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ABSTRACT

A Perfectly Matched Layer (PML) for linearized Euler equations with a par-
allel non-uniform mean flow is presented. The PML is formulated by utilizing
a proper space-time transformation in its derivation so that in the trans-
formed coordinates all dispersive waves supported by the non-uniform flow
have consistent phase and group velocities. The space-time transformation is
determined through a study of dispersion relations of all the linear waves.
The proposed PML equations are applicable to both bounded and unbounded
flows and given in unsplit physical variables. Furthermore, the stability of the
PML is also considered. It is shown that the proposed PML is stable for a fi-
nite range of the absorption coefficient. Numerical examples that demonstrate
the validity and effectiveness of PML as an absorbing boundary condition are
presented.

Keywords: Non-reflecting boundary condition, Perfectly Matched Layer, Euler
equations, computational acoustics

1 Introduction

Non-reflecting boundary condition is necessary in all finite element and finite
difference computations that involve wave propagation to open or semi-open
physical domains. It remains a significant challenge particularly for fluids re-
lated problems where the governing equations are non-linear or have non-
constant coefficients. The need for accurate non-reflecting boundary condition
has become even greater after the substantial progresses made in recent years
in the discretization methods, such as the utilization of high-order schemes
and unstructured meshes as well as orders-of-magnitude improvement in high



performance computing power. Non-reflecting boundaries are often the sources
of most significant numerical errors in many practical computations.

In this paper, we develop non-reflecting boundary condition for the linearized
Euler equations with a parallel non-uniform mean flow based on the Perfectly
Matched Layer (PML) methodology. PML was originally developed as an ab-
sorbing boundary condition for computational electro-magnetics|6,11,33,26,9,31].
The significance of the PML technique lies in the fact that, for multi-dimensional
problems; the absorbing zone so constructed can be theoretically reflectionless
for out-going waves of any angle and frequency. However, early works on the
extension of PML technique to the Euler equations in fluid dynamics indi-
cated that a direct adaptation of the original split formulation could lead to
numerical instability problems|16,17,1,27].

Substantial progresses have been made in recent studies regarding the PML
for fluids dynamics|27,18,5,3,13]. It has now been recognized that the cause for
instability in previous PML formulations is that the Euler equations, with a
convective mean flow, support waves with phase and group velocities in oppo-
site directions and these waves are actually amplified and become instability
waves under the original PML formulation|[18]. Consequently, a necessary con-
dition for any wave to be absorbed, and not amplified, under the original PML
technique is that its phase and group velocities must be consistent. Recogniz-
ing this, new formulations of PML have appeared in the literature[18,12,13,3].
For instance, in [18], a stable PML for the linearized Euler equations with a
uniform mean flow was proposed. It employed a space-time transformation
before applying the PML technique so that in the transformed coordinates all
waves have consistent phase and group velocities. This has led to a dynami-
cally stable and highly effective absorbing boundary condition. The method
used in [18] has also been recently applied to the shallow water equation in
geophysics|2].

The focus of this paper is on the formulation of stable PML for Euler equations
with non-uniform mean flows. Recently, in [13], a formulation of PML for
linearized Euler equations with a uniform mean flow was extended to non-
uniform flows, in which one parameter of the layer was adjusted numerically
to maintain stability. The main issue, as we will show in this paper, is how
to choose a priori the proper space-time transformation when the mean flow
is non-uniform so that all waves supported by the governing equations have
consistent phase and group velocities in the transformed coordinates. It will
be shown in the current work that such a space-time transformation can be
determined based on the study of dispersive waves of the Euler equations. By
an application of the proper space-time transformation, stable PML equations
can be constructed following the technique used in [18]. The emphasis of the
paper will be on how to extend the technique used in [18] to the case of non-
uniform mean flows. The effectiveness of the approach will be demonstrated
through numerical examples.



The rest of the paper is organized as follows. In the next section, recent pro-
gresses are reviewed and the importance of understanding the dispersion rela-
tions of linear waves for the construction of stable PML is discussed. Then, a
detailed study on all dispersive waves supported by the Euler equations with
a wall bounded non-uniform mean flow is presented in Section 3. Following
a proper space-time transformation suggested by the study in Section 3, the
derivation of PML equation is given in Section 4. In Section 5, the stability
of proposed PML equation is studied. The PML for unbounded flows are pre-
sented in Section 6. Finally, numerical examples are reported in Section 7 that
demonstrate the validity and efficiency of the PML as an absorbing boundary
condition. Section 8 contains concluding remarks.

