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Abstract

Absorbing boundary conditions for the nonlinear Euler and Navier-Stokes equations in three space
dimensions are presented based on the Perfectly Matched Layer (PML) technique. The derivation of
equations follows a three-step method recently developed for the PML of linearized Euler equations. To
increase the efficiency of the PML, a pseudo mean flow is introduced in the formulation of absorption
equations. The proposed PML equations will absorb exponentially the difference between the nonlinear
fluctuation and the prescribed pseudo mean flow. With the nonlinearity in flux vectors, the proposed
nonlinear absorbing equations are not formally perfectly matched to the governing equations as their
linear counter-parts are. However, numerical examples show satisfactory results. Furthermore, the
nonlinear PML reduces automatically to the linear PML upon linearization about the pseudo mean flow.
The validity and efficiency of proposed equations as absorbing boundary conditions for nonlinear Euler

and Navier-Stokes equations are demonstrated by numerical examples.
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1 Introduction

Non-reflecting boundary condition is a critical component in the development of Computational Fluid Dy-
namics (CFD) and Computational Aeroacoustics (CAA) algorithms. It remains a significant challenge par-
ticularly for problems involving nonlinear governing equations. Perfectly Matched Layer (PML) is a tech-

nique of developing non-reflecting boundary conditions by constructing matched equations that can absorb



out-going waves at open computational boundaries. It was originally designed for computational electro-
magnetics[5, 6, 8, 28, 27, 7]. The significance of the PML technique lies in the fact that the absorbing zone
is theoretically reflectionless for multi-dimensional linear waves of any angle and frequency. In the past few
years, substantial progress has been made in the development of the PML technique for the Euler equations,
starting with the studies for cases with constant mean flows, followed by extensions to cases with non-uniform
mean flows[16, 17, 1, 18, 19, 4, 10, 9]. Most recently, applications of PML to linearized Navier-Stokes equa-
tions and nonlinear Navier-Stokes equations have been discussed in [12, 13]. A recent progress review is

given in [21]

Although the PML technique itself is relatively simple when it is viewed as a complex change of variables
in the frequency domain, it is important to note that, for the PML technique to yield stable absorbing
boundary conditions, the phase and group velocities of the physical waves supported by the governing
equations must be consistent and in the same direction[18, 9, 4]. For governing equations that support
physical waves of inconsistent phase and group velocities, such as the Euler or Navier-Stokes equations for
fluid dynamics, a space-time transformation may be required before applying the PML technique in the
derivation process[18, 19]. This space-time transformation corrects the inconsistency in the phase and group
velocities and thus permits the application of the PML technique. An emerging method of formulating PML

involves essentially three steps[21]:
1. A proper space-time transformation is determined and applied to the governing equations;
2. A PML complex change of variables is applied in the frequency domain;

3. The time domain absorbing boundary condition is derived by a conversion of the frequency domain

equations.

This procedure has been successfully applied to the derivation of PML for the linearized Euler equations in
[18, 19].

In this paper, further application of the PML technique to the nonlinear Euler and Navier-Stokes equations is
considered. Derivation of the absorbing equation is proceeded by applying the three steps outlined above to
the nonlinear Navier-Stokes equations, which include the Euler equations as a special case. However, unlike
the PML for linear equations, the conversion to time domain equations does not result in formally perfectly
matched equations due to the nonlinearity in flux vectors. Nonetheless, the proposed absorbing equations
are still effective for nonlinear problem as we will show in numerical examples. Furthermore, the nonlinear
PML reduces automatically to the linear PML upon linearization. The current formulation offers a natural
extension of the linear PML to nonlinear equations. For convenience of implementation in most existing
CFD and CAA codes, all PML equations are formulated for the governing equations in the conservation

form.

