Journal of Sound and Vibration (1995) 183(5), 841-856

THE ACOUSTIC AND INSTABILITY WAVES OF
JETS CONFINED INSIDE AN ACOUSTICALLY
LINED RECTANGULAR DUCT

F. Q. Hu

Department of Mathematics and Statistics, Old Dominion University, Norfolk,
Virginia 23529, U.S.A.

(Received 18 November 1993, and in final form 16 May 1994)

An analysis of linear wave modes associated with supersonic jets confined inside an
acoustically lined rectangular duct is presented. Mathematical formulations are given for
the vortex-sheet model and the continuous mean flow model of the jet flow profiles.
Detailed dispersion relations of these waves in a two-dimensional confined jet as well as
an unconfined free jet are computed. Effects of the confining duct and the liners on the
jet instability and acoustic waves are studied numerically. It is found that the effect of the
liners is to attenuate waves that have supersonic phase velocities relative to the ambient
flow. The attenuation, however, is less effective for waves that have a subsonic phase
velocity relative to the ambient flow. Numerical results also show that the growth rates of
the instability waves could be reduced significantly by the use of liners. In addition, it is
found that the upstream-propagating neutral waves of an unconfined jet could become
attenuated when the jet is confined.

1. INTRODUCTION

The exceedingly high level of jet noise presents a formidable barrier in developing future
generation high speed civil transport planes (see, e.g., Seiner [1]). In a proposed scheme
of jet noise reduction, the exit jet of the engine is guided through a rectangular duct before
being discharged into the air. In the design concept, the purpose of the duct is twofold.
First, cold air could be sucked into the duct by the hot jet through the side inlets and thus
cool the jet stream and enhance the mixing. Second, the duct walls, installed with sound
absorbing liners, could absorb a substantial part of the jet noise. Hence, it is important
to understand and predict the generation, propagation and attenuation of jet noise inside
a duct with sound absorbing liners. Furthermore, recent studies of supersonic jet noise
generation mechanisms have indicated that the growth of the instability waves of the jet
is responsible for the dominant part of the jet noise (see, e.g., Tam and Burton [2]). In
view of these recent studies, it is important to re-examine the jet instabilities with the
confining lined walls.

Duct acoustics and wave attenuation by wall liners have been investigated extensively
in the literature (see the reviews by Nayfeh et al. [3] and Eversman [4], and the references
cited therein). Pridmore-Brown [5] first formulated the acoustic wave propagation problem
in an attenuating duct with non-uniform mean flows. However, due to computational
limitations, most of the early works have only considered duct flows with uniform mean
velocity and temperature distributions. Later, with increased computing power, the effects
of the shear flow induced by the boundary layers at the duct walls were included in the
acoustic wave attenuation calculations. In most studies, the shear flow of the boundary
layer was approximated by a linear profile. It was found that the shear flow had a
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refraction effect on the wave propagations. It was also shown that solutions with a thin
boundary layer converge to that of a uniform mean flow, provided correct boundary
conditions were used in the latter (Eversman and Beckemeyer [6]). Most recently, Bies et
al. [7] presented a study that takes into account the coupled effects of the acoustic waves
inside the duct and those in the liners. However, historically, little attention has been paid
to the instabilities of the shear flow inside the duct and its impact on the sound generation.

Recently, the instability and acoustic waves associated with a planar mixing layer inside
a rectangular duct have been studied by Tam and Hu [8]. In that work, the main interest
was in the instability of a confined mixing layer at supersonic velocities. It was found that
the instabilities of confined shear flows are quite different from those of their unconfined
counterparts at high speeds. Systematic calculations of normal mode solutions showed that
new instability wave modes are induced by the coupled effect of the acoustic modes of the
confining duct and the instability of the shear layer. It was also shown that, at supersonic
convective Mach numbers, acoustic waves that have supersonic phase velocities relative
to both sides of the shear layer could be unstable (or amplified). The acoustic-mode
instability of supersonic shear flows has also been found by Mack [9] for boundary layers
and wakes, and for supersonic jets by Tam and Hu [10]. These studies have also shown
that, at high supersonic speed, the acoustic-mode instability becomes the dominant flow
instability.