2 Dispersive waves and the stability of PML

In this section, a brief review of recent works on PML for the Euler equations
(see, e.g., [1,5,3,12,13,18,27]) will be given, which emphasizes the importance
of understanding the dispersive waves of the physical system in constructing
stable PMLs.

One view of the PML technique is that it is a complex change of variable in the
frequency domain|7,9,11,26,31| and this view will be assumed in the present
investigation. For simplicity, all discussions in this section will be limited to
the construction of a vertical z-layer which involves a PML complex change
of variable for z as

x—>x+i/axdx (1)
w
xo

where o, > 0 is the absorption coefficient (a constant or a function of z)
and zg is the location of the PML/Euler interface. Other alternative forms of
(1) are possible, such as the one given in [4] for long time stability, but they
will not alter the basic arguments provided below. As a heuristic argument,
consider a wave ansatz of the form

ei(km—wt). (2>

Under the complex change of variable (1), it becomes

gltkz—wt) o 5 Lo . (3)

The second factor in expression (3) indicates that the wave amplitude decays
exponentially in the PML zone if and only if
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as the wave propagates from an arbitrary location x’ in the PML zone. This
means that the PML is only absorbing for a wave that propagates to the
right (x increasing) with k/w > 0 or propagates to the left (v decreasing) with
k/w < 0. In other words, for the amplitude of the wave to be reducing (and not
increasing) in the PML domain, the direction of wave propagation should be
consistent with the sign of k/w or, equivalently, the phase velocity w/k[18,5].
Since the direction of propagation of a dispersive wave is determined by the
group velocity, this necessary condition has been expressed nicely in [5] as

k dw
wdk >0, (5)
or, equivalently,
Cpntq >0 (6)

where ¢, and ¢, are, respectively, the phase velocity, w/k, and the group
velocity, dw/dk. That is, for the PML technique to yield stable absorbing
boundary conditions, the phase and group velocities of the physical waves
must be consistent and in the same direction. Conversely, any wave of the
original physical system having its phase and group velocities in opposite
directions will be exponentially amplified and result in instability in the PML
domain. Condition (5) links intimately the construction of stable PMLs to the
dispersion relation, i.e., w = w(k), of the physical waves under investigation.

This necessary condition for stable PML has been recognized in several recent
studies|27,18,5,13]. For instance, in [18], it was pointed out that, in the pres-
ence of a convective mean flow, the Euler equations support acoustic waves
that have a positive group wvelocity but a megative phase velocity and these
waves were actually amplified in previous PML formulations. It was further
proposed in [18| that, when deriving the PML equation for the Euler equa-
tions, a proper space-time transformation be used before applying the PML
technique so that in the transformed coordinates all linear waves supported
by the Euler equations have consistent phase and group velocities. For the
linearized Fuler equations with a uniform mean flow in the z-direction, the
proper space-time transform involved essentially a transformation in time of
the form

t=t+ Sz, (7)

where
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in which Uy is the uniform mean flow Mach number[18]. The corresponding
transformation in the frequency-wavenumber space is

k=Fk+fw,o=w. (9)

The value of § in (8) was determined so that the dispersion relation of the
convective acoustic waves, namely,

w—Uok)? = k* — k2 =0
( ) y

becomes the following in the transformed space

@*/(1-U5)— (1 -UHK* =k, =0

for which the phase and group velocities are consistent|18]. This transforma-
tion is similar to the well-known “Prandtl-Glauert” transformation in aerody-
namics. In [18], a new PML equation was formulated by applying the complex
change of variable (1) in the transformed coordinates in the derivation process.
It was demonstrated that the new PML formulation was dynamically stable
and perfectly matched to the Euler equations for the acoustic, vorticity and
entropy waves. The importance of the space-time transformation (7) and the
particular choice for 3 in (8) were also confirmed in recent independent formu-
lations in [3,12,13]. For example, in [13], the importance of the transformation
(7) was reflected by forming a special wave ansatz. An extension of PML to
non-uniform mean flows was also given in [13] where an equivalent value for
0, called 1, was adjusted by numerical experiments that gave stable solutions.

The question becomes whether it is still possible to determine a priori the
proper space-time transformation for the Euler equations with an arbitrary
non-uniform mean flows so that, in the transformed coordinates, all linear
waves have consistent phase and group velocities. We will show in the next
section that, for a parallel non-uniform mean flow, it is again possible, and
necessary, to apply a transformation of the form (7) in the derivation of PML
equation and the value for 5 in (7), actually a unique choice, can be determined
through a study of the dispersion relations of the physical waves.

