the particular choice for 3 in
(7) were also confirmed in recent independent for-
mulations in [3,12,13]. For example, in [13], the
importance of the transformation (6) was reflected
by forming a special wave ansatz. An extension of
PML to non-uniform mean flows was also given in
[13] where an equivalent value for 3, called u, was
adjusted by numerical experiments that gave stable
solutions.

The question becomes whether it is possible to de-
termine a priori the proper space-time transfor-
mation for the Euler equations with an arbitrary
non-uniform mean flows so that, in the transformed
coordinates, all linear waves have consistent phase
and group velocities. We will show in the next sec-
tion that, for a parallel non-uniform mean flow, it
is possible to find the value for § in (6), actually
a unique choice, based on a study of the dispersion
relations of the physical waves.

Linear waves of Euler equations with
a non-uniform mean flow bounded by
solid walls

Let the linearized Euler equations with a parallel
non-uniform mean flow be written as

ou ou ou

—— +A— +B—+Cu=0
5 TAg; TBy, TCu (9)
in which
p U p 0 0
Uu 0o U o 41
— = _p
Sl A0 0@ 0|
P 0 1 0 U
005 0 00 2 0
dU
Bzooog’andczood—yo
000 3 00 0 0
00 1 0 00 0 0

where u and v are velocity components in the = and
y directions respectively, non-dimensionalized by a

y=1 4

H/ u(y)

PML
PML

y=-1:

Figure 1 A schematic of a bounded parallel non-
uniform mean flow.

reference speed of sound a,; p is the density, non-
dimensionalized by a reference value p,; and p is
the pressure, non-dimensionalized by p,a2. Also, the
space variables x and y are non-dimensionalized by a
reference scale /, and time ¢ is non-dimensionalized
by ¢,/a,. The mean velocity U(y) and density 5(y)
are functions of y only and the mean pressure is con-
stant.

As the discussion in the previous section shows, the
construction of stable PML is intimately connected
to the dispersion relations of the linear waves sup-
ported by the Euler equations. In this section, we
conduct a study of physical waves of (9) in a parallel
flow bounded by solid walls at y = +1, as shown in
Figure 1. For this purpose, a linear wave analysis for
(9) will be carried out numerically. In this approach,
we seek wave solutions of the form

u(z,y,t) = a(y)e e (10)

where w and k are the frequency and wave-number
respectively. By substituting (10) into the Euler
equation (9), we get an eigenvalue problem

"
—iwﬁ—l—iszﬁ—l—Bd—u +Ca=0 (1)
Yy

with these homogeneous boundary conditions,

d—u:ﬁ:d—p:@:Oaty::tl. (12)
dy dy dy

This eigenvalue problem will be solved by a spectral
collocation method which is a standard method in
hydrodynamic stability analysis.'? 22?25 Further de-
tails are given in the Appendix. It yields a complete
spectrum of all normal modes supported by (11).
The eigenvalue w of (11) as a function of given wave
number k defines the dispersion relation w = w(k).

As a specific example, we will demonstrate the dis-
persion relations of linear waves associated with a
shear flow of mean velocity

U(y) = (0 + V) + (U1~ Ua)tanb (D)) (13)

and mean density
1

) (1)

ply) =

with
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Figure 2 Mean velocity and density used in the
example.

U -U ~v-1
T:
+2U17U2+ 5

T(y):T U —U»

1U17U2 (Ul—U)(U_U2)

where the mean temperature 7'(y) is determined by
the Crocco relation for compressible flows. v = 1.4.
The mean flow parameters chosen for the example
are as follows:

Up,=08 U;=02 6=04, Ti=1, To=0.8.

The mean velocity and density profiles are plotted
in Figure 2. Both are non-constant.

Figure 3 shows the dispersion relation diagram of all
the normal modes of (11), i.e., real part of w v.s. k.
The imaginary part is zero for all wave modes except
the Kelvin-Helmholtz instability wave which will be
shown later.