To absorb the nonlinear disturbances, a concept of “pseudo mean flow” is introduced. This makes the PML
possible without knowing the exact mean flow at the start of the computation. Equations are derived that
absorb the difference between the pseudo mean flow and the nonlinear disturbances, including the vorticity,
acoustic, and entropy waves. One limitation of the current paper is that the pseudo mean flow is assumed
to be aligned with one of three spatial axes. Recent efforts and new developments on extending the PML

for oblique mean flows can be found in [11, 2, 24].

The rest of the paper is organized as follows. In the next section, the PML absorbing boundary condition is

derived for the nonlinear Navier-Stokes equations. Further discussions on the formulation are given in section



3. In section 4, numerical examples that validate the effectiveness and stability of the PML for nonlinear

Euler and Navier-Stokes equations will be presented. They include the absorption of a convective isentropic

vortex in compressible flows, shear flow vortices and vortices shedded from flow over a circular cylinder,

calculation of flat plate boundary layers, and propagation of a 3D acoustic pulse. Concluding remarks are

given in section 5.

2 Derivation of PML equations for nonlinear Navier-Stokes equa-

tions

2.1 Governing equations

We consider the three-dimensional compressible nonlinear Navier-Stokes equation written in the conservation

form as
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with viscous stress terms written as
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where p is nondimensionalized viscosity which, unless noted otherwise, will be assumed to be a function of
temperature T by the Sutherland’s formula[25]. The equation of state and the energy function are
2 2 2
u® + v +w
=0T, e= +—2 (10)
2 (v="1p

In the above, u, v and w are the velocity components in z, y and z directions respectively, p is the pressure,

p is the density, and T is the temperature. The velocity is non-dimensionalized by a reference speed of sound
oo, density by pso and pressure by psoa?,. Viscosity p is nondimensionalized by a reference value jio, and
Re = pooUsoLoo/lioo 1s the Reynolds number based on a characteristic flow velocity Us and length scale

Loo. M is the Mach number Uy /as. Pr is the Prandtl number and « is the specific heats ratio.

To facilitate the derivation of PML equations for (1), we denote G(u) as a vector that contains all variables

whose spatial derivative is present in formulating the flux vectors, i.e.,

u
v
G(u) = (1)
w
T
and introduce new variables e, e; and eg as
du du du
oz Oy 0z
0G(u) _ | 0G(w) _ | 5 0G(w) _ | %
e = B = 85} , €2 = P = 87‘11/; , €3 = E) = 85) (12)
z oz y Oy z 0z
or ar or
ox oy 0z

We then re-define the flux vectors of (3)-(5) as explicit functions of u, e1, es and e3 and re-write (1) as

Ju 8F1(u,e1,e2,e3)+8F2(u,e1,e2,e3) +8F3(u,e1,e2,e3)

ot Or Jy 0z =0 (13)

Equations (12) and (13) form a system of partial differential equations for unknowns u, e1, e and es. This

system is only a re-writing of the original Navier-Stokes equation (1) and thus is equivalent to (1). We note
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Figure 1: Schematics of physical and PML domains.

that now the flux vectors Fi(u,eq,ez,e3), Fa(u, e, es,e3) and Fsz(u, e, es, e3) do not explicitly involve

spatial derivatives of u. In what follows, we shall derive the PML equations for (12) and (13).

2.2 Pseudo mean flow

As shown in Figure 1, at non-reflecting boundaries, we introduce PML domains to absorb out-going distur-
bances. We wish to formulate the equations to be used in the added zones so that out-going waves can be
exponentially reduced once they enter the added zones while causing as little numerical reflection as possible.
By reducing the disturbances to a negligible level toward the end of the PML domain, the use of PML makes

a non-reflecting boundary condition at the outer boundaries of the whole computational domain unnecessary.