In this paper, a detailed analysis is carried out of the linear wave modes, including the
acoustic waves and instability waves, associated with a given non-uniform mean flow inside
a rectangular duct with finite wall impedance. The numerical results presented here are,
however, limited to two-dimensional waves. Two models of the jet flow, a vortex-sheet
model and a continuous mean flow model, will be used. In section 2, the mathematical
formulation of the problems is given. In Section 3 the numerical results are presented.
Section 4 contains the concluding remarks.

2. FORMULATIONS

2.1. MATHEMATICAL MODELS

Small amplitude waves are considered, associated with a given mean flow of a jet profile
inside a rectangular duct (Figure 1). Here the mean velocities and densities of the jet core
and the ambient stream will be denoted by u;, p; and u,, p., respectively. The jet exit has
a width of 2d. The height of the duct is denoted by 2/ and the width by B. The top and
bottom walls of the duct are lined with acoustically treated materials with finite acoustic
impedance. Two side walls are taken to be solid walls. For simplicity, it is assumed that
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Figure 1. A schematic of a confined jet with lined walls. The jet width is 2d, and the duct height is 2/4. The
vorticity thickness of the mean velocity is do.
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the top and bottom walls are lined with the same materials. From linear stability
considerations, the locally parallel flow assumption will be used throughout their study.
To facilitate the numerical investigation, two models of the mean flow will be used in the
present paper. In the first model, here referred to as the vortex-sheet model, the mean flow
is piecewise uniform for the velocity and temperature. This profile models the flow just
downstream of the jet nozzle near the nozzle exit. The advantage of the vortex-sheet model
is that a closed form dispersion equation can be found. This allows for an extensive
numerical study about the nature of all the wave modes. In the second model the mean
flow is continuous. This permits more realistic flows and models the flow further
downstream of the jet nozzle exit.

2.2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
Each flow variable can be expressed as a mean quantity plus a small perturbation, as
follows:

u(x, y,z,t) u(y) u'(x,y,z,1)
v(x,y,z,t) 0 v'(x,y,z,1)
w(x, y, z, t) = 0 + w(x,y,z,1)
p(x,p,z,1) p p(x,y,z,1)
p(x,y,z,1) p(y) p(x,y,z,1)

In the above, the x co-ordinate is in the downstream direction, y is in the vertical
direction and z is in the spanwise direction. u, v and w are the velocities in the x, y and
z directions, respectively, p is the pressure and p is the density. An overbar indicates the
mean quantity and prime indicates the perturbation. It is straightforward to find that the
linearized governing equations for inviscid, non-heat-conducting fluids are

o0, Lo dp (0w o)
6!+u0x+dyv+p é‘x+6y+éz =0, 1
o ow da 1oy o 1y
ad T it SY T sox w T T oy (2,3)
oL ow Loy ap oy o ar | ow)
P ey T "5z a ittty tes )= @)
The temperature 7 is related to the pressure and density by the equation of state:
p=pRT. (6)
For the system (1)—(5), solutions are sought of the form
u'(x,y,z,1) u(y) cos 2nmz/B)
v'(x,y,z,1) 6(y) cos 2rnmz/B)
wi(x,y,z,t) = w(y) sin 2nmz/B) gilkr—on 7
p'(x,y,2,1) p(y) cos (2nmz/B)
p'(x,y,z,1) p(y) cos (2nmz/B)

Substituting equation (7) into equations (1)—(5), together with the proper boundary
conditions, an eigenvalue problem is formed. The eigensolutions will be called the “normal
modes”, as in hydrodynamic stability theory. In equation (7), the boundary conditions at
the two solid side walls, located at z= + B/2, are satisfied automatically. At the
acoustically treated top and bottom walls, located at y = +/, the kinematic boundary
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condition is the continuity of particle displacement at the lined walls. For harmonic waves,
it yields (see, e.g., Nayfeh et al. [3])

(kii — w)
w7z P (3

b=
where Z is the wall impedance (Z = puar/Vvar)-

In equation (7), m is a modal number indicating wave reflections in the z direction. When
m = 0, the waves are two-dimensional. Only two-dimensional waves will be calculated in
this paper. The mathematical formulation of the eigenvalue problems for the vortex-sheet
model and the continuous mean flow profile model is given below.

