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Abstra
tAbsorbing boundary 
onditions for the nonlinear Euler and Navier-Stokes equations in three spa
edimensions are presented based on the Perfe
tly Mat
hed Layer (PML) te
hnique. The derivation ofequations follows a three-step method re
ently developed for the PML of linearized Euler equations. Toin
rease the e�
ien
y of the PML, a pseudo mean �ow is introdu
ed in the formulation of absorptionequations. The proposed PML equations will absorb exponentially the di�eren
e between the nonlinear�u
tuation and the pres
ribed pseudo mean �ow. With the nonlinearity in �ux ve
tors, the proposednonlinear absorbing equations are not formally perfe
tly mat
hed to the governing equations as theirlinear 
ounter-parts are. However, numeri
al examples show satisfa
tory results. Furthermore, thenonlinear PML redu
es automati
ally to the linear PML upon linearization about the pseudo mean �ow.The validity and e�
ien
y of proposed equations as absorbing boundary 
onditions for nonlinear Eulerand Navier-Stokes equations are demonstrated by numeri
al examples.Keywords: Nonre�e
ting boundary 
ondition; Perfe
tly Mat
hed Layer; Navier-Stokes equations; Eulerequations; Computational Fluid Dynami
s; Computational Aeroa
ousti
s1 Introdu
tionNon-re�e
ting boundary 
ondition is a 
riti
al 
omponent in the development of Computational Fluid Dy-nami
s (CFD) and Computational Aeroa
ousti
s (CAA) algorithms. It remains a signi�
ant 
hallenge par-ti
ularly for problems involving nonlinear governing equations. Perfe
tly Mat
hed Layer (PML) is a te
h-nique of developing non-re�e
ting boundary 
onditions by 
onstru
ting mat
hed equations that 
an absorb1



out-going waves at open 
omputational boundaries. It was originally designed for 
omputational ele
tro-magneti
s[5, 6, 8, 28, 27, 7℄. The signi�
an
e of the PML te
hnique lies in the fa
t that the absorbing zoneis theoreti
ally re�e
tionless for multi-dimensional linear waves of any angle and frequen
y. In the past fewyears, substantial progress has been made in the development of the PML te
hnique for the Euler equations,starting with the studies for 
ases with 
onstant mean �ows, followed by extensions to 
ases with non-uniformmean �ows[16, 17, 1, 18, 19, 4, 10, 9℄. Most re
ently, appli
ations of PML to linearized Navier-Stokes equa-tions and nonlinear Navier-Stokes equations have been dis
ussed in [12, 13℄. A re
ent progress review isgiven in [21℄Although the PML te
hnique itself is relatively simple when it is viewed as a 
omplex 
hange of variablesin the frequen
y domain, it is important to note that, for the PML te
hnique to yield stable absorbingboundary 
onditions, the phase and group velo
ities of the physi
al waves supported by the governingequations must be 
onsistent and in the same dire
tion[18, 9, 4℄. For governing equations that supportphysi
al waves of in
onsistent phase and group velo
ities, su
h as the Euler or Navier-Stokes equations for�uid dynami
s, a spa
e-time transformation may be required before applying the PML te
hnique in thederivation pro
ess[18, 19℄. This spa
e-time transformation 
orre
ts the in
onsisten
y in the phase and groupvelo
ities and thus permits the appli
ation of the PML te
hnique. An emerging method of formulating PMLinvolves essentially three steps[21℄:1. A proper spa
e-time transformation is determined and applied to the governing equations;2. A PML 
omplex 
hange of variables is applied in the frequen
y domain;3. The time domain absorbing boundary 
ondition is derived by a 
onversion of the frequen
y domainequations.This pro
edure has been su

essfully applied to the derivation of PML for the linearized Euler equations in[18, 19℄.In this paper, further appli
ation of the PML te
hnique to the nonlinear Euler and Navier-Stokes equations is
onsidered. Derivation of the absorbing equation is pro
eeded by applying the three steps outlined above tothe nonlinear Navier-Stokes equations, whi
h in
lude the Euler equations as a spe
ial 
ase. However, unlikethe PML for linear equations, the 
onversion to time domain equations does not result in formally perfe
tlymat
hed equations due to the nonlinearity in �ux ve
tors. Nonetheless, the proposed absorbing equationsare still e�e
tive for nonlinear problem as we will show in numeri
al examples. Furthermore, the nonlinearPML redu
es automati
ally to the linear PML upon linearization. The 
urrent formulation o�ers a naturalextension of the linear PML to nonlinear equations. For 
onvenien
e of implementation in most existingCFD and CAA 
odes, all PML equations are formulated for the governing equations in the 
onservationform.To absorb the nonlinear disturban
es, a 
on
ept of �pseudo mean �ow� is introdu
ed. This makes the PMLpossible without knowing the exa
t mean �ow at the start of the 
omputation. Equations are derived thatabsorb the di�eren
e between the pseudo mean �ow and the nonlinear disturban
es, in
luding the vorti
ity,a
ousti
, and entropy waves. One limitation of the 
urrent paper is that the pseudo mean �ow is assumedto be aligned with one of three spatial axes. Re
ent e�orts and new developments on extending the PMLfor oblique mean �ows 
an be found in [11, 2, 24℄.The rest of the paper is organized as follows. In the next se
tion, the PML absorbing boundary 
ondition isderived for the nonlinear Navier-Stokes equations. Further dis
ussions on the formulation are given in se
tion2



3. In se
tion 4, numeri
al examples that validate the e�e
tiveness and stability of the PML for nonlinearEuler and Navier-Stokes equations will be presented. They in
lude the absorption of a 
onve
tive isentropi
vortex in 
ompressible �ows, shear �ow vorti
es and vorti
es shedded from �ow over a 
ir
ular 
ylinder,
al
ulation of �at plate boundary layers, and propagation of a 3D a
ousti
 pulse. Con
luding remarks aregiven in se
tion 5.2 Derivation of PML equations for nonlinear Navier-Stokes equa-tions2.1 Governing equationsWe 
onsider the three-dimensional 
ompressible nonlinear Navier-Stokes equation written in the 
onservationform as
∂u