In this dispersion diagram, we see two families of
waves. One family has phase speed between U,,;, =
0.2 and U4, = 0.8, shown between dashed lines in
the w, — k diagram. These are “vortical” modes that
convect with the mean flow. We see that for the
vortical modes, both the group and phase velocities
are positive. Therefore condition (5) is satisfied. We
note that one of the vortical modes is the Kelvin-
Helmholtz instability wave supported by the present
mean flow profile. An enlarged graph is shown in
Figure 4 for the real and imaginary parts of w as
functions of k£ where the Kelvin-Helmholtz wave is
highlighted by circles.

The other family of waves in the dispersion diagram
Figure 3 are “acoustic” modes. A closer examina-
tion of the acoustic modes indicates that they always
have a phase speed supersonic relative to part of
the mean flow. Furthermore, they are dispersive
waves,3? where w/k # constant. Figure 3 also shows
that the acoustic modes do not always have con-
sistent phase and group velocities. A triangle on

4 oF 11
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Figure 3 Dispersion relation diagram. Triangles
denote the points of zero group velocity. Dashed
lines are w, = U1k and w, = Usk.
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Figure 4 Dispersion relation diagram enlarged
from Figure 3. Top: real part of w v.s. k; bottom:
imaginary part of w v.s. k. The circles highlight
the Kelvin-Helmholtz instability wave.
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Figure 5 Dispersion relation diagram in trans-
formed coordinates. Triangles denote the points
of zero group velocity.

the acoustic modes indicates the location where the
group velocity is zero, i.e., dw,/dk = 0. As we can
see, for the acoustic modes in the upper left and
lower right quarters in Figure 3 that lie between the
triangle and the vertical axis, their phase velocity
(wr/k) is negative but their group velocity (dw, /dk)
is positive. By the argument provided in the pre-
vious section, applying directly the PML complex
change of variable (1) to the Euler equation (9) with-
out a proper space-time coordinate transformation
will result in these waves being amplified and be-
coming unstable modes.

To find the proper space-time transformation, we
note that, remarkably, the locations of zero group
velocity points on the dispersion diagram (Triangles
in Figure 3) appear to lie on a straight line. This
implies that space-time transformation (6), which
incurs a change in the frequency-wave number space
of the form (8), can again be used to “correct” the
dispersion relation. The obvious choice for 3 in (6)
and (8) is

~—

f=-— (15)

where ¢, is the slope of the line of triangles (w, =
¢, k) in Figure 3. This also suggests that the proper
value for (3 is uniquely defined for a particular given
mean flow profile. For the current example, exami-
nation of the eigenvalues for the dispersion relation
indicates ¢, ~ —1.407.

The dispersion relation diagram in the transformed
coordinates is shown in Figure 5. Now all the waves
have consistent phase and group velocities and sat-
isfy condition (5).

It is important to point out that it is not acciden-
tal that all points of zero group velocity fall in a
line. For other types of subsonic mean flow profiles,
including mizing layers, jets, wakes, it was found,
at least numerically, that the points of zero group
velocity on the dispersion diagram for the acoustic
modes were always closely lined. Two further exam-
ples of jet and plane Poiseuille flows are shown in
Figure 6. It is also worth pointing out that if part of
the mean flow is supersonic, it has been found that
each acoustic mode will have two locations where the
group velocity becomes zero,2° which would make
the transformation (6) ineffective.

Derivation of PML equations
Unsplit formulation

Once the value of 3 for the proper space-time trans-
formation (6) has been determined based on the dis-
persion relations of the acoustic modes, the deriva-
tion of PML for the Euler equations will be carried
out as follows. We shall first apply the space-time
transformation (6) to the governing equations so
that all dispersive waves have consistent phase and
group velocities. Then, the PML complex change of
variable is applied in the transformed coordinates.
And finally the PML equation in the original physi-
cal time domain is obtained. Details are given below.

Under transformation (6), we have these changes in
the partial derivatives,

0 0 0 0 0

e pp— — e— pp— 1
o "o or oe P (16)
and the Euler equation (9) in transformed coordi-
nates becomes

ou ou ou

The PML technique will now be applied to the trans-
formed equation (17). We first write the equation in
the frequency domain,

—iw(I+ BA)G + A% + Bg—z +Cua=0, (18)

in which u(z,y,t) = @(z,y)e ! is assumed.