In nonlinear simulations, a solution u of (1) can be regarded as consisting of a time-independent mean state
and a time-dependent fluctuation that has to be governed by the nonlinear equations. However, it may not
be most efficient to absorb the total variable u and to reduce it to nearly zero inside the PML domain.
On the other hand, the exact mean state is usually not known at the start of the computation. The PML
formulation presented here will not require the exact mean flow. Instead, as in [17], we shall partition the

solution inside the PML domain into two parts as follows,

u=1u,+u, eg =86 +¢€}|, ex=8+¢€),, e3=8€3+e€j} (14)
with
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where @, denotes a prescribed time-independent “pseudo mean flow”[17, 20]. We only require that the chosen

1, satisfy the steady-state equation:
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Figure 2: Schematics of wave absorption in the PML domain.
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It is important to emphasize that this pseudo mean flow is not required to be the exact mean flow at the
non-reflecting boundary. The use of @, is to make the PML domain more efficient since we now need only
to absorb u/, €], €} and ej, namely, the differences between total flow variables and that of a prescribed
pseudo mean flow, as illustrated in Figure 2. In practical computations, any known steady state solution
that resembles the actual flow could serve as a pseudo mean flow. It also follows that the choice for @, is

not unique. Of course, the closer the pseudo mean flow is to the actual mean flow the better.

By (12)-(16), the governing equations for u’, €/, e and ej are
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For brevity, the arguments for the flux vectors Fq, F5, F3 and vector G are not shown explicitly in (17)-(18),
and an over-bar indicates that the vector is computed using the pseudo mean flow. We shall now derive the

PML equations that absorb u’, e}, €} and ef.

2.3 Formulation of PML equations

We will assume in the present paper that the pseudo mean flow is in the direction of z-axis. By following
the three-step method for the derivation of PML described in Introduction, we first apply a space-time

transformation of the form

|

=t+ 0z (19)



to equations (17)-(18) where 3 is a parameter dependent on the pseudo mean flow profile, as suggested in
[14]. This transformation is necessary to maintain linear stability of the PML equations. More discussions
on parameter § and the pseudo mean flow will be given in the next section. Transformation (19) gives the

following changes in partial derivatives, with respect to ¢t and x,
0 0 0 0 0
= — —

and (17)-(18) now become
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In frequency domain, the above is
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where a tilde indicates the time Fourier transformed variable.

In the second step, we apply the PML complex change of variables to (23) and (24), which amounts to a

modification of spatial derivatives as
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where 0, 0, and o, are absorption coefficients, positive, and could be functions of z, y and z respectively[6,

7, 19]. Application of the PML complex change of variables yields the following;:
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In the third step, we try to re-write (25)-(26) in the time domain to obtain the absorbing boundary condition.
This can be done in many different ways[20]. In order to keep the number of auxiliary variables small for the
general three-dimensional equations considered here, we will use a “split” approach in the derivation below.
Let



u =qi+92+qs (27)

where q1, g2 and g3 are auxiliary variables that satisfy the following equations split from (25),
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We note that by adding the three equations in (28)-(29), we will recover (25). The auxiliary variables qi,

q2 and g3 are introduced only to facilitate the conversion of equation (25) into one in the time domain.

By multiplying (1 + =), (1+ l%y) and (1+ 2=) to the equations for q; and &, > and &), and g3 and &},

respectively, we get the following set of equations,
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We next write the time domain equations for the above as
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where a second set of auxiliary variables r1, ro, r3 are defined as
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Finally, by writing back in the original space and time variables, we obtain the time-domain absorbing

boundary equations as follows,
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where F; and G are functions of u and e;, i = 1,2, 3, as defined by (3)-(5) and (11), and e; are computed by
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ox
G

€y = a—y — OyT2 (46)
0G

e3 = E — 0,TI3 (47)

Equations (38)-(44) are the governing equations to be solved in the PML domain. We should point out that,
when the flux vectors are nonlinear functions, unlike in linear cases, the time domain equations (34)-(37)
are no longer the exact inverse Fourier transformation of the frequency domain equations (30)-(33). As a
result, equations (38)-(44) are not deemed formally perfectly matched to the nonlinear governing equation

(1), although numerical results are still quite satisfactory as we will demonstrate later in the paper.