2.3. VORTEX-SHEET MODEL

For the vortex-sheet model, the jet boundaries are represented by infinitely thin vortex
sheets. Thus, the mean flow is piecewise uniform and a closed form dispersion equation
can be found. In addition, due to the symmetry of the mean flow, it is convenient to
consider symmetric (dp(0)/dy = 0) and antisymmetric (p(0) = 0) wave modes separately.
As a result, only the flow in the upper half of the duct needs to be considered. By satisfying
the boundary conditions at the wall, equation (8), and the jet interface (i.e., the continuity
of pressure and particle displacement), the dispersion equation which implicitly relates w
and k is found as follows. For symmetric modes,

), tan (J,d) di pul@ — ki) €08 [u(h — d)] — iwiaZ sin [fu(h — d)]

0@ — k1P (e — K pal@ — ki sin u(h — d)] T iwinZ cos Ju(h —dy ~ & O
and for antisymmetric modes,
. . _ 2 _ _ M bl : bl .
A; cot (4d) Aa (@ — ku,)* cos [L,(h — d)] — iwA,Z sin [A,(h — d)] — 0: (9b)

pi(w — ku;)? + pa(w — ku,)? p(® — ku,)* sin [L,(h — d)] + iwi.Z cos [A.(h — d)]
where
ho =Vl — ku)je.} — kK — @mn/BY, )= /l(@ — ku)/c} — k* — 2mn/BY,

and the speeds of sound are given by ¢,;, = \/ YP/Pa-
Here, it is interesting to note two special cases of the dispersion equations given above;
i.e., when the mean flow is uniform and when the duct walls are solid boundaries.

2.3.1. Uniform mean flow
For a uniform flow profile inside the duct, u, = u;, p, = p, and d = h. The dispersion
relations, equations (9a) and (9b), then become
tan (4d) — pi(w — ku)P[iwk,Z =0
for symmeric modes and
cot (i/d) —+ p/((l) — ku,)z/l(l)i,z = 0

for antisymmetric modes, respectively. The above two equations are the same as those
obtained in the literature for uniform mean flows (Nayfeh et al. [3]).

2.3.2. Solid walls

For solid walls, Z—oo. In this case, the dispersion relations, equation (9a) and (9b),
reduce to
Aitan (4d) | Actan[A(h —d)]

D —ku)r T pulw— k0
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for symmetric modes (Tam and Hu [8]) and

4icot (4d) A tan [A(h —d)] _ 0
pi(@ — ku)? palo —ku,

for antisymmetric modes, respectively.

2.4. CONTINUOUS MEAN FLOW MODEL

For continuous mean flow profiles, upon substituting equation (7) into equations (1)—(5),
the linearized governing equations can be reduced to a single equation for the pressure
perturbation:

d’p 2k da  1dp\dp o—ki\y o, [(2mm\']|._
dy2+<a)—kﬁdy_p_dy>dy+ c — k- B p=0, (10)
where ¢ is the speed of sound.

The boundary conditions for p are, at y = h,

54 iw”Z dp
P 5w — ki, dy

0, (11)

and, at y =0,
dp/dy =0 (symmetric modes) or p =0 (antisymmetric modes). (12a, b)

Equation (10) and the boundary conditions (11) and (12) form an eigenvalue problem.
The problem will be solved numerically by integrating from the centerline y = 0 to the
upper boundary y =/ and employing a shooting method, using the results of the
vortex-sheet model as the starting solutions. Similar numerical computations have been
carried out in the past with non-uniform subsonic velocity profiles (e.g. Mungur and
Gladwell [11] and Ko [12]; also see the references listed in references [3, 4]). Here, the
emphasis is on the supersonic jet flow with instability waves.

3. NUMERICAL RESULTS

For the numerical results shown below, the Mach numbers of the jet and ambient flow
are M; = 2-0 and M, = 0-2, respectively. The ratio of the speeds of sound ¢,/¢; = 0-5. All
the results shown are with respect to two-dimensional symmetric wave modes. Results of
antisymmetric modes are similar and are not shown here.