3 Linear waves of Euler equations with a non-uniform mean flow
bounded by solid walls

Let the linearized Euler equations with a parallel non-uniform mean flow be
written as
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Figure 1. A schematic of a bounded parallel non-uniform mean flow.
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where v and v are velocity components in the x and y directions respec-
tively, non-dimensionalized by a reference speed of sound a,; p is the den-
sity, non-dimensionalized by a reference value p,; and p is the pressure, non-
dimensionalized by p,a?. Also, the space variables z and y are non-dimensionalized
by a reference scale ¢, and time ¢ is non-dimensionalized by ¢,/a,. The mean
velocity U(y) and density p(y) are functions of y only and the mean pres-
sure is constant. We note that, alternatively, equation (10) can be formed by

a u vector that contains only u, v and p, since the equation for density p
can be separated. This will result in a smaller system, but will not affect our
derivation of the PML equation.

As the discussion in the previous section shows, the construction of stable
PML depends on the dispersion relations of the physical waves supported by
the Euler equations. In this section, we conduct a study of linear waves of (10)
in a parallel flow bounded by solid walls at y = +1, as shown in Figure 1. For
this purpose, a linear wave analysis for (10) will be carried out numerically,
since a closed form dispersion relation is not available for non-uniform mean
flows. In this approach, we seek solutions to (10) of the form

u(e, y,t) = a(y)e e (11)
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Figure 2. Mean velocity and density used in the example.

where w and k are the frequency and wavenumber respectively. By substituting
(11) into the Euler equation (10), we get an eigenvalue problem

»
—iwh + ikAG + Bd—z +Ca=0 (12)

with these homogeneous boundary conditions,

di. . dp dp
—=0=—=—=0aty==£1. 1
a0 0 W 0aty (13)

This eigenvalue problem will be solved by a spectral collocation method which
is a standard method in hydrodynamic stability analysis|25,10,22]. Further
details are given in the Appendix. It yields a complete spectrum of all normal
modes supported by (12). Each eigenvalue w of (12) as a function of given
wavenumber k defines the dispersion relation w = w(k) for that wave mode.

As a specific example, we will demonstrate the dispersion relations of all linear
waves associated with a shear flow of mean velocity

U(y) = 310+ V) + (U — Ua) tanb(22) (19)

and mean density

(15)
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— U-U, Up-U ~-1 R
T(y) ="1T; T Uy -U)(U - U:
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where the mean temperature T(y) is determined by the Crocco relation for
compressible flows. v = 1.4. The mean flow parameters chosen for the example
are as follows:

Up=08, Uy=02 6=04, T1=1 1T,=08.

The mean velocity and density profiles are plotted in Figure 2. Both are non-
constant.

Figure 3 shows the dispersion relations diagram of all the normal modes of
(12), i.e., w, (real part of w) v.s. k. The imaginary part is zero for all wave
modes except the Kelvin-Helmholtz instability wave which will be shown later.

In the dispersion relations diagram, we see two families of waves. One family
has phase speed between U,,;, = 0.2 and U,,,, = 0.8, shown between dashed
lines in Figure 3. They are actually a discretization of a continuous spectrum.
For convenience of discussion, these waves will be referred to as “vortical”
modes in this paper. The vortical modes convect with the mean flow. We see
that for the vortical modes, both the group and phase velocities are positive.
Therefore condition (5) is satisfied. We note that one of the vortical modes
is the Kelvin-Helmholtz instability wave supported by the present mean flow
profile. An enlarged graph is shown in Figure 4 for the real and imaginary
parts of w as functions of £ where the Kelvin-Helmholtz wave, as well as its
complex conjugate, is highlighted by circles.

The other family of waves in the dispersion relation diagram in Figure 3 will
be referred to as “acoustic” modes. A closer examination on the phase speed of
the acoustic modes will show that they always have a phase speed supersonic
relative to part of the mean flow. Furthermore, they are dispersive waves|32],
where w/k # constant. Figure 3 also shows that the acoustic modes do not
always have consistent phase and group velocities. A triangle on the acoustic
waves indicates the location where the group velocity is zero, i.e., dw,/dk = 0.
As we can see, for the acoustic modes in the upper left and lower right quarters
in Figure 3 that lie between the triangle and the vertical axis, their phase
velocity (w,/k) is negative but their group velocity (dw,/dk) is positive. By
the argument provided in the previous section, applying directly the PML
complex change of variable (1) to the Euler equation (10) without a proper
space-time coordinate transformation in the derivation process will result in
these waves being amplified and becoming unstable waves.

To find the proper space-time transformation, we note that, remarkably, the
locations of zero group velocity points on the dispersion diagram (triangles in
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Figure 3. Dispersion relation diagram. Triangles denote the points of zero group
velocity. Dashed lines are w, = U1k and w, = Usk.