We note that equation (38) is equivalent to the sum of equations (39)-(41) and thus is not formally an

independent equation, because the following relation holds true in the PML domain,
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Figure 3: Schematics of physical and PML domains. The sub-domains where the absorption coefficients are
non-zero are indicated by arrows. Left: a section of 3D domain; Right: a 2D domain layout.

u=1u,+q +q2+qs (48)

However, equation (38) can often be implemented easily as it is written in the original physical variables.
The use of (38) will also reduce the requirement on storage, because an inspection of equations (38)-(44)
shows that not all the auxiliary variables are needed everywhere inside the PML domain. The auxiliary
variables are only needed where the corresponding absorption coefficient is non-zero. For instance, q; and
r; are only necessary at x-layers where o, is not zero; similarly, qo, ro and qs, rs are only necessary where
oy and o, are respectively not zero. Since absorption coefficients o, o, and o, are functions of z, y or z,
respectively, regions of non-zero absorption coefficients, as well as the required auxiliary variables, are as

shown in Figure 3 for a section of computational domain with PML.

Therefore, the equations to be solved in a PML domain will be (38), for u, plus additional equations from
(39)-(44) for the auxiliary variables q; and r; wherever the corresponding absorption coefficient is non-zero.
At the corner layer where all the absorption coefficients are non-zero, the equation for one of the q variables

may be substituted by relation (48) if so desired.

We also note that, the three terms involving spatial derivatives of F1, Fy and F3 can obviously be dropped
from (38) if the pseudo mean flow satisfies the steady state equation (16). However, the equations as written
in (38)-(43) would still be self-consistent in the limit of u — @, even if the pseudo mean flow u,, €, €2 and
€3 do not exactly satisfy (16). That is, u = @, with q; = r; = 0 will always satisfy the equations written
as (38)-(43). This could be helpful for problems where only a pseudo mean flow that approximately satisfies
the steady state equation (16) would be available. For such cases, inclusion of the flux expressions from the

pseudo mean flow as written in (38) can prove to be useful.

The equations given above, (38)-(44), include the PML for the inviscid nonlinear Euler equations as a special

case, by neglecting the viscous terms. Exclusion of viscous effects leads to the elimination of terms involving

10



e1, e; and e3 and, consequently, the necessity for auxiliary variables rq1, ro and rz. Thus, the equations to

be solved in the absorbing zone for inviscid problems will be (38)-(41).

3 Pseudo mean flow and value for

In our derivation above, the only requirement on the pseudo mean flow 1, is that it would satisfy the
steady state equation (16). As pointed out earlier, the exact mean flow is often unknown at the start of
a computation. A suitable known solution to the steady equation (16) that resembles the actual flow can
be a viable pseudo mean flow in the formulation of the PML equation. In this sense, the choice of pseudo
mean flow is not unique. For many practical problems, such a pseudo mean flow would be relatively easy to
find[17, 21]. For instance, a parallel flow will satisfy the steady state Euler equation and thus can be used

as a pseudo mean flow for the appropriate nonlinear Euler simulations. For example, in primitive variables,

p »(Y)

u up(y)

v | = 0 (49)
w 0

p Dp

will satisfy (16) without the viscous terms, where p,(y) and u,(y) can be freely adjusted to resemble the
flow at the non-reflecting boundary. Likewise, a constant uniform mean flow also satisfies the steady state

Navier-Stokes equations.

Once the pseudo mean flow is chosen, the parameter 3 in the PML equations is to be determined as described
in [19]. The purpose of the space-time transformation given in (19) is to ensure linear stability of the PML
equations. It is used to correct the inconsistency in the phase and group velocities of the acoustic wave

modes in the derivation process.