3.1. RESULTS OF THE VORTEX-SHEET MODEL

The main interest is to determine the normal modes associated with a two-dimensional
supersonic jet confined inside a duct and study the effects of the confining lined walls on
these wave modes. For the purpose of making comparisons, the dispersion relations of an
unconfined jet will be discussed briefly.

3.1.1. Unconfined jets

The normal modes of a free circular jet have been studied extensively by Tam and Hu
[10]. Here, some properties of a two-dimensional free jet will be examined briefly.

For a two-dimensional free jet, the dispersion equation relating the frequency w and
wavenumber k is given by

i)\fa COS ()»/d) ;»/' sin (/Ild) _ )
(@ — ki) T o0 — kuy O (13a)
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for the symmetric modes and

il,sin (4,d)  J;cos (Ld) _
pole — kY~ p(@ — ki) =0 (13b)

for the antisymmetric modes (Gill [13]). The dispersion relation of the symmetric modes
has been computed and is shown in Figure 2 (k, and k; are the real and imaginary parts
of the wavenumber k, respectively). Numerical studies of the dispersion equation (13a)
indicate that the present “‘top hat” jet profile possesses instability waves as well as neutrally
stable acoustics waves. Furthermore, since the convective Mach number (here defined as
M, = (u; — u,)/(¢; + ¢,)) is greater than one in the present case, a family of supersonic
instability waves is also present, in addition to the Kelvin—Helmholtz instability wave. This
family of unstable modes have supersonic phase velocities relative to both the jet and
ambient streams. The properties of these supersonic instability waves were more fully
discussed by Tam and Hu [10].

In addition to the unstable wave modes, namely the K-H wave and the supersonic
instability waves, there are also two families of neutrally stable waves associated with the
free jet. Here, these two families are referred to as the family C and family D acoustic
waves. For convenience of discussion, we divide the k., — w plane into five regions by the
sonic lines as indicated in the figure. Two aspects of the neutral acoustic waves are worth
pointing out. First, we note that the neutral waves are found only in region I, above the

14
12

k.d

()7

(b)

0 1 2 3 4 5 6
ad/u;

-5 1 1 1

Figure 2.. The dispersion relation of an unconfined jet. The symmetric modes are shown. (a) Real;
(b) imaginary. M; =2:0, M, =02, ¢./¢;=0-5. —O—, Kelvin—Helmholtz mode; , supersonic instability
modes; - - - - - , family C modes; ———, family D modes; — - — - — , sonic lines w/k, = u, + ¢o; —--—- - —, sonic
lines w/k, = u; + ¢;.
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sonic line w/k, = u, + ¢,, or in region V, below the sonic line w/k, = u, — ¢,: That is, the
phase velocity, C,, = w/k, of the neutral wave is always subsonic relative to the ambient,
ie., |Cop—u,] <c,. For class C waves, 0 < C,, <u,+ ¢,; and for class D waves,
u, — ¢, < Cy < 0. In other words, for the free jet, the neutral waves attached to the jet are
necessarily decaying away from the jet. Second, it has been found that part of the class
D waves represent upstream waves with a phase velocity close to u, — ¢,, as indicated in
Figure 2 where the group velocities are negative (see also Tam and Hu [10]). This means
that it is possible to have upstream-propagating neutral waves even though the jet mean
velocity is supersonic. This point will be re-examined more closely later.