Figure 3) appear to lie closely on a straight line. This implies that a linear
space-time transformation of the form (7), which incurs a transformation in
the frequency-wavenumber space of the form (9), can again be used to “correct”
the dispersion relation. The obvious choice for 3 in (7) and (9) is

f=-— (16)

where ¢, is the slope of the line of triangles (w, = ¢ k) in Figure 3. In Table 1,
the locations of the zero group velocity points for the first 20 acoustic modes
are listed. For the current example, Table 1 suggests a value ¢, =~ —1.4073.

The dispersion relation diagram in the transformed coordinates is shown in
Figure 5. Now all the waves have approximately consistent phase and group
velocities and, therefore, satisfy condition (5).
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mode number ko Wo wo/ko
1 +0.09291 | F1.2721 | —1.3692
2 +1.7852 F2.5675 | —1.4382
3 +2.7414 | F3.8293 | —1.3969
4 +3.6331 | F5.1200 | —1.4091
) +4.5378 | F6.3924 | —1.4086
6 +5.4594 | F7.6739 | —1.4056
7 +6.3559 | F8.9519 | —1.4084
8 +7.2725 | ¥10.2308 | —1.4068
9 +8.1773 | F11.5097 | —1.4075
10 +9.0874 | F12.7885 | —1.4072
11 4+10.9045 | F15.3462 | —1.4073
12 +11.8134 | ¥16.6250 | —1.4073
13 +12.7220 | F17.9038 | —1.4073
14 +13.6308 | F19.1827 | —1.4073
15 +14.5394 | F20.4615 | —1.4073
16 +15.4482 | F21.7403 | —1.4073
17 +16.3569 | ¥23.0192 | —1.4073
18 +17.2656 | F24.2980 | —1.4073
19 +18.1743 | F25.5769 | —1.4073
20 419.0830 | F26.8557 | —1.4073

Table 1

Values of k, and w, where the group velocity is zero in Figure 3.

It is important to point out that it does not appear to be accidental that all
points of zero group velocity fall closely on a straight line. For other types
of subsonic mean flow profiles, including mixing layers, jets, wakes, as well
as viscous boundary layer flows, it was found, at least numerically, that the
points of zero group velocity on the dispersion diagram for the acoustic modes
were always closely lined. Two further examples of jet and plane Poiseuille
flows are shown in Figure 6. It is also worth pointing out that if part of the
mean flow is supersonic, it has been found that each acoustic mode will have
two locations where the group velocity becomes zero|20], which would make
the linear transformation (7) alone ineffective for transonic mean flows.

11
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wavenumber k

Figure 5. Dispersion relation diagram in transformed space. Triangles denote the
points of zero group velocity.

4 Derivation of PML equations
4.1 Unsplit formulation

Once the value of /3 for the proper space-time transformation (7) has been de-
termined based on the dispersion relations of the acoustic modes, the deriva-
tion of PML for the Euler equations can be carried out as follows. We shall first
apply the space-time transformation (7) to the governing equations so that all
dispersive waves have consistent phase and group velocities. Then, the PML
complex change of variable (1) will be applied in the transformed coordinates.
And finally the PML equation in the original physical time domain is obtained.
Details are given below.

Under transformation (7), we have these changes in the partial derivatives,

1

N}
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Figure 6. Dispersion relation diagram of a jet (left) and a channel Poiseuille flow
(right). Triangles denote the points of zero group velocity.

0 0 0 0 0
5% "o o ox % (17)

and the Euler equation (10) in transformed coordinates becomes

8 ou ou

The PML technique will first be applied to the transformed equation (18). As
in reference 18], we first write (18) in the frequency domain,

—zw(I+ﬁA)u+Ag—+Bg—u + Cu =0, (19)

in which u(z,y,?) = t(z, y)e ™" is assumed.

To construct the PML equation for the vertical z-layer, we apply the PML
complex change of variable (1) to the frequency domain equation (19) which
involves a change in the partial derivative with respect to x as

0 1 0
N 7
ozr 1+“’7””0x

(20)

where o, is a positive function of z. That is, equation (19) is modified to be

13



A28 B9 i, (21)

1
—im(1+ BA)D .
iw(I+ )u+1+l%m o 3y

Equation (21) is the PML equation for the z-layer in the frequency domain. It
will now be written back in the time domain by following an unsplit approach
used in [7,11,18,31]. By multiplying the equation with (1 + *2=), we get

10g .. O 10y

(—iw + o) (1 —i—ﬂA)u—FAg— +(1+ —)Ba—y +(1+ —)Cu =0.