To construct the PML equation for the vertical x-
layer, we apply the PML complex change of variable
(1) to the frequency domain equation (18) which in-
volves a change in the partial derivative for x as

9 19
= . 1
gr 1420z (19)

where o, is a positive function of z. That is, equa-
tion (18) is modified to be

5 0F 11
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Figure 6 Dispersion relation diagram of a jet (left) and a channel Poiseuille flow (right). Triangles

denote the points of zero group velocity.

a0 o

—iw(I+ BA)D :
M(+ﬁ)u+1+%% 52 o7

+Cii=0. (20)

Equation (20) is the PML equation for the z-layer in
the frequency domain. It will now be written back
in the time domain by following an unsplit approach
used in [7,11,18,31]. By multiplying the equation
with (1 + *Z2), we get
(—itou) (I+0A)a+ AL 4 (142 0

ox @
The equivalent time domain equation for the above
is easily found to be

Ju ou ou Jq
- x —4+B(— fr x =
(T+BA)( 5T “)+Aax+ (8y +o 6y)+C(u+0’ Q) =0
(21)
where q is an auxiliary variable defined as
9q
— =u 22
5 (22)

Finally, when (21) is written in the original physical
variables (z, y, t), we get the following PML equation
for (9) with non-uniform mean flows,
?9—;1 +A% —l—B(Z—;l +og Z—;)+C(u+01q)+axu+axﬁAu =0
(23)
where the equation for q is that given in (22). It
is only necessary to introduce q inside the PML do-
mains.'®

6 oF 11

)Ba—u+(1+T)Cﬁ =0.
oy @

Absorption of hydrodynamic instability waves

It is well known that linearized Euler equations can
support hydrodynamic instability waves, for exam-
ple, the Kelvin-Helmholtz instability for jets and
mixing layers where the mean velocity flow profile
has an inflection point. The PML should be ab-
sorbing to all waves including the instability and
evanescent waves. There are generally two kinds
of hydrodynamic instabilities, namely the absolute
and convective instabilities.?> For numerical simu-
lations, we are mostly concerned with the convective
instability waves that grow spatially and propagate
with the mean flow to the outflow boundary. A
simple argument on the phase and group velocities,
given below, will show that the PML formulated here
will always absorb convective instability waves.

Suppose that the mean flow is from left to right.
Then the group velocity of a convective instability
wave is positive, i.e.,

Wy
0.
ak

Furthermore, by an extension of the semi-circle the-
orem (in the theory of hydrodynamic stability) to
compressible flows, it was shown in [8] that the phase
speed of any instability wave is bounded by the mean
velocity, i.e.,

0 < Umzn S % S Umam- (24)

Therefore, the phase and group velocities of a con-
vective instability wave have the same sign and con-
dition (5) is always satisfied, as the other vortical
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modes discussed in the previous section. This means
that the spatial growth rate of convective instabil-
ity waves will always be reduced in the PML zone.
To completely annihilate the instability waves, the
PML absorption rate should be designed such that
it is greater than the spatial growth rate of the in-
stability waves.

Value for j3

The parameter (3 in equation (23) is a critical num-
ber for ensuring the stability of the PML equation.
In the previous section, the value for § has been
determined as the negative reciprocal of the phase
velocity ¢, of acoustic wave modes whose group
velocities are zero. In other words, if in general
D(w, k) =0 is the dispersion relation, then

w 1
cozk—:’ andﬁ:—a (25)
where w, and k, are the roots to the coupled equa-
tions
D(w,,k,) =0
26
T (26)

Although for certain shear flows, acoustic modes
have been found and studied extensively in the past,
for example for jets,?® shear layers,'* 1529 wakes3*
and boundary layers,?* an explicit and direct rela-
tionship between the phase speed ¢, define in (25)
and an arbitrary mean flow profile has not been
available. The spectral collocation method, details
given in the Appendix, provides a general way of de-
termining the dispersion relation for arbitrary mean
flows. A special case is worth mentioning, however.
If the mean density is constant, i.e., p(y) = 1, it has
been found that a reasonably good prediction of (3
for practical purposes is
ﬁ _ Urn
1-U2

(27)
where U,, is the average mean velocity for a domain

iny € [a,b] as

b
Un =52 | Oy (28)