For inviscid problems, since the linearization of PML equations derived in this paper is equivalent to the
linearized Euler equation given in [19] in frequency domain, the value for 5 can be found in the same way
as that described in [19] based on the pseudo mean flow employed. In general, a study on the dispersion
relation D(w, k) = 0 for the linear waves supported by the pseudo mean flow would be required to determine
the value of 3. For the special case where the density of the pseudo mean flow is constant, i.e., p,(y) = 1,

we may use a simple empirical formula given in [19],

Unn
1-U02’

b
8= Un = 7 i a/a up(y)dy (50)

where the computational domain for y is [a, b].

For viscous problems, it has been found that the presence of viscosity will not substantially affect the value
for 3, since the inconsistency in the phase and group velocities occurs only for the acoustic waves for a
parallel flow in the direction of z, to which viscous effects are usually small. As an example, we consider a

pseudo mean flow given by

up(y) =

1
(w4 u2) + 5 (w1 = ug) tanh(55), @ =0, py(y) =1, Pp= =

N =
2

11



with
u; = 0.8, us3 =02, and —1<y<1
A numerical study of the dispersion relations of linear waves gives the following values for 3:

Inviscid: (= 0.63
Re =5000: (=0.63
Re =500: [ ~0.63

Re =50: [~ 0.64

while the empirical formula (50) gives 8 ~ U,,/(1 — U2) = 2/3 ~ 0.67 by using U,, = 1/2, the average of

Up-

4 Numerical examples

In this section, we present numerical examples of using the absorbing boundary conditions derived in the
present study for the nonlinear Euler and Navier-Stokes equations, based on a viscous computational aeroa-
coustic approach|[23][22]. The dispersion-relation-preserving scheme[26] is applied for spatial discretization
and the optimized 5- and 6-stage alternating low-dissipation and low-dispersion Runge-Kutta scheme[15] is

used for time integration.

4.1 Isentropic vortex using nonlinear Euler equations

We first present a numerical example that verifies the effectiveness of the PML for the nonlinear Euler

equation. The two-dimensional nonlinear Euler equations support an advective solution of the form

p(x,1t) 0 pr (1)

u(x,t) | | Uo —u,(r)sin @

oxt) || Vo * u,(r) cos 0 (51)
p(x,t) 0 pr(r)

where r = \/(z — Upt)? + (y — Vot)2. For any given u,(r) and p,(r), the pressure p,(r) is found by

d uZ(r
%pr(f‘) = pr(r) T; ) (52)
Equation (51) gives a solution that advects with constant velocity (Up, Vp).
For our numerical tests, we consider a velocity distribution of the form
U/ 2
ur(r) = %7‘6%(1 vz) (53)



where U/, .. is the maximum velocity at r = b. For isentropic flow, we assume

X

1
Dr = ;p;y (54)

and, by integrating (52), we get the following density and pressure distributions,

. L e\ Me
pT(T) =|1- 5(7 - 1)Umaze v? (55)
1 1 2 v/(v=1)
pe) =2 (1= 36~ DUz ) (56)

The v-velocity contours of a numerical solution is shown in Figure 4. The initial condition is that given in
(51) with (UQ,VQ) = (0.5,0)7 UI

max

= 0.5Uy = 0.25, and b = 0.2. The nonlinear Euler equation is solved
by a finite difference scheme in a computational domain of [—1.2,1.2] x [—1.2,1.2] with a uniform grid of
Az = Ay = 0.02, including the surrounding PML domain of 10 grid points in width. In particular, the PML
absorption coefficient is taken to be

Tr — X «

D

Or = Omax

with oee = 20, a = 4 and zq is the location of interface between PML and physical domains. A similar
model for o, is used. A grid stretching in the PML domain is also used to increase the efficiency of the

absorbing zone[28]. The stretching factor is

2
r — X

=1+2

as noted in [19]. The pseudo mean flow is taken to be the same as the uniform background flow with
parameter 3 = Up/(1 — Ug).