∂t
+

∂F1

∂x
+
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+
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with vis
ous stress terms written as
τxx =

M

Re

[

2µ
∂u

∂x
− λ(
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∂v
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∂w

∂z
)

]

, τyy =
M

Re
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, (6)
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∂y
) (8)and heat transfer terms

qx = −
M

(γ − 1)PrRe
µ
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∂x
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(γ − 1)PrRe
µ

∂T

∂y
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(γ − 1)PrRe
µ

∂T

∂z
(9)where µ is nondimensionalized vis
osity whi
h, unless noted otherwise, will be assumed to be a fun
tion oftemperature T by the Sutherland's formula[25℄. The equation of state and the energy fun
tion are

γp = ρT, e =
u2 + v2 + w2

2
+

p

(γ − 1)ρ
(10)In the above, u, v and w are the velo
ity 
omponents in x, y and z dire
tions respe
tively, p is the pressure,

ρ is the density, and T is the temperature. The velo
ity is non-dimensionalized by a referen
e speed of sound
a∞, density by ρ∞ and pressure by ρ∞a2

∞. Vis
osity µ is nondimensionalized by a referen
e value µ∞ and
Re = ρ∞U∞L∞/µ∞ is the Reynolds number based on a 
hara
teristi
 �ow velo
ity U∞ and length s
ale
L∞. M is the Ma
h number U∞/a∞. Pr is the Prandtl number and γ is the spe
i�
 heats ratio.To fa
ilitate the derivation of PML equations for (1), we denote G(u) as a ve
tor that 
ontains all variableswhose spatial derivative is present in formulating the �ux ve
tors, i.e.,
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(11)and introdu
e new variables e1, e2 and e3 as
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(12)We then re-de�ne the �ux ve
tors of (3)-(5) as expli
it fun
tions of u, e1, e2 and e3 and re-write (1) as
∂u

∂t
+

∂F1(u, e1, e2, e3)

∂x
+

∂F2(u, e1, e2, e3)

∂y
+

∂F3(u, e1, e2, e3)

∂z
= 0 (13)Equations (12) and (13) form a system of partial di�erential equations for unknowns u, e1, e2 and e3. Thissystem is only a re-writing of the original Navier-Stokes equation (1) and thus is equivalent to (1). We note4
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Figure 1: S
hemati
s of physi
al and PML domains.that now the �ux ve
tors F1(u, e1, e2, e3), F2(u, e1, e2, e3) and F3(u, e1, e2, e3) do not expli
itly involvespatial derivatives of u. In what follows, we shall derive the PML equations for (12) and (13).2.2 Pseudo mean �owAs shown in Figure 1, at non-re�e
ting boundaries, we introdu
e PML domains to absorb out-going distur-ban
es. We wish to formulate the equations to be used in the added zones so that out-going waves 
an beexponentially redu
ed on
e they enter the added zones while 
ausing as little numeri
al re�e
tion as possible.By redu
ing the disturban
es to a negligible level toward the end of the PML domain, the use of PML makesa non-re�e
ting boundary 
ondition at the outer boundaries of the whole 
omputational domain unne
essary.In nonlinear simulations, a solution u of (1) 
an be regarded as 
onsisting of a time-independent mean stateand a time-dependent �u
tuation that has to be governed by the nonlinear equations. However, it may notbe most e�
ient to absorb the total variable u and to redu
e it to nearly zero inside the PML domain.On the other hand, the exa
t mean state is usually not known at the start of the 
omputation. The PMLformulation presented here will not require the exa
t mean �ow. Instead, as in [17℄, we shall partition thesolution inside the PML domain into two parts as follows,
u = ūp + u′, e1 = ē1 + e′1, e2 = ē2 + e′2, e3 = ē3 + e′3 (14)with

ē1 =
∂G(ūp)

∂x
, ē2 =

∂G(ūp)

∂y
, ē3 =

∂G(ūp)

∂z
(15)where ūp denotes a pres
ribed time-independent �pseudo mean �ow�[17, 20℄. We only require that the 
hosen

ūp satisfy the steady-state equation: 5
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hemati
s of wave absorption in the PML domain.
∂F1(ūp, ē1, ē2, ē3)

∂x
+

∂F2(ūp, ē1, ē2, ē3)

∂y
+

∂F3(ūp, ē1, ē2, ē3)

∂z
= 0 (16)It is important to emphasize that this pseudo mean �ow is not required to be the exa
t mean �ow at thenon-re�e
ting boundary. The use of ūp is to make the PML domain more e�
ient sin
e we now need onlyto absorb u′, e′1, e′2 and e′3, namely, the di�eren
es between total �ow variables and that of a pres
ribedpseudo mean �ow, as illustrated in Figure 2. In pra
ti
al 
omputations, any known steady state solutionthat resembles the a
tual �ow 
ould serve as a pseudo mean �ow. It also follows that the 
hoi
e for ūp isnot unique. Of 
ourse, the 
loser the pseudo mean �ow is to the a
tual mean �ow the better.By (12)-(16), the governing equations for u′, e′1, e′2 and e′3 are

∂u′

∂t
+

∂[F1 − F̄1]

∂x
+

∂[F2 − F̄2]

∂y
+

∂[F3 − F̄3]

∂z
= 0 (17)

e′1 =
∂[G− Ḡ]

∂x
, e′2 =

∂[G− Ḡ]

∂y
, e′3 =

∂[G− Ḡ]