Then the equivalent time domain equation for the above is easily found to be

ou Ju Ou oq B
where q is an auxiliary variable defined as
9q
— =u 2
5 U (23)

Finally, when (22) is written in the original physical coordinates (x,y,t), we
get the following PML equation for (10) with non-uniform mean flows,

8_u+A8_u+B du +%8
dy

ot Oz (a ) + C(u =+ qu) +ozu+o0,8Au =0 (24)

where the equation for q is that given in (23). We note that q is only necessary
inside the PML domains|18].

4.2 Absorption of hydrodynamic instability waves

It is well known that Euler equations can support hydrodynamic instability
waves, for example, the Kelvin-Helmholtz instability for jets and mixing layers
where the mean velocity profile has an inflection point. The PML should be
absorbing to all waves, including the instability and evanescent waves. There
are generally two kinds of hydrodynamic instabilities, namely the absolute
and convective instabilities|23]. For numerical simulations, we are mostly con-
cerned with the convective instability waves that grow spatially and propagate
with the mean flow to the outflow boundary. A simple argument on the phase
and group velocities, given below, will show that the PML formulated here
will always absorb convective instability waves.

Suppose that the mean flow is from left to right. Then the group velocity
of a convective instability wave that propagates with the mean flow will be
positive, i.e.,

14



dw,

e > 0.

Furthermore, by an extension of the semi-circle theorem (in the theory of
hydrodynamic stability) to compressible flows, it has been shown in [8| that
the phase speed of any instability wave is bounded by the maximum and
minimum values of the mean velocity, i.e.,

0 < Umm S % S Umax- (25>

Therefore, the phase and group velocities of a convective instability wave are
both positive and condition (5) is always satisfied. This means that the spatial
growth rate of convective instability waves will always be reduced in the PML
zone. To completely annihilate the instability waves, the PML absorption rate
should be designed such that it is greater than the spatial growth rate of the
instability waves.

4.3 Value for 3

The parameter 3 in equation (24) is a critical number for ensuring the stability
of the PML equation. In the previous section, the proper value for 3, appeared
in the space-time transformation (7) used in the derivation of PML, has been
determined as the negative reciprocal of the phase velocity ¢, of the acoustic
wave modes at which the group velocity is zero. In other words, if in general
D(w, k) = 0 is the dispersion relation, then

¢o=—and f=—— (26)

D Jk)=0
Dlen ) o
W(woa ko) =0

This is certainly the case for the uniform mean flow where the exact disper-
sion relation for the acoustic wave is known, as discussed in section 2. For
non-uniform shear flows, although the acoustic modes have been found and
studied extensively in the past, for example for jets|28|, shear layers|29,14,15],
wakes|34] and boundary layers|24|, an explicit and direct relationship between
the phase speed ¢, define in (26) and an arbitrary mean flow profile has not
been available. The spectral collocation method, its details given in the Ap-
pendix, provides a general way of determining the dispersion relations for an

15



arbitrary mean flow, from which the value for ¢, and, thus, § can be extracted.
A special case is worth mentioning. If the mean density is constant, i.e., the
non-dimensionalized mean density p(y) = 1, it has been found that a reason-
ably good empirical formula for § for practical purposes is

[—) (28)

b
_ 1 _
Un = / Uly)dy (29)
for a domain in y € |a, b].

5 Stability of the PML equations

When the value of 3 in the PML equation (24) is determined based on the
dispersion relations of linear waves as described earlier, all the physical waves
of the Euler equations become absorbed in the PML domain, and their ampli-
tudes are going to be reduced exponentially as they travel in the PML domain.
However, with the introduction of the auxiliary variable q, the order of partial
differential equations has increased (doubled). As a result of this, the PML
system of equations (24) and (23) now admits additional non-physical waves.
It is important that these additional wave modes are not exponentially grow-
ing. In this section, we study this issue and carry out a stability analysis for
equations (24) and (23) when o, is held constant.

Following the similar approach used in the analysis of the Euler equation (10)
in Section 3, we seck solutions to (24) and (23) of the form

u(z,y, t) = afy)e’ ™, (30)

a(z,y,t) = q(y)eF==". (31)

By substituting the above into (24) and (23), we get
A A da dq . . . N
(—iw)a + ikAu + B(d_y + de—y) +C(a+0,q) + o0+ o, 0A0 =0, (32)
(—iw)q = 1. (33)
With homogeneous boundary condition (13) for @ and similarly for g, (32) and
(33) again form an eigenvalue problem and can be solved by the spectral collo-

16
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Figure 7. Imaginary part of all wave modes. (a) o, = 0.2, (b) 0, = 2.0, (¢) o, = 10.0.

cation method (see Appendix). For any given wavenumber k, an eigenvalue w
with a positive imaginary part would indicate an exponentially growing wave.