Figure 4 shows the v-velocity contours at time ¢ = 0, 1.5, 2.5 and 3.5 respectively, at levels from +0.02 to
+0.4. Absorption of the vortex by PML at the outflow boundary is clearly demonstrated. Figure 5 shows
the v-velocity as a function of z along y = 0, as the vortex exits the computational domain. Also plotted in
dashed lines are the exact solution. The numerical solution matches the exact solution in the Euler domain

while decays exponentially in the PML domain.

To further assess the magnitude of reflection error, Figure 6 plots the maximum difference between the
numerical solution and a reference solution obtained using a larger computational domain, along a vertical
line near the outflow boundary, as a function of time. The reflection errors are indeed quite small and
decrease with an increase in the width of the PML domain employed. Figure 7 shows the trend in the
reduction of the maximum reflection error, for the v-velocity component as well as the pressure, as the PML

width increases.

Figure 8 shows the maximum reflection error in v-velocity component relative to the maximum velocity of
the vortex U/

max

reflection error generally increases with the strength of the vortex, a relative error of less than 1% is achieved

along x = 0.9 near the outflow boundary for various strengths of the vortex. Although

13



for all cases with PML width of 20 grid points. Figure 9 plots the maximum reflection error, for the v-velocity
component and the pressure, as a function of the vortex strength U}, ,./Uo in a log scale, showing the trend

of increase in reflection error with the increase in the nonlinearity.

4.2 Isentropic vortex with nonlinear Navier-Stokes equations

The example in the previous section is repeated using the nonlinear Navier-Stokes equations. The com-
putational domain and initial condition are similar but viscous terms in the governing equations are now
included. The numerical solution is compared with a large domain solution to obtain a measure of the
reflection error. Figure 10 shows the reflection error for the v-velocity component relative to the maximum

perturbation velocity U’ of the initial vortex, at various Reynolds numbers which is based on the velocity

max

Up. Figure 11 shows the reflection error for the pressure relative to the maximum pressure perturbation

caused by the vortex, P/ . which is defined by |p,(0) — p,.(00)| ~ LU/2,, as given in (56). It is seen that

2 Y max
generally reflection errors shown in Figures 10 and 11 decrease with the Reynolds number. This reduction in
reflection error is partly due to a weakening of vortex by viscous diffusion effect when it reaches the outflow
boundary from its initial position (z,y) = (0,0). Figure 12 shows the trend of reduction of the maximum

reflection error as a function of the Reynolds number.

Figure 13 shows the effect of the strength of vortex on the reflection errors in the Navier-Stokes simulation.
In this example, the background uniform flow is taken to be Uy = 0.2 while the maximum velocity of the

vortex perturbation is increased from U/ = 0.1Uj up to 2.0Uy, a very high nonlinearity. It is observed that

max

reflection errors increase with the strength of the vortex. This is not unexpected because the nonlinearity

increases with U’ In particular, we note that when U/, .. is greater than Uy, part of the vortex region

max* x

actually have a total velocity in direction opposite to the background mean flow.

Figure 14 shows the effects of the mean flow Mach number on the effectiveness of the PML domain. The
is kept as 0.5U)

in each case. The maximum reflection errors are found to be of similar magnitude. This means that the

background flow Mach number Uy is varied from 0.2 to 0.8 while the strength of vortex U/

max

effectiveness of the absorbing boundary condition does not strongly depend on the mean flow Mach number.

4.3 Viscous flow over a circular cylinder

In this example, we show the absorption of nonlinear vortices shedded by a viscous flow over a circular
cylinder. The uniform incoming flow has a Mach number M = Uy /aoo = 0.2. Here Uy and ao denote
the velocity of the uniform flow and the speed of sound respectively. The velocity and the length are
nondimensionalized by a, and the diameter of the cylinder d, respectively. The Reynolds number is defined
as Re = Uxd/Voo, Where vy, is the reference kinematic viscosity. For the present calculation, Re = 150 and
the Prandtl number Pr = 0.75.