Stability of the PML equations

When the value of 8 in the PML equation (23)
is determined based on the dispersion relations of
linear waves as described earlier, all the physical
waves of the Euler equations become absorbed in the
PML domain, and their amplitudes are reduced ex-
ponentially as the waves travel in the PML domain.
However, with the introduction of the axillary vari-
able q, the order of partial differential equations has
increased (doubled). As a result of this, the PML
equations (23) and (22) can admit additional non-
physical waves. It is important that these additional

f*%ﬁﬁﬁﬁ%w%%%§%%

/ A // LA

il
.' i

/]
1

Figure 7 Imaginary part of all wave modes. (a)
oz =0.2, (b) 0. =2.0, (c) 0, =10.0.

wave modes are not exponentially growing. In this
section, we study this issue and carry out a stability
analysis for the PML equations (23) and (22).

Following the similar approach used for the analysis
of the Euler equation (9), we seek solutions to (23)
and (22) of the form

u(z,y,t) = a(y)e’ ), (29)

a(z,y,t) = Gy)e’ 0. (30)
By substituting the above into (23) and (22), we get

da  dg
(—iw)ﬁ+ikAﬁ+B(d—Z+ax d—3)+C(ﬁ+U¢Q)+0Iﬁ+0I BAT =0,
(31)
(—iw)g = 1. (32)

With homogeneous boundary condition (12) for G
and similarly for q, (31) and (32) again form an
eigenvalue problem and can be solved by the spectral
collocation method (see Appendix). For any given
value k, an eigenvalue w with a positive imaginary
part would indicate an exponentially growing wave.

In Figures 7 (a), (b) and (c), we plot the imagi-
nary part of all wave modes of (31)-(32) where the
value of o, is taken to be a fixed constant 0.2, 2.0
and 10.0, respectively, for wave number k in the
range of —20 to 20. The mean flow profile is the
same as that used for the example in Figure 3. For
cases (a) and (b), we see that all wave modes have
the imaginary part below zero, including the origi-
nal Kelvin-Helmholtz wave, indicating that the PML

7 or 11
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equation is dynamically stable, at least for range of
k considered. For case (c) where o, = 10, however,
there are some wave modes that have emerged with
positive imaginary parts and thus become unstable
at high wave numbers. These modes are originated
from the non-physical waves. This indicates that
the PML equations (22)-(23) could have exponen-
tially growing solutions if the value of o, is taken
to be too large. This has been found to be typi-
cal that (22)-(23) are stable when the value of the
absorption coefficient is below certain limit, let it
be denoted by o, but admit unstable wave modes
when o, is greater than that limiting value o,. Ex-
periments show that the limiting value varies widely
depending on the particular mean flow profile. For
the current example, the limiting value o5, = 3. For
other mean flow profiles, such as a linear shear mean
velocity,?? the limiting value has been found to be
as large as 100.

In cases where the value for o4 is too small, the
fact that the PML equations (22)-(23) is stable only
when o, < o4 could mean that a relatively large
PML domain may be needed to achieve a desirable
degree of wave absorption, because the effectiveness
of a PML domain depends on the magnitude of the
absorption coefficient and its total width.!6>1? For
such cases, one practical remedy could be to use
grid stretching in the PML domain, so that its ef-
fective width is increased without employing more
grid points.'?26:3% A grid stretching is equivalent
to simply modifying the z derivative terms of the

PML equation as
1 0

Yy, - 9
or o) oz
where «(x) > 1 is a smooth function. For example,

o r — I 5
alzr) =1+ A ) (34)

where z( is the start of the PML domain and D its
width. Grid stretching also has a side effect of intro-
ducing numerical damping which would also improve
the stability of PML even when o, is greater than
the stability limiting value o,. This has been found
to be quite effective in computations.

(33)

A second remedy is to modify the PML equations
so that the stability limiting value o, can be sig-
nificantly increased. One such modification is to
introduce a small advection term to the equation
for q in (22) to get

g—(tl—l-eg—;l + o0.0eq = u (35)
where € is to be kept small. In Figure 8, we repeat
the stability calculation of 7(c) where the equation
for q in (22) is replaced by (35). As we can see, even
with a small value of ¢ = 0.01, equation (35) has a
dramatic effect on reducing the growth rate of the
unstable modes.