In Figures 7 (a), (b) and (c), we plot the imaginary part of all wave modes of
(32)-(33) where the value of o, is taken to be a fixed constant 0.2, 2.0 and 10.0,
respectively, for wavenumber k in the range of —20 to 20. The mean flow profile
in this example is the same as that used for the example in Figure 3. For cases
(a) and (b), we see that all wave modes have the imaginary part of w below

17



zero, including the original Kelvin-Helmholtz wave, indicating that the PML
equation is dynamically stable, at least within the range of k£ being considered.
For case (c¢) where o, = 10, however, some wave modes have emerged with
positive imaginary parts and thus become unstable at high wave numbers.
These modes are originated from the non-physical waves. Figure 7(c) indicates
that the PML equations (23)-(24) could have exponentially growing solutions
if the value of o, is taken to be too large. This has been found to be typical that
the system of (23)-(24) is stable when the value of the absorption coefficient
is below certain limit, let which be denoted by o, but admits unstable wave
modes when o, is greater than that limiting value o,. Experiments show that
the limiting value o, varies widely depending on the particular mean flow
profile. For the current example, the limiting value o, = 3. For other mean
flow profiles, such as a linear shear mean velocity|20], the limiting value has
been found to be as large as 100.

For cases where the value for o, is too small, the fact that the PML is stable
only when o, < 0, could mean that a relatively large PML domain might be
needed to achieve a desirable degree of wave absorption, because the effective-
ness of a PML domain depends on the magnitude of the absorption coefficient
as well as the total width of the absorbing zone[16,19]. For such cases, one
practical remedy could be to use grid stretching in the PML domain, so that
its effective width is increased without employing more grid points|26,33,19].
A grid stretching is equivalent to simply modifying the x derivative terms of

the PML equation as

0 1 0
AN Ea 34
or a(r) Ox (34)
where a(z) > 1 is a smooth function. For example,
T — X s
=1+A
afw) =1+ 4|7 (35)

where xq is the start of the PML domain and D its width. Grid stretching also
has a side effect of introducing numerical damping which could improve the
stability of PML even when o, is greater than the stability limiting value oy.
This has been found to be quite effective in computations, as will be shown in
the examples given later in Section 7.

6 PML for unbounded flows

When the flow is unbounded, horizontal y-layers are needed to terminate the
computational domain at the top and bottom boundaries, as shown in Figure
8. For a parallel mean flow aligned with the x-axis, the PML equation for the
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Figure 8. A schematic of an unbounded parallel non-uniform mean flow, showing
z-layers, y-layers and corner layers.

y-layers and corner layers can be developed by applying a complex change of
variable in y, similar to (1) for x, namely,

+ /y d d 0 L
e g an - — —

(36)

Yo

to the frequency domain equation (21), where o, is a positive function of y.
Upon rewriting the resulting equation in the time domain, we get a PML
equation that is formally valid for all the vertical z-layers, horizontal y-layers
as well as the corner layers. This is given below,

86_1; - Aa%(u +oyq) + Ba%(u +029) + C(u+ 02q + 0yq + 0204q')

+(op + oy)u+ 0,049+ 0,8A(u+0yq) =0 (37)

where ' is another auxiliary variable defined as

oq
o &

While q' is only necessary at the corner layers (where both ¢, and o, are
non-zero), we point out that in many practical applications the mean flow is
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uniform or nearly uniform within the y-layers, i.e., the we often have

7,C ~ 0. (38)

Therefore, the ' term can, in fact, be dropped from (37) for such cases.
Equation (37) is perfectly matched to the Euler equation (10). We note that,
except the term involving the C matrix, equation (37) is otherwise identical to
the PML equation for a uniform mean flow given in [18], and it can be similarly
made symmetrizable, thus strongly well-posed, by a slight modification as that
given in [18]. Further implementation issues are referred to [18].

We note that even though the flow is now physically unbounded, it becomes
bounded artificially due to the truncation of the computational domain in y,
where solid wall like boundary conditions are usually applied at the end of
the PML domains. To determine the value for 3 to be used for (37), a linear
wave analysis similar to that of a wall bounded flow should now be carried out
with the inclusion of the horizontal PML y-layers, namely, for the following
equation

ou 0 ou
§+A%(U+0yq)+Ba—y+C(u+0yq)+0yu—0 (39)

with appropriate homogeneous boundary conditions. Nonetheless, it was found
that the presence of y-layers did not substantially alter the dispersion relations
of the acoustic modes. Therefore, for simplicity, the value of § in (37) for
unbounded flows could still be determined in the same way as that for the
bounded flows described in previous sections, assuming that solid walls are
placed at the top and bottom boundaries of the computational domain.