∂z
(18)For brevity, the arguments for the �ux ve
tors F1, F2, F3 and ve
tor G are not shown expli
itly in (17)-(18),and an over-bar indi
ates that the ve
tor is 
omputed using the pseudo mean �ow. We shall now derive thePML equations that absorb u′, e′1, e′2 and e′3.2.3 Formulation of PML equationsWe will assume in the present paper that the pseudo mean �ow is in the dire
tion of x-axis. By followingthe three-step method for the derivation of PML des
ribed in Introdu
tion, we �rst apply a spa
e-timetransformation of the form

t̄ = t + βx (19)6



to equations (17)-(18) where β is a parameter dependent on the pseudo mean �ow pro�le, as suggested in[14℄. This transformation is ne
essary to maintain linear stability of the PML equations. More dis
ussionson parameter β and the pseudo mean �ow will be given in the next se
tion. Transformation (19) gives thefollowing 
hanges in partial derivatives, with respe
t to t and x,
∂

∂t
→

∂

∂t̄
,

∂

∂x
→

∂

∂x
+ β

∂

∂t̄
(20)and (17)-(18) now be
ome

∂u′

∂t̄
+ β

∂[F1 − F̄1]

∂t̄
+

∂[F1 − F̄1]

∂x
+

∂[F2 − F̄2]

∂y
+

∂[F3 − F̄3]

∂z
= 0 (21)

e′1 = β
∂[G − Ḡ]

∂t̄
+

∂[G− Ḡ]

∂x
, e′2 =

∂[G− Ḡ]

∂y
, e′3 =

∂[G − Ḡ]

∂z
(22)In frequen
y domain, the above is

(−iω̄ũ′) + β(−iω̄) ˜[F1 − F̄1] +
∂ ˜[F1 − F̄1]

∂x
+

∂ ˜[F2 − F̄2]

∂y
+

∂ ˜[F3 − F̄3]

∂z
= 0 (23)

ẽ′1 = β(−iω̄) ˜[G− Ḡ] +
∂ ˜[G− Ḡ]

∂x
, ẽ′2 =

∂ ˜[G− Ḡ]

∂y
, ẽ′3 =

∂ ˜[G− Ḡ]

∂z
(24)where a tilde indi
ates the time Fourier transformed variable.In the se
ond step, we apply the PML 
omplex 
hange of variables to (23) and (24), whi
h amounts to amodi�
ation of spatial derivatives as

∂

∂x
→

1

1 + iσx

ω̄

∂

∂x
,

∂

∂y
→

1

1 + i
σy

ω̄

∂

∂y
,

∂

∂z
→

1

1 + iσz

ω̄

∂

∂zwhere σx, σy and σz are absorption 
oe�
ients, positive, and 
ould be fun
tions of x, y and z respe
tively[6,7, 19℄. Appli
ation of the PML 
omplex 
hange of variables yields the following:
(−iω̄ũ′) + β(−iω̄) ˜[F1 − F̄1] +

1

1 + iσx

ω̄

∂ ˜[F1 − F1]

∂x
+

1

1 +
iσy

ω̄

∂ ˜[F2 − F̄2]

∂y
+

1

1 + iσz

ω̄

∂ ˜[F3 − F̄3]

∂z
= 0 (25)

ẽ′1 = β(−iω̄) ˜[G − Ḡ] +
1

1 + iσx

ω̄

∂ ˜[G− Ḡ]

∂x
, ẽ′2 =

1

1 +
iσy

ω̄

∂ ˜[G− Ḡ]

∂y
, ẽ′3 =

1

1 + iσz

ω̄

∂ ˜[G − Ḡ]

∂z
(26)In the third step, we try to re-write (25)-(26) in the time domain to obtain the absorbing boundary 
ondition.This 
an be done in many di�erent ways[20℄. In order to keep the number of auxiliary variables small for thegeneral three-dimensional equations 
onsidered here, we will use a �split� approa
h in the derivation below.Let 7



u′ = q1 + q2 + q3 (27)where q1, q2 and q3 are auxiliary variables that satisfy the following equations split from (25),
−iω̄q̃1 + β(−iω̄) ˜[F1 − F̄1] +

1

1 + iσx

ω̄

∂ ˜[F1 − F1]

∂x
= 0 (28)

−iω̄q̃2 +
1

1 +
iσy

ω̄

∂ ˜[F2 − F̄2]

∂y
= 0, −iω̄q̃3 +

1

1 + iσz

ω̄

∂ ˜[F3 − F̄3]

∂z
= 0 (29)We note that by adding the three equations in (28)-(29), we will re
over (25). The auxiliary variables q1,

q2 and q3 are introdu
ed only to fa
ilitate the 
onversion of equation (25) into one in the time domain.By multiplying (1 + iσx

ω̄ ), (1 +
iσy

ω̄ ) and (1 + iσz

ω̄ ) to the equations for q̃1 and ẽ′1, q̃2 and ẽ′2, and q̃3 and ẽ′3,respe
tively, we get the following set of equations,
(−iω̄ + σx)q̃1 + β(−iω̄ + σx) ˜[F1 − F̄1] +

∂ ˜[F1 − F1]

∂x
= 0 (30)

(−iω̄ + σy)q̃2 +
∂ ˜[F2 − F̄2]

∂y
= 0, (−iω̄ + σz)q̃3 +

∂ ˜[F3 − F̄3]

∂z
= 0 (31)

(1 +
iσx

ω̄
)ẽ′1 = β(−iω̄ + σx) ˜[G − Ḡ] +

∂ ˜[G− Ḡ]

∂x
(32)

(1 +
iσy

ω̄
)e′2 =

∂ ˜[G − Ḡ]

∂y
, (1 +

iσz

ω̄
)e′3 =

∂ ˜[G − Ḡ]

∂z
(33)We next write the time domain equations for the above as

∂q1

∂t̄
+ σxq1 + βσx[F1 − F̄1] + β

∂[F1 − F1]

∂t̄
+

∂[F1 − F1]

∂x
= 0 (34)

∂q2

∂t̄
+ σyq2 +

∂[F2 − F̄2]

∂y
= 0,

∂q3

∂t̄
+ σzq3 +

∂[F3 − F̄3]

∂z
= 0 (35)

e′1 + σxr1 = βσx[G − Ḡ] + β
∂[G− Ḡ]

∂t̄
+

∂[G− Ḡ]

∂x
(36)

e′2 + σyr2 =
∂[G − Ḡ]

∂y
, e′3 + σzr3 =

∂[G − Ḡ]

∂z
(37)where a se
ond set of auxiliary variables r1, r2, r3 are de�ned as8



∂ri

∂t̄
= e′i, i = 1, 2, 3Finally, by writing ba
k in the original spa
e and time variables, we obtain the time-domain absorbingboundary equations as follows,

∂u

∂t
+

∂[F1 − F̄1]

∂x
+

∂[F2 − F̄2]

∂y
+

∂[F3 − F̄3]

∂z
+ σxq1 + σyq2 + σzqz + βσx[F1 − F̄1] = 0 (38)

∂q1

∂t
+ σxq1 +

∂[F1 − F̄1]

∂x
+ βσx[F1 − F̄1] = 0 (39)

∂q2

∂t
+ σyq2 +

∂[F2 − F̄2]

∂y
= 0 (40)

∂q3

∂t
+ σzq3 +

∂[F3 − F̄3]

∂z
= 0 (41)

∂r1

∂t
+ σxr1 =

∂[G− Ḡ]

∂x
+ βσx[G− Ḡ] (42)

∂r2

∂t
+ σyr2 =

∂[G − Ḡ]

∂y
(43)

∂r3

∂t
+ σzr3 =

∂[G − Ḡ]

∂z
(44)where Fi and G are fun
tions of u and ei, i = 1, 2, 3, as de�ned by (3)-(5) and (11), and ei are 
omputed by

e1 =
∂G

∂x
− σxr1 + βσx[G− Ḡ] (45)

e2 =
∂G

∂y
− σyr2 (46)

e3 =
∂G

∂z
− σzr3 (47)Equations (38)-(44) are the governing equations to be solved in the PML domain. We should point out that,when the �ux ve
tors are nonlinear fun
tions, unlike in linear 
ases, the time domain equations (34)-(37)are no longer the exa
t inverse Fourier transformation of the frequen
y domain equations (30)-(33). As aresult, equations (38)-(44) are not deemed formally perfe
tly mat
hed to the nonlinear governing equation(1), although numeri
al results are still quite satisfa
tory as we will demonstrate later in the paper.We note that equation (38) is equivalent to the sum of equations (39)-(41) and thus is not formally anindependent equation, be
ause the following relation holds true in the PML domain,9
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Figure 3: S
hemati
s of physi
al and PML domains. The sub-domains where the absorption 
oe�
ients arenon-zero are indi
ated by arrows. Left: a se
tion of 3D domain; Right: a 2D domain layout.
u = ūp + q1 + q2 + q3 (48)However, equation (38) 
an often be implemented easily as it is written in the original physi
al variables.The use of (38) will also redu
e the requirement on storage, be
ause an inspe
tion of equations (38)-(44)shows that not all the auxiliary variables are needed everywhere inside the PML domain. The auxiliaryvariables are only needed where the 
orresponding absorption 
oe�
ient is non-zero. For instan
e, q1 and

r1 are only ne
essary at x-layers where σx is not zero; similarly, q2, r2 and q3, r3 are only ne
essary where
σy and σz are respe
tively not zero. Sin
e absorption 
oe�
ients σx, σy and σz are fun
tions of x, y or z,respe
tively, regions of non-zero absorption 
oe�
ients, as well as the required auxiliary variables, are asshown in Figure 3 for a se
tion of 
omputational domain with PML.Therefore, the equations to be solved in a PML domain will be (38), for u, plus additional equations from(39)-(44) for the auxiliary variables qi and ri wherever the 
orresponding absorption 
oe�
ient is non-zero.At the 
orner layer where all the absorption 
oe�
ients are non-zero, the equation for one of the q variablesmay be substituted by relation (48) if so desired.We also note that, the three terms involving spatial derivatives of F̄1, F̄2 and F̄3 
an obviously be droppedfrom (38) if the pseudo mean �ow satis�es the steady state equation (16). However, the equations as writtenin (38)-(43) would still be self-
onsistent in the limit of u → ūp even if the pseudo mean �ow ūp, ē1, ē2 and
ē3 do not exa
tly satisfy (16). That is, u = ūp with qi = ri = 0 will always satisfy the equations writtenas (38)-(43). This 
ould be helpful for problems where only a pseudo mean �ow that approximately satis�esthe steady state equation (16) would be available. For su
h 
ases, in
lusion of the �ux expressions from thepseudo mean �ow as written in (38) 
an prove to be useful.The equations given above, (38)-(44), in
lude the PML for the invis
id nonlinear Euler equations as a spe
ial
ase, by negle
ting the vis
ous terms. Ex
lusion of vis
ous e�e
ts leads to the elimination of terms involving10



e1, e2 and e3 and, 
onsequently, the ne
essity for auxiliary variables r1, r2 and r3. Thus, the equations tobe solved in the absorbing zone for invis
id problems will be (38)-(41).3 Pseudo mean �ow and value for βIn our derivation above, the only requirement on the pseudo mean �ow ūp is that it would satisfy thesteady state equation (16). As pointed out earlier, the exa
t mean �ow is often unknown at the start ofa 
omputation. A suitable known solution to the steady equation (16) that resembles the a
tual �ow 
anbe a viable pseudo mean �ow in the formulation of the PML equation. In this sense, the 
hoi
e of pseudomean �ow is not unique. For many pra
ti
al problems, su
h a pseudo mean �ow would be relatively easy to�nd[17, 21℄. For instan
e, a parallel �ow will satisfy the steady state Euler equation and thus 
an be usedas a pseudo mean �ow for the appropriate nonlinear Euler simulations. For example, in primitive variables,
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(49)will satisfy (16) without the vis
ous terms, where ρ̄p(y) and ūp(y) 
an be freely adjusted to resemble the�ow at the non-re�e
ting boundary. Likewise, a 
onstant uniform mean �ow also satis�es the steady stateNavier-Stokes equations.On
e the pseudo mean �ow is 
hosen, the parameter β in the PML equations is to be determined as des
ribedin [19℄. The purpose of the spa
e-time transformation given in (19) is to ensure linear stability of the PMLequations. It is used to 
orre
t the in
onsisten
y in the phase and group velo
ities of the a
ousti
 wavemodes in the derivation pro
ess.For invis
id problems, sin
e the linearization of PML equations derived in this paper is equivalent to thelinearized Euler equation given in [19℄ in frequen
y domain, the value for β 
an be found in the same wayas that des
ribed in [19℄ based on the pseudo mean �ow employed. In general, a study on the dispersionrelation D(ω, k) = 0 for the linear waves supported by the pseudo mean �ow would be required to determinethe value of β. For the spe
ial 
ase where the density of the pseudo mean �ow is 
onstant, i.e., ρ̄p(y) = 1,we may use a simple empiri
al formula given in [19℄,
β =

Ūm

1 − Ū2
m

, Ūm =
1

b − a

∫ b

a

ūp(y)dy (50)where the 
omputational domain for y is [a, b].For vis
ous problems, it has been found that the presen
e of vis
osity will not substantially a�e
t the valuefor β, sin
e the in
onsisten
y in the phase and group velo
ities o

urs only for the a
ousti
 waves for aparallel �ow in the dire
tion of x, to whi
h vis
ous e�e
ts are usually small. As an example, we 
onsider apseudo mean �ow given by
ūp(y) =

1

2
(u1 + u2) +

1

2
(u1 − u2) tanh(

y

0.2
), v̄p = 0, ρ̄p(y) = 1, p̄p =

1

γ11



with
u1 = 0.8, u2 = 0.2, and − 1 ≤ y ≤ 1A numeri
al study of the dispersion relations of linear waves gives the following values for β:Invis
id: β ≈ 0.63Re = 5000 : β ≈ 0.63Re = 500 : β ≈ 0.63Re = 50 : β ≈ 0.64while the empiri
al formula (50) gives β ≈ Um/(1 − U2

m) = 2/3 ≈ 0.67 by using Um = 1/2, the average of
ūp.4 Numeri
al examplesIn this se
tion, we present numeri
al examples of using the absorbing boundary 
onditions derived in thepresent study for the nonlinear Euler and Navier-Stokes equations, based on a vis
ous 
omputational aeroa-
ousti
 approa
h[23℄[22℄. The dispersion-relation-preserving s
heme[26℄ is applied for spatial dis
retizationand the optimized 5- and 6-stage alternating low-dissipation and low-dispersion Runge-Kutta s
heme[15℄ isused for time integration.4.1 Isentropi
 vortex using nonlinear Euler equationsWe �rst present a numeri
al example that veri�es the e�e
tiveness of the PML for the nonlinear Eulerequation. The two-dimensional nonlinear Euler equations support an adve
tive solution of the form
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
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




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(51)where r =
√

(x − U0t)2 + (y − V0t)2. For any given ur(r) and ρr(r), the pressure pr(r) is found by
d

dr
pr(r) = ρr(r)

u2
r(r)

r
(52)Equation (51) gives a solution that adve
ts with 
onstant velo
ity (U0, V0).For our numeri
al tests, we 
onsider a velo
ity distribution of the form

ur(r) =
U ′

max

b
re

1

2
(1− r2

b2
) (53)12



where U ′
max is the maximum velo
ity at r = b. For isentropi
 �ow, we assume

pr =
1

γ
ργ

r (54)and, by integrating (52), we get the following density and pressure distributions,
ρr(r) =

(

1 −
1

2
(γ − 1)U ′2

maxe1− r2

b2

)1/(γ−1) (55)
pr(r) =

1

γ

(

1 −
1

2
(γ − 1)U ′2

maxe1− r2

b2

)γ/(γ−1) (56)The v-velo
ity 
ontours of a numeri
al solution is shown in Figure 4. The initial 
ondition is that given in(51) with (U0, V0) = (0.5, 0), U ′
max = 0.5U0 = 0.25, and b = 0.2. The nonlinear Euler equation is solvedby a �nite di�eren
e s
heme in a 
omputational domain of [−1.2, 1.2] × [−1.2, 1.2] with a uniform grid of

∆x = ∆y = 0.02, in
luding the surrounding PML domain of 10 grid points in width. In parti
ular, the PMLabsorption 
oe�
ient is taken to be
σx = σmax

∣

∣

∣

∣

x − x0

D

∣

∣

∣

∣

αwith σmax = 20, α = 4 and x0 is the lo
ation of interfa
e between PML and physi
al domains. A similarmodel for σy is used. A grid stret
hing in the PML domain is also used to in
rease the e�
ien
y of theabsorbing zone[28℄. The stret
hing fa
tor is
α(x) = 1 + 2

∣

∣

∣

∣

x − x0

D

∣

∣

∣

∣

2as noted in [19℄. The pseudo mean �ow is taken to be the same as the uniform ba
kground �ow withparameter β = U0/(1 − U2
0 ).Figure 4 shows the v-velo
ity 
ontours at time t = 0, 1.5, 2.5 and 3.5 respe
tively, at levels from ±0.02 to

±0.4. Absorption of the vortex by PML at the out�ow boundary is 
learly demonstrated. Figure 5 showsthe v-velo
ity as a fun
tion of x along y = 0, as the vortex exits the 
omputational domain. Also plotted indashed lines are the exa
t solution. The numeri
al solution mat
hes the exa
t solution in the Euler domainwhile de
ays exponentially in the PML domain.To further assess the magnitude of re�e
tion error, Figure 6 plots the maximum di�eren
e between thenumeri
al solution and a referen
e solution obtained using a larger 
omputational domain, along a verti
alline near the out�ow boundary, as a fun
tion of time. The re�e
tion errors are indeed quite small andde
rease with an in
rease in the width of the PML domain employed. Figure 7 shows the trend in theredu
tion of the maximum re�e
tion error, for the v-velo
ity 
omponent as well as the pressure, as the PMLwidth in
reases.Figure 8 shows the maximum re�e
tion error in v-velo
ity 
omponent relative to the maximum velo
ity ofthe vortex U ′
max along x = 0.9 near the out�ow boundary for various strengths of the vortex. Althoughre�e
tion error generally in
reases with the strength of the vortex, a relative error of less than 1% is a
hieved13



for all 
ases with PML width of 20 grid points. Figure 9 plots the maximum re�e
tion error, for the v-velo
ity
omponent and the pressure, as a fun
tion of the vortex strength U ′
max/U0 in a log s
ale, showing the trendof in
rease in re�e
tion error with the in
rease in the nonlinearity.4.2 Isentropi
 vortex with nonlinear Navier-Stokes equationsThe example in the previous se
tion is repeated using the nonlinear Navier-Stokes equations. The 
om-putational domain and initial 
ondition are similar but vis
ous terms in the governing equations are nowin
luded. The numeri
al solution is 
ompared with a large domain solution to obtain a measure of there�e
tion error. Figure 10 shows the re�e
tion error for the v-velo
ity 
omponent relative to the maximumperturbation velo
ity U ′

max of the initial vortex, at various Reynolds numbers whi
h is based on the velo
ity
U0. Figure 11 shows the re�e
tion error for the pressure relative to the maximum pressure perturbation
aused by the vortex, P ′

max, whi
h is de�ned by |pr(0) − pr(∞)| ≈ 1
2U ′2

max as given in (56). It is seen thatgenerally re�e
tion errors shown in Figures 10 and 11 de
rease with the Reynolds number. This redu
tion inre�e
tion error is partly due to a weakening of vortex by vis
ous di�usion e�e
t when it rea
hes the out�owboundary from its initial position (x, y) = (0, 0). Figure 12 shows the trend of redu
tion of the maximumre�e
tion error as a fun
tion of the Reynolds number.Figure 13 shows the e�e
t of the strength of vortex on the re�e
tion errors in the Navier-Stokes simulation.In this example, the ba
kground uniform �ow is taken to be U0 = 0.2 while the maximum velo
ity of thevortex perturbation is in
reased from U ′
max = 0.1U0 up to 2.0U0, a very high nonlinearity. It is observed thatre�e
tion errors in
rease with the strength of the vortex. This is not unexpe
ted be
ause the nonlinearityin
reases with U ′

max. In parti
ular, we note that when U ′
max is greater than U0, part of the vortex regiona
tually have a total velo
ity in dire
tion opposite to the ba
kground mean �ow.Figure 14 shows the e�e
ts of the mean �ow Ma
h number on the e�e
tiveness of the PML domain. Theba
kground �ow Ma
h number U0 is varied from 0.2 to 0.8 while the strength of vortex U ′

max is kept as 0.5U0in ea
h 
ase. The maximum re�e
tion errors are found to be of similar magnitude. This means that thee�e
tiveness of the absorbing boundary 
ondition does not strongly depend on the mean �ow Ma
h number.4.3 Vis
ous �ow over a 
ir
ular 
ylinderIn this example, we show the absorption of nonlinear vorti
es shedded by a vis
ous �ow over a 
ir
ular
ylinder. The uniform in
oming �ow has a Ma
h number M = U∞/a∞ = 0.2. Here U∞ and a∞ denotethe velo
ity of the uniform �ow and the speed of sound respe
tively. The velo
ity and the length arenondimensionalized by a∞ and the diameter of the 
ylinder d, respe
tively. The Reynolds number is de�nedas Re = U∞d/ν∞, where ν∞ is the referen
e kinemati
 vis
osity. For the present 
al
ulation, Re = 150 andthe Prandtl number Pr = 0.75.Figure 15 shows the multi-domain 
omputational mesh layout with overset grids, for (x, y) ∈ [−7, 11]×[−7, 7].The 
ylinder is lo
ated at (x, y) = (0, 0) with a radius of 0.5 and all PML domains have a width of 20 gridpoints. The main 
omputational domain is divided into two regions. An O-grid system with non-uniformmeshes is adopted around the 
ylinder, 
overing a region in polar 
oordinates of 0.5 ≤ r ≤ 1.5, 0 ≤ θ ≤ 2π,with a non-uniform grid spa
ing of ∆rmin = 0.005, ∆rmax = 0.02, and ∆θ = 1.2o. Another region is14



Figure 4: v-velo
ity 
ontour levels from ±0.02 to ±0.24.
15



Figure 5: v-velo
ity pro�le along y = 0 at progressive time frames. Solid line: numeri
al solution; dashedline: exa
t solution. Verti
al dashed lines indi
ate the Euler/PML interfa
e.
16
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Figure 6: Maximum re�e
tion error (v-velo
ity 
omponent) along x = 0.9 near the out�ow boundary. PMLwidth is as indi
ated.
omposed of multi-blo
k uniform meshes with ∆x = ∆y = ∆. In ea
h blo
k, the value of ∆ is spe
i�ed inFigure 15. A high-order Lagrange interpolation te
hnique is utilized for the overset grids.Cal
ulation is initiated with the uniform �ow for the entire 
omputational domain. A natural 
hoi
e for thepseudo mean �ow is the in
oming uniform �ow at all four PML domains, namely,
ūp = M, v̄p = 0, ρ̄p = 1, p̄p = 1/γ (57)with β = M/(1−M2). Figure 16 shows the instantaneous pressure 
ontours at t = 5, 8, 10 and 450, 
al
ulatedby the dire
t numeri
al simulation, solving (1) in the physi
al domain and PML equations (38)-(44) in theabsorbing zones. The initial transient pressure wave exits the 
omputational domain without noti
eablere�e
tion. After t = 400, vortex shedding is observed. Figure 17 shows the vorti
ity 
ontours over a periodof vortex shedding. The absorption of the nonlinear vorti
es by the PML zone at the out�ow is 
learly seen.In Figure 18, we show the v-velo
ity and pressure at a point (x, y) = (9, 0) on the out�ow boundary of thephysi
al domain as a fun
tion of time, from t = 0 to t = 700. Also plotted, in symbols, is the result of areferen
e solution 
omputed using a larger 
omputational domain. The referen
e solution is obtained usinga 
omputational domain of [−7, 30]× [−7, 7]. The dis
repan
y seen in the pressure around time t=300 is dueto the trun
ation of the initial wake �ow by the smaller 
omputational domain before the periodi
 vortexshedding is started. Good agreement in the time history of the periodi
ally shed vorti
es is observed. Figures17 and 18 indi
ate that the PML domain at the out�ow boundary 
an e�e
tively absorb these vorti
es asthey 
onve
t out of the 
omputational domain. 17
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Figure 7: Maximum re�e
tion error, for the v-velo
ity 
omponent and pressure, as a fun
tion of the PMLwidth D.4.4 Shear layer roll-up vorti
esIn this example, we simulate a mixing layer with roll-up vorti
es indu
ed by the Kelvin-Helmholtz instability.The PML equations developed in the present paper are applied as the absorbing boundary 
ondition. TheNavier-Stokes equation (1) is solved in a 
omputational domain of [−1, 9] × [−1, 1] by a �nite di�eren
es
heme, with ∆x = 0.05 and ∆y = 0.01. The Reynolds number for this 
omputation is 10000. PML domainwith a width of 10 grid points are added at four sides of the 
omputational domain to absorb all out-goingwaves. The initial 
ondition is
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(58)where
Ū(y) =

1

2

[

(U1 + U2) + (U1 − U2) tanh

(

2y

δ

)]

, ρ̄(y) =
1

T̄ (y)
(59)with

T̄ (y) = T1
Ū − U2

U1 − U2
+ T2

U1 − Ū

U1 − U2
+

γ − 1

2
(U1 − Ū)(Ū − U2) (60)where the mean temperature T̄ (y) is determined by the Cro

o relation for 
ompressible �ows. The param-eters are 18



t

R
ef

le
ct

io
n

er
ro

rr
el

at
iv

e
to

U
’ m

ax

0 2 4 6 8 10
10-5

10-4

10-3

10-2

10-1

U ’
max=0.1U0

U ’
max=0.2U0

U ’
max=0.5U0

U ’
max=0.8U0

Figure 8: Maximum relative re�e
tion error (v-velo
ity 
omponent) along x = 0.9 near the out�ow boundary.PML width D = 20∆x.
U1 = 0.8, U2 = 0.2, δ = 0.4, T1 = 1, T2 = 0.8, γ = 1.4.A sour
e term is added to the energy equation in (1) to indu
e the instability wave. The sour
e term is ofthe form

s(x, y, t) = 5 sin(ωt)e−(ln 2)[(x−x0)
2+(y−y0)

2]/r2

0where ω = π/2, (x0, y0) = (−0.5, 0) and r0 = 0.03.The added sour
e term ex
ites the Kelvin-Helmholtz instability wave whi
h would grow exponentially anddevelop into roll-up vorti
es. Figure 19 gives a time sequen
e of vorti
ity 
ontours showing the absorptionof out-going vorti
ities at the out�ow boundary. Figure 20 plots the time history of v-velo
ity and pressureat a point 
lose to the out�ow boundary. Also plotted in symbols are the 
orresponding time histories froma large domain 
al
ulation whose solution is not a�e
ted by the boundary. Very good agreement is found.For the 
al
ulation shown in Figure 19, the pseudo mean �ow ūp used in the PML equation is the sameparallel �ow as that of the initial 
ondition (58), with a value of β = 1/1.4 a

ording to the linear waveanalysis given in [19℄. Cal
ulations have also been made using di�erent pseudo mean �ow pro�les to studythe e�e
ts of pseudo mean �ow 
hoi
es on the a

ura
y of the absorbing boundary 
ondition. In parti
ular,three di�erent pseudo mean �ows have been applied at the out�ow boundary where the thi
kness parameter19
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Figure 15: Mesh and 
omputational domain (global).for the u-velo
ity pro�le is taken to be δ = 0.4, 0.6 and 0.8 respe
tively. Figure 21 shows the instantaneousu-velo
ity 
ontours for the three 
ases. The velo
ity 
ontours inside the physi
al domain are nearly identi
alin the three 
ases. This indi
ates that the PML equation is relatively a

ommodating in the 
hoi
e of pseudomean �ow as long as it is reasonably 
lose to the a
tual �ow.4.5 Flat-plate boundary layerIn this example, we apply the PML absorbing boundary 
ondition to the 
omputation of steady boundarylayer pro�le formed by a uniform �ow over a �at plate. A s
hemati
 of the 
omputational domain is shownin Figure 22. The in
oming �ow is uniform in the dire
tion of x-axis with Ma
h number M = 0.1. TheReynolds number is Re = 10000 and the Prandtl number Pr = 0.708.PML domains are used at all the three non-re�e
ting boundaries. For the left in�ow and top radiationboundaries, the pseudo mean �ow is the same as the in
oming uniform �ow. For the PML at the out�owboundary, in order to adjust for the no-slip boundary 
ondition at the wall, the pseudo mean �ow is takento be the following,
ūp =

{

M y > δ

M sin(πy/2δ) 0 ≤ y ≤ δ
(61)

v̄p = 0, p̄p =
1

γ
, ρ̄p =

1 + 0.5(γ − 1)ū2
p

1 + 0.5(γ − 1)M2
(62)24
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Figure 16: Pressure 
ontour plots at time t = 5, 8, 10 and 450.
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Figure 17: Vorti
ity 
ontour plots over a period of vortex shedding, from left to right, top to bottom.26
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Figure 22: S
hemati
 of 
omputational domain for the boundary layer 
omputation.The thi
kness parameter δ in (61) is taken to be an estimated boundary layer thi
kness. For the presentReynolds number, δ = 0.053 is used in the 
omputation. The value of β is 0.0911 obtained by the formulagiven in (50).Numeri
al 
al
ulation starts with an initialization of all variables in the physi
al domain by the uniformin
oming �ow. After the transients are absorbed by the PML domains, the numeri
al solution approa
hes toa steady state. Figure 23 shows the time history of the residues of the steady state governing equations in thephysi
al domain. The L2 norm of of the residues eventually be
omes less than 10−8, an indi
ation that thenumeri
al solution is 
lose to the steady state solution. Figure 24 shows the 
ontours of the u-velo
ity in thewhole 
omputational domain and Figure 25 shows the normalized stream-wise velo
ity pro�le. Also plottedin Figure 25 are the theoreti
al Blasius similarity solution, with good agreement. We note that the PMLhas been primarily designed to absorb time-dependent out-going waves. The purpose of this example is todemonstrate the possibility of using the proposed absorbing boundary 
ondition for steady state appli
ations.Further studies on the e�
ien
y of PML for su
h 
al
ulations will be 
arried out in the future.We also note that the pseudo mean �ow (61) used in the out�ow PML domain does not exa
tly satisfy thesteady state Navier-Stokes equations. Nonetheless, as pointed out earlier in se
tion 3, the equations writtenin the form of (38)-(44) still appear to be e�e
tive. For steady state 
omputations, it is also possible toupdate the initial pseudo mean �ow with an improved mean �ow as the 
omputation pro
eeds.4.6 Three dimensional a
ousti
 pulseIn this example, the propagation of a three dimensional nonlinear a
ousti
 pulse in a uniform mean �owis simulated using the nonlinear Navier-Stokes equations. The PML absorbing boundary 
onditions areapplied in all non-re�e
ting boundaries, similar to the situation depi
ted in Figure 3. The initial 
onditionis as follows,
t = 0, ρ = 1 + P ′

maxe−(ln 2)(x2+y2+z2)/r2

0 , u = U0, v = 0, w = 0, p =
1

γ
+ P ′

maxe−(ln 2)(x2+y2+z2)/r2

0where γ = 1.4, r0 = 1.0, U0 = 0.5, P ′
max = 0.5, and the Reynolds number is 500. The 
omputational domainis [−12, 12]× [−12, 12]× [−12, 12], in
luding the PML domain, with a uniform mesh ∆x = ∆y = ∆z = 0.2.31
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The PML domains have a width of 10 grid points on all six sides and the maximum of PML absorption
oe�
ients σmax is 10. The pseudo mean �ow is set as the uniform ba
kground �ow with the value of
β = U0/(1 − U2

0 ).Figure 26 shows the pressure 
ontours at t = 8 and 12. The e�e
tiveness of the PML boundary 
ondition iswell demonstrated.Figure 27 shows the pressure at a point 
lose to the out�ow boundary, (x, y, z) = (9, 0, 0), as a fun
tion oftime. Very good agreement between the 
omputational and referen
e solutions is observed. Also shown arethe di�eren
es between the two solutions relative to the pulse strength P ′
max. For P ′

max = 0.1, 0.2 and 0.5,maximum relative re�e
tion errors are all around 10−4.5 Con
lusionsA time-domain absorbing boundary 
ondition for the nonlinear Euler and Navier-Stokes equations has beenpresented following a re
ently developed method for the linearized Euler equations. It o�ers a naturalextension of the linear PML equations to nonlinear equations of �uid dynami
s. By introdu
ing the 
on
eptof pseudo mean �ow, the e�
ien
y of PML is in
reased as it be
omes only ne
essary to absorb the di�eren
ebetween the total variable and a pres
ribed pseudo mean �ow. The pseudo mean �ow is not required to beexa
tly the same as the a
tual mean �ow when the latter is not available. Although the proposed equationsare not theoreti
ally perfe
tly mat
hed to the nonlinear governing equations as their linear 
ounter-parts are,numeri
al examples demonstrated their e�e
tiveness as absorbing boundary 
onditions in trun
ating openboundaries in nonlinear Euler and Navier-Stokes simulations.Sin
e the proposed nonlinear equations redu
e to the linear PML equations upon a linearization about thepseudo mean �ow, the linear stability property of the PML proposed here is expe
ted to be the same asthose given in [19℄. Although no numeri
al instability has been found in all our 
omputations, theoreti
alproperty on the nonlinear stability remains to be de�ned. The su

ess of PML for the fully nonlinear Eulerand Navier-Stokes equations reported in the present paper is a signi�
ant step toward a wider appli
ationof the PML te
hnique for 
omputational �uid dynami
s and 
omputational aeroa
ousti
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