3.1.2. Confined jets

In this section the effects of the duct walls will be considered, and the normal modes
associated with a confined jet will be computed. First, the case in which the duct walls are
solid boundaries is considered. The case in which the duct walls are lined will be dealt with
in section 3.1.3. For solid walls, let Z— o0 in equation (9). With the vortex sheet model,
the frequency and wavenumber of the wave modes are then the roots or zeros of the
dispersion equations (9a) or (9b). In the present work, interest lies in the spatially
attenuating or growing waves: thus, o will be a real number. However, for systems that
have spatial instabilities, it is not sufficient to just set the frequency w to be a real number
and look for the zeros of the dispersion equations in the complex k-plane. One must
distinguish the downstream and upstream propagating waves. Without the proper
distinction, a downstream-propagating growing wave may be erroneously considered as
an upstream-propagating attenuating wave, and vice versa. For this reason, the criterion
developed by Briggs [14] and also used by Tam and Hu [8] will be followed here. In this
procedure, the frequency w is first given a complex number, the real part of which is the
frequency of interest and the imaginary part of which is some large positive number. The
corresponding zeros of the dispersion equation are found in the complex k-plane. Then
an w-contour deformation process is applied, in which the real part of w is kept constant
while the imaginary part of w is gradually reduced to zero. In this process, the
corresponding zeros of the dispersion equation in the k-plane are traced as the imaginary
part of w is reduced. In Briggs’ criterion, the zeros originating from the upper half of the
k-plane represent the downstream-propagating waves, and the zeros from the lower half
of the k-plane represent the upstream-propagating waves.

15 T T
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Figure 3. Trajectories of zeros of the dispersion equation in the complex k plane as wd/u; is varied from 3 + 5i
to 3. The symmetric modes with solid walls are shown. M; = 2-0, M, = 0-2, c./c;=0-5, d/h = 0-75.



848

A;
//—
(a)]
0 L\ 1 L] \ T T T
-1 B, B, .
2k .
3} ]
A

-5F AZ A3
6k -
-7F (b) .
% 3 41 5 6 7 8

wd/u;

Figure 4. The dispersion relation of an confined jet. The symmetric modes are shown. (a) Real; (b) imaginary.
M; =20, M, =02, c./c;=0-5,d/h =0-75, solid wallsat y = + /. , Unstable modes; - - - - - , family C modes;
———, family D modes; —-—-— , sonic lines w/k, = us &+ ¢u; —--—-- —, sonic lines w/k, = u; + ¢;.

To illustrate the above process, the traces of the zeros in the k-plane as the imaginary
part of w is being reduced are plotted in Figure 3 for the case of Re (wd/u;) = 3. The
propagation direction of the wave mode associated with each zero in the k-plane is
correctly identified according to its movement in the process. Those zeros that move across
the real k-axis will represent instability waves. Those zeros that remain in the upper or
lower half of the k-plane then represent decaying or attenuated waves. Moreover, zeros
that lie on the real k-axis in Figure 3 represent the neutrally stable acoustic waves.

The above procedure has been applied systematically as the real part of the w changes.
The dispersion relations so obtained are given in Figure 4. (A similar procedure has been
used in the free jet calculations given in the previous section.) For convenience of
discussion, wave modes have been classified into two families of unstable waves, and A
and B modes, and two families of neutrally stable acoustic waves, the C and D waves.
However, a detailed description of the characteristics of each family of waves will not be
given here. They are quite similar to the four families previously found in a planar mixing
layer (Tam and Hu [8]).

Now compare the dispersion relation of the confined jet given in Figure 4 with that of
an unconfined free jet shown in Figure 2. First note that, due to the confinement, the
neutral waves can have a phase speed supersonic to the ambient flow. The dispersion
relation curves for family C and family D neutral waves now extend across the sonic lines
C,, = u, + ¢, continuously.
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Furthermore, upon closer inspection of Figure 4, the dispersion relation diagram shows
that the family D waves now all have positive group velocities. To study the upstream
waves, the real and imaginary parts of k as functions of w are plotted in Figure 5 for the
first three zeros that originate from the lower half of the k-plane in the contour
deformation process. It is seen that although these wavenumbers have negative imaginary
parts, they are actually attenuating waves, as they are upstream-propagating waves.
Careful numerical computations show that for wd/u; < 4, no zero reaches the real k-axis
from below. In other words, low frequency upstream-propagating waves of the free jet are
attenuated due to the presence of the confining walls.