7 Numerical Examples

In this section, three numerical examples will be presented, dealing with
bounded and unbounded non-uniform mean flows. More examples can be
found in [20].

7.1 Wall bounded shear flow

Consider a mixing layer, with the mean velocity and density specified by (14)
and (15) and bounded by solid walls at y = £1, as shown in Figure 1. The
Euler equation (10) with the following source term added to the equation of
pressure,

s(z,y,t) = sin(1.5¢)e ("2 +y%)/0.05% (40)
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Figure 9. Contours of the numerical solution at ¢t = 70. (a) pressure, (b) u-velocity.

is solved by a finite difference scheme. For the results shown in Figures 9-11,
the computational domain is [—1.4,7.4] x [—1,1] with a uniform grid Az =
Ay = 0.04. Two PML domains, each consisting of 10 grid points, are used at

the inflow and outflow boundaries. The absorption coefficient o, varies with
T as

T — xo|?

D

Oz = Omazx

(41)

where 0,,,, = 20 and o = —1 for the inflow and xy = 7 for the outflow
PML domains. For the calculations reported here, a grid stretching of the
form given in (35) is also used with the parameters being A = 2 and s = 2.
All spatial derivatives are discretized by a 7-point DRP 4th-order central dif-
ference scheme|30], with a 10th-order filter applied throughout the computa-
tional domain[17]. Time integration is carried out by the optimized 5 and 6

stages alternating Low Dissipation and Low Dispersion Runge-Kutta scheme
(LDDRK56)[21].

The added source term (40) generates an acoustic wave that is reflected repeat-
edly by the solid walls. At the same time, it excites the Kelvin-Helmholtz insta-
bility wave of the mixing layer that propagates downstream. Figures 9(a) and
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Figure 10. Pressure time history. Solid line: numerical solution; circles: reference
solution.

9(b) show the pressure and u-velocity contours, respectively, at time ¢ = 70.
Clearly, wave absorptions at both the inflow and outflow PML domains are
quite effective.

In Figure 10, the pressure as a function of time is plotted for two selected
points located at (6.8,0) and (—0.8, 0) near the outflow and inflow boundaries
respectively. The solid line is the numerical solution and circles represent a
reference solution obtained by using a larger computational domain so that it
is not affected by any boundary effects. Excellent agreement is found between
the numerical and reference solutions with no discernible difference on the
graphic scale. For a quantitative measure of the reflection error, the maximum
difference between the numerical and reference solutions on all grid points
along x* = 6.8 near the exit boundary is plotted in Figure 11. The top graph
shows the results using 10 grid points in the PML zone and the bottom graph
using 20 points, with two cases of 0, = 3 and 20 in each graph. Obviously,
more absorption is achieved when a larger value of ,,,, is used. Since the
amplitude of the Kelvin-Helmholtz wave at the exit is about 0.1, Figure 11
indicates that the reflection error is less than 1% when 10 grid points are used
in the PML domain and the reflection is less than 0.1% with 20 grid points
and 0,,,, being 20.
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Figure 11. Maximum difference between the numerical and reference solutions along

x = 6.8 as a function of time. (a) D = 10Az; (b) D = 20Ax.

We note that even when the maximum value of the absorption coefficient o,,,4,
used in this example is greater than the stability limiting value o, which is
3 for the current mean flow, no numerical instability has been observed in
the computation. This suggests that grid stretching combined with numerical
filtering may be sufficient to suppress the growing modes identified in Figure
7(c) when o, is beyond the stability limiting value o,.

7.2 Unbounded mixing layer

In the second example, the propagation of an acoustic pulse in an unbounded
shear flow, specified again by (14) and (15), is simulated. The computational
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Figure 12. u-velocity contours, at the time as indicated.

domain is [—2.4, 2.4] x [—2.4, 2.4] with PML zones, consisting of 10 grid points,
on all four sides. Equation (37), without the q’ term, is used for the PML zones.
The value of § = —1/¢, where ¢, = —1.416 is obtained by assuming that the
flow is bounded at y = £2.4, which is only slightly different from that found
in the previous example. The initial condition is

t= 07 U=v=p= pr = 6_(1H2)(l‘2+y2)/0.22‘

Figure 12 shows the u-velocity contours at t = 1.5,2.5,3.5 and 6. The initial
acoustic pulse as well as the vorticity wave induced by the shear flow are
absorbed effectively at the boundaries. Figure 13 shows the time history of the
u-velocity at a sample point (1.8, 0) near the outflow boundary. The numerical
(solid line) and reference (circles) solutions are again in excellent agreement.
The maximum difference between the numerical and reference solutions for
the pressure along x = 1.8 is plotted in Figure 14, which shows that the use
of PML caused little reflection.
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x = 1.8 as a function of time.
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Figure 15. Instantaneous pressure contours (right) and the mean velocity profile
(left).