8 oF 11
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Figure 8 Imaginary part of all wave modes,
where equation (22) is replaced by (35). o, =
10.0, € = 0.01.
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Figure 9 A schematic of an unbounded par-

allel non-uniform mean flow, showing z-layers,
y-layers and corner layers.

PML for unbounded flows

When the flow is unbounded, PML for the horizontal
y-layers are needed to terminate the computational
domain at the top and bottom boundaries, as shown
in Figure 9. For a parallel mean flow aligned with
the x-axis, the PML equation for the y-layers can be
developed by a complex change of variable in y, sim-
ilar to (1) for z. Further details are referred to [18].
Here, we present a PML equation that is formally
valid for all the vertical xz-layers, horizontal y-layers
as well as the corner layers. This is given below,

ou 0 0
Bt +A£(u +0yq) +B8_y(u+‘72‘1) + C(u+ 02q)

+(oz + oy)u+ owoyq+ oxfA(u+oyq) =0 (36)

where 0, and oy are the absorption coeflicients and
positive functions of z and y respectively. Equa-
tion (36) is perfectly matched to the Euler equation
(9). In the derivation of (36), it has been assumed
that the mean flow is uniform within each y-layer at
the top and bottom boundaries. Except the term
involving the C matrix, equation (36) is otherwise
identical to the PML equation for a uniform mean
flow given in [18]. Further implementation issues are
referred to [18].

Equation (36) can be rewritten in a more compact
form that resembles the Euler equation as follows
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ou ou? ou”
Cu¥ + u* + o, fAUY =
5 52 oy +Cu’ +u* +o0.,0AuY =0 (37)

uw =u+oyq, ¥ =u+o0,q,

*

u* = (0p + oy)u+o0,0.q.

We note that even though the flow is physically un-
bounded, it becomes bounded artificially due to the
truncation of the computational domain in y. There-
fore, the value of 8 in (36) for unbounded flows
should be determined in the same way as that for
the bounded flows described in previous sections.

Numerical Examples

Two numerical examples will be presented where the
mean flow is bounded in the first example and un-
bounded in the second one. Another example can
be found in [20].

Wall bounded shear flow

Consider a mixing layer, with the mean velocity and
density specified by (13) and (14) and bounded by
solid walls at y = £1, as shown in Figure 1. The
Euler equation (9) with the following source term
added to the equation of pressure,

s(x,y,t) = sin(1.5t)e~ " 2)(@*+y%)/0.05%  (3g)

is solved by a finite difference scheme. The compu-
tational domain is [—1.4, 7.4] x [—1, 1] with a uniform
grid spacing Az = Ay = 0.04. Two PML domains,
each consisting of 10 grid points, are used at the
inflow and outflow boundaries. The absorption co-
efficient o, inside the PML domain varies with x as
I — 20 2

D

where o = 2/Axz = 50. For the calculations re-
ported here, a grid stretching of the form given in
(34) is also used with the parameters being A = 2
and s = 2. All spatial derivatives are discretized by
a 7-point DRP 4th-order central difference scheme3?
with a 10th-order filtering applied throughout the
computational domain.!” Time integration is car-
ried out by the optimized 5 and 6 stages Low Dis-
sipation and Low Dispersion Runge-Kutta scheme
(LDDRK56).20

(39)

Ozr = Omax

The added source term (38) generates acoustic waves
that are reflected repeatedly by the solid walls. At
the same time, it excites the Kelvin-Helmholtz in-
stability wave of the mixing layer that propagates
downstream. Figures 10 (a) and (b) show the pres-
sure and wu-velocity contours, respectively, at time

Figure 10 Contours of the numerical solution at
t =70. (a) pressure, (b) u-velocity.
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Figure 11  Pressure time history. Solid line:
numerical solution; circles: reference solution.
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Figure 12 Maximum difference between the nu-
merical and reference solutions along r = 6.8 as a
function of time.

9 oF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2004—2966



t = 70. Clearly, wave absorption at the PML do-
mains is quite effective.