Since the upstream-propagating waves of the unconfined jet have phase velocities close
to u, — ¢, in the unconfined jets (see Figure 2), we now calculate the group velocity, éw/dk,
for neutral waves along the sonic line C,, = u, — ¢,. By letting w /k = u, — ¢,, the derivative
Jdw/0dk can be obtained analytically from the dispersion equations given by equations (9a)
and (9b). For reasons of brevity, the expression for dw/dk is not given here. To have neutral
waves that travel upstream, it is necessary that dw/0k < 0. It is found that, for both the
symmetric and antisymmetric modes, this requires that

h—d _ cay(u+ co— ) = ¢ e
d 2(¢ca — )ty + Co — u,)?’

or in non-dimensional parameters,

h—d Mj[M/+(1 —M”)(C(,/C_,-)]* 1
d = 2(1 — MM, + (1 — M) (caJo)P

(14)

The boundary curves in the space M; versus d/h for different ambient Mach numbers
are plotted in Figure 6. Asymptotically, for hot jets and a low Mach number in the
ambient, the upstream waves are attenuated when d/h > 2/3. For cold jets, this condition
is d/h > 3/4.

(a)

0 1 2 3 4 5 6
Figure 5. The dispersion relation of the upstream-propagating waves; the first three zeros originating in the
lower half of the k-plane are shown. (a) Real; (b) imaginary. M; = 2:0, M, = 0-2, c./¢; = 0-5, d/h = 0-75, solid
walls.

-10 — 1 1
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Figure 6. Boundaries for attenuation of the upstream-propagating waves. (a) Hot jet, 7;/T. = 4; (b) cold jet.

3.1.3. Effects of wall liners
The effects of the finite wall impedance of the liners on the acoustic and the instability
waves discussed in the previous section are now studied. A point-reacting wall impedance
model will be used in the present study [3]. In this model, the impedance of the wall is
given by
Z = p.c.R + icot (wl/c,)], (15)

where p, and ¢, are the density and speed of sound of the ambient fluid, / is the thickness
of the liner cavity and R is the resistance (non-dimensional) of the wall facing the flow.
In all the results reported below, / = 0-05k and R varies.

Numerical calculations show that the liner effect varies for waves in different regions
in the dispersion diagram. For instance, for the acoustic waves in regions I and V, the phase
velocity is subsonic relative to the ambient flow but supersonic relative to the jet. These
waves are trapped inside the jet and their eigenfunctions decay away from the jet. The effect
of the liner has been found to be minimal. On the other hand, for acoustic waves in regions
II, III and IV, the phase velocity is supersonic relative to the ambient flow. Their
eigenfunctions show a larger pressure perturbation at the wall. A larger influence of the
liner has been found on the wave modes in these regions. This is demonstrated in Figure
7, in which eigenfunctions of selected wave modes for solid and lined walls are plotted.
Also plotted are the eigenfunctions of A and B instability wave modes. In particular, for
family A waves, the eigenfunction has a peak at the jet boundary, y = 0-75/, and decays
towards the wall. Thus, the effects of the lined walls are not significant. For the B modes,
however, the eigenfunction decays slowly towards the wall. For this family of waves, a
larger effect of the lined walls was shown.
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Figure 8. The effects of liners in the growth rates. (a) A; mode; (b) A, and A; modes. ——, Solid walls;
————— ,R=5~—-— R=2;-----, R=1. Symmetric modes, M; = 2-0, M, = 0-2, c./¢c; =05, d/h = 0-75.

In Figure 8 are shown the effects of the acoustic liner on the growth rates of the
instability waves: plotted are the spatial growth rates of the first three family A waves for
wall resistance R =1, 2 and 5 respectively. Clearly, the growth rates are reduced when
finite impedance walls are used. However, it must also be pointed out that the attenuation
effects are not significant for second and third modes, namely the A, and A; modes.

In Figure 9, the effects of the liners on the acoustic modes are shown: plotted are the
imaginary parts of the complex wavenumber as functions of 1/R. It is seen that with lined
walls, the family D waves are attenuated but the family C waves are actually destablized.
Further investigations have indicated that this destablization is a direct result of a merging
of the C and the unstable B waves when the impedance Z becomes complex in the
dispersion relation (9). Again, it is clear from Figure 9 that the degree of influence of the
liners on the acoustic waves depends largely on the phase velocity of the waves and thus
the region in the dispersion diagram. The least affected are the waves in regions [ and V,
in which the phase velocity of the wave is subsonic relative to the ambient flow.