7.8 Unbounded jet flow

In the third example, the acoustic radiation of a point source located inside a
subsonic jet is simulated. The jet mean velocity and density are given by

U= U, + (U — Uy)e W /03 51 (42)

where U, = 0.2 and U; = 0.5. A source term of the form

S(ZL‘, Y, t) _ sin(207rt)e_(1n 2)[(z+0.5)2+y2]/0.032

is added to the equation for the pressure. The computational domain is [—1.1,1.1] x
[—1.1,1.1], with Az = Ay = 0.01. The PML domains on all four sides have a
width of 10 grid points.

For the mean flow given in (42), the spectral collocation method for the lin-
ear wave analysis suggests a value of 0.3124 for 5. Formula (28), given for a
constant mean density, yields the same value for 3 as well.

Figure 15 plots instantaneous pressure contours and shows clean absorption
of out-going waves. The mean flow refraction effect is also notable. At the
current high frequency for the source, the jet instability wave is not excited.
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Figure 16. Pressure history at point (z,y) = (0.95,0.5). Solid line: numerical solu-
tion; circles: reference solution.

To compare with a reference solution, the pressure history at a sample point
(x,y) = (0.95,0.5) near the outflow boundary is plotted in Figure 16. Again
we see excellent agreements.

8 Conclusions

A Perfectly Matched Layer is presented as an absorbing boundary condition
for the linearized Euler equations with a parallel non-uniform mean flow. It ap-
plies to both bounded (ducted) and unbounded flows. It is shown that for the
stability of PML it is of critical importance to apply a proper space-time trans-
formation in the derivation of PML equation. The parameter for the proper
space-time transformation can be determined a priori from the dispersion re-
lations of acoustic modes supported by the mean flow. Numerical examples
show that the PML formulated here works well for subsonic compressible shear
flows.

It is further shown that the proposed PML is dynamically stable for a fi-
nite range of the absorption coefficient. Since the precise stability limit on
the absorption coefficient is very much mean flow dependent and can only
be obtained through a stability analysis of the PML equations for the spe-
cific mean flow profile, it is recommended that certain numerical dissipation
be introduced in the PML domain, such as numerical filtering or numerical
damping. In all the computational examples reported here, a use of high order
numerical filtering and grid stretching has been sufficient for suppressing the
non-physical unstable modes when the absorption coefficient is moderately
greater than the stability limiting value.
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Appendix: Spectral Collocation Method

In this Appendix, we describe the spectral collocation method used to solve
the eigenvalue problem posed by (12)-(13). Assuming that the computational
domain for y is [—1, 1], we expand the solution u(y) in basis polynomials as
follows

Pn¢n(y)

N al un¢n(y)
u(y) = (43)

g nzz;) ’Unwn(y)

Pndn(y)

where {¢,} and {1, } are formed by the Chebychev polynomials 7T},(y) as

(To(y) - Tusaly) neven
Yn(y) =
Ti(y) — Tut2(y) nodd
1 n=0
n(y) = (22 To(y) — Tnsa(y)  neven
(n+2)°Ti(y) — Tota(y) nodd

The expansion (43) automatically satisfies the boundary condition for u(y)[22].
By substituting (43) into (12) and requiring that the equation be satisfied at
collocation points,

2j + 1

— 1 =0,1,2,..., N
2N+27T)7] [ b )

y; = cos(

we get,
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PnPn PnPn
N un¢n un¢n
> | -iw +ikA
n=0 Untn Unn
L DPn®n Pn®n
Pngb; PnPn
U@, u
4B n®n L C n®On —0
'Unw% Un¥Yn
P, PnPn o
= Y=Yy

for j =0,1,2,..., N. This can be easily cast into a generalized algebraic eigen-
value problem for w of the form Qu = wRu where U is a vector consisting of
all the expansion coefficients in (43) and Q and R are (4N +4) x (4N + 4)
matrices. For the results given in Figure 3, N = 63.
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