In Figure 11, pressure as a function of time is plot-
ted for two points located at (6.8,0) and (—0.8,0)
near the outflow and inflow boundaries. The solid
line is the numerical solution and circles represent
a reference solution obtained by using a larger com-
putational domain so that it is not affected by any
boundary effects. Excellent agreement is found be-
tween the numerical and reference solutions with
no discernible difference on the graphic scale. To
quantitatively assess the effectiveness of the PML as
a non-reflecting boundary condition, the maximum
difference between the numerical and reference so-
lutions on all grid points along = 6.8 near the
exit boundary is plotted in Figure 12. Judging by
the fact that the amplitude of the Kelvin-Helmholtz
wave at the exit is about 0.1, Figure 12 shows that
the reflection error is less than 1% when 10 grid
points are used in the PML domain and the reflec-
tion is less than 0.1% with 20 grid points.

We note that even though the maximum value of
the absorption coefficient 0,4, used in this exam-
ple is greater than the stability limiting value o, for
the current mean flow, no numerical instability has
been observed in the computation. This suggests
that grid stretching combined with numerical filter-
ing may be sufficient to suppress the growing modes
identified in Figure 7(c) beyond the stability limiting
value o;.

Unbounded flow

In the second example, the propagation of an acous-
tic pulse in an unbounded shear flow, specified by
(13) and (14), is simulated. The computational do-
main is [—2.4,2.4] x [-2.4,2.4] with PML domains,
consisting 10 grid points, on all four sides. Equa-
tion (36) is used for all PML zones with the value of
B = —1/c, where ¢, = —1.416 obtained by assuming
that the flow is bounded at y = 2.4, which is only
slightly different from that in the previous example.
The initial condition is

Uu=v=p= 0’[) = e_(an)(x2+y2)/0_22.

Figure 13 shows the u-velocity contours at ¢t =
1.5,2.5,3.5 and 6. The initial acoustic pulse as well
as the vorticity wave induced by the shear flow are
effectively absorbed at the boundaries. Figure 14
shows the time history of the wu-velocity at point
(1.8,0) near the outflow boundary. The numeri-
cal (solid line) and reference (circles) solutions are
again in excellent agreement. The maximum differ-
ence between the numerical and reference solutions
in pressure along x = 1.8 is plotted in Figure 15,
which shows that the use of PML causes very little
reflection.
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Figure 13 u-velocity contours, time as indicated.
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Figure 14 u-velocity time history at point (z,y) =
(1.8,0). Solid line: numerical solution; circles:
reference solution.
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Conclusions

A Perfectly Matched Layer as an absorbing bound-
ary condition for the linearized Euler equations with
a parallel non-uniform mean flow is presented. It
applies to both bounded and unbounded flows. It is
shown that for the stability of PML it is of critical
importance to apply a proper space-time transfor-
mation in the derivation of PML equation. The
parameter for the proper space-time transformation
can be determined a priori based on the dispersion
relations of acoustic modes supported by the mean
flow. It is further shown that the proposed PML
equation is dynamically stable for a limited range
of the absorption coefficient. Numerical examples
show that the PML formulated here works well for
a compressible mixing layer.
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Appendix

In this Appendix, we describe the spectral colloca-
tion method used to solve the eigenvalue problem
posed by (11)-(12). Expand the solution t(y) in ba-
sis polynomials as follows

N Prn(y)
LOED DY I (40)
"0\ pdn(y)

where {¢,} and {¢,,} are formed by the Chebychev
polynomials T,,(y) as

{ To(y) — Tn+1(v)
"’/)n(y) =
T1(y) — Tn+t2(y) nodd

1 n=0
(252)*T2(y) = Tnr2(y)
(n+2)*T1(y) — Tn+2(y)

The expansion (40) automatically satisfies the
boundary condition for i(y).2? By substituting (40)
into (11) and requiring that the equation be satisfied
at collocation points,

n even

on(y) =

n even
n odd

2j+1 ,
y] :Cos(mﬂ'), ] 20,1,2,...,]\]
we get,
N |— Prndn Pnén
S| -iw un@n | LA | Un®n
0 'Un'l,/}n 'Unwn
DPndbn Pndn
Pn¢/7 Pnén -|
un¢n un¢n _
+B | o +C| )t o J =0
/
Py, Pndn y=y;

for j = 0,1,2,..., N. This can be cast into a gen-
eralized algebraic eigenvalue problem for w of the
form Qu = wRd where U is a vector consisting of all
the expansion coefficients in (40) and Q and R are
(AN +4) x (4N + 4) matrices.
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