Figure 15 shows the multi-domain computational mesh layout with overset grids, for (z,y) € [-7,11]x[-7, 7).
The cylinder is located at (z,y) = (0,0) with a radius of 0.5 and all PML domains have a width of 20 grid
points. The main computational domain is divided into two regions. An O-grid system with non-uniform
meshes is adopted around the cylinder, covering a region in polar coordinates of 0.5 < r < 1.5, 0 < 6 < 2m,

with a non-uniform grid spacing of Ar,;, = 0.005, Arpee = 0.02, and A8 = 1.2°. Another region is
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Figure 4: v-velocity contour levels from £+0.02 to +0.24.
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composed of multi-block uniform meshes with Az = Ay = A. In each block, the value of A is specified in

Figure 15. A high-order Lagrange interpolation technique is utilized for the overset grids.

Calculation is initiated with the uniform flow for the entire computational domain. A natural choice for the

pseudo mean flow is the incoming uniform flow at all four PML domains, namely,

up=M, v,=0, pp=1, p,=1/y (57)

with 3 = M/(1—M?). Figure 16 shows the instantaneous pressure contours at ¢ = 5, 8,10 and 450, calculated
by the direct numerical simulation, solving (1) in the physical domain and PML equations (38)-(44) in the
absorbing zones. The initial transient pressure wave exits the computational domain without noticeable
reflection. After ¢ = 400, vortex shedding is observed. Figure 17 shows the vorticity contours over a period

of vortex shedding. The absorption of the nonlinear vortices by the PML zone at the outflow is clearly seen.

In Figure 18, we show the v-velocity and pressure at a point (x,y) = (9,0) on the outflow boundary of the
physical domain as a function of time, from ¢t = 0 to ¢ = 700. Also plotted, in symbols, is the result of a
reference solution computed using a larger computational domain. The reference solution is obtained using
a computational domain of [—7,30] x [-7,7]. The discrepancy seen in the pressure around time t—300 is due
to the truncation of the initial wake flow by the smaller computational domain before the periodic vortex
shedding is started. Good agreement in the time history of the periodically shed vortices is observed. Figures
17 and 18 indicate that the PML domain at the outflow boundary can effectively absorb these vortices as

they convect out of the computational domain.
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Figure 7: Maximum reflection error, for the v-velocity component and pressure, as a function of the PML
width D.

4.4 Shear layer roll-up vortices

In this example, we simulate a mixing layer with roll-up vortices induced by the Kelvin-Helmholtz instability.
The PML equations developed in the present paper are applied as the absorbing boundary condition. The
Navier-Stokes equation (1) is solved in a computational domain of [-1,9] x [-1,1] by a finite difference
scheme, with Az = 0.05 and Ay = 0.01. The Reynolds number for this computation is 10000. PML domain
with a width of 10 grid points are added at four sides of the computational domain to absorb all out-going

waves. The initial condition is

p p(y)
u | | Uy
v | 0 (58)
v) \ 1
where
0 = |+ 02+ @ - vy ()| ) = (59)
with _ _
T(y)ZTlU_U2 +T2U1_U+7_1(U1—U)(U—U2) (60)

U -U; U —Us 2

where the mean temperature T'(y) is determined by the Crocco relation for compressible flows. The param-

eters are
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U1 = 0.8, U2 = 0.2, 6= 0.4, T1 = 1, T2 = 0.8, Y= 1.4.

A source term is added to the energy equation in (1) to induce the instability wave. The source term is of

the form

s(x,y,t) = 5sin(wt)e” 2)[(z—w0)*+(y—y0)?]/r5

where w = /2, (z9,yo) = (—0.5,0) and ro = 0.03.

The added source term excites the Kelvin-Helmholtz instability wave which would grow exponentially and
develop into roll-up vortices. Figure 19 gives a time sequence of vorticity contours showing the absorption
of out-going vorticities at the outflow boundary. Figure 20