3.2. RESULTS OF THE CONTINUOUS MEAN FLOW MODEL

For the continuous mean flow model, a hyperbolic tangent function has been used for
the mean velocity profile, namely,

a(y) = 3(it, + i — (i1, — ;) tanh [2()y| — d)/3.]),

and the mean temperature profile obtained from Crocco’s relation (Hu [15]). Here, d,,
represents the vorticity thickness of the shear layer, defined as

80 = |11 — iL,|/(B01/0Y ).
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Figure 9. k; as a function of 1/R for the C and D wave modes. (a) C, and D, modes; (b) C; and D; modes.
Superscripts indicate the regions of the wave mode in Figure 4. Symmetric modes, M; = 2-0, M, = 0-2, ¢./¢; = 0-5,
d/h = 0-75.

In the vortex-sheet model, the jet boundary is infinitely thin and the vorticity thickness
is zero. As the vorticity thickness increases and becomes finite (i.e., greater than zero), the
mean velocity and temperature profiles are continuous across the jet boundary. In this
study with the finite thickness mean velocity profile, emphasis will be placed on the liner

(a)

0 I~ =~ 1= - =
0-00 0-05 0-10 0-15 0-20
6,/d
Figure 10. The growth rates of the most unstable modes as functions of jet mixing layer thickness. (a) A; mode;
(b) A; mode. ——, Solid walls; — - — - — ,R=5———R=2;----- , R = 1. Symmetric modes, M; = 2-0, M, = 0-2,

ciJci =05, d/h = 0-75.
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Figure 11. The eigenfunctions of the most unstable modes as thickness varies. (a) A; mode; (b) A, mode.
, Solid wall; - --- - , R=2.

effects on the instability waves. In particular, only the family A instability waves will be
examined here, since they have larger growth rates than the family B modes.

In Figure 10, the growth rate (—k:d) as a function of the vorticity thickness is given
for the most amplified A, and A, modes. Calculations were made for both the solid and
lined walls. In general, as the thickness of the jet shear layer increases, the growth rate
of the instability waves decreases. However, it is clear from the results shown that the liner
becomes more effective in reducing the growth rates of the instability wave when finite
thickness effects are considered. In Figure 11, the variation of the eigenfunctions is shown
as the thickness of the jet shear layer increases. It is seen that, as the thickness increases,
the relative peak of the eigenfunction at the jet boundary is reduced. As a result, the
influence of the wall boundary condition increases. Based on the results shown, for a
realistic jet flow with a finite vorticity thickness, say J, > 0-05d, the acoustic liner can
reduce the growth rate of the instability waves quite signficantly.

4. CONCLUDING REMARKS

A detailed analysis of the linear wave modes associated with a jet confined inside
acoustically lined duct walls has been carried out. The dispersion relations of the acoustic
and instability waves have been computed and given for the two-dimensional modes. The
effects of the confining walls and the liners on the linear waves of the jet have been studied.
It is found that the effect of the liners is to attenuate waves that have supersonic phase
velocities relative to the ambient flow. However, the attenuation is less effective for the
waves that have a subsonic phase velocity relative to the ambient flow. In addition, it is
found that due to the presence of the confining walls, the upstream-propagating waves
associated with a free supersonic jet could become attenuated under conditions given by
equation (14). Furthermore, it is shown that, with a finite shear layer thickness, the acoustic
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liners have a quite significant effect in reducing the growth rates of the instability waves
of the jet.

In recent studies on supersonic jet noise generation mechanisms [2], the growth of the
instability waves of the jet plays a central role in the noise generation. The results of the
present study indicate that growth rates of the instability waves could be reduced greatly
by employing lined walls. It is then reasonable to expect that this reduction in the growth
rate of the instability waves may not only result in a change in the hydrodynamics
(spreading rate and turbulent structures) but also result in a change in the noise generation
of the jet. Moreover, in recent studies of jet screech tone noises, it has been suggested that
the upstream-propagating wave of the free jet is an essential part of a feedback mechanism
(see Tam and Norum [16] and Tam ez al. [17]). The present study, however, shows that
these upstream-propagating waves could become attenuated due to the confinement of the
jet. It will be interesting and challenging further to examine and explore the direct
consequences of these wave propagation properties on the noise generation. However, this
is beyond the scope of the present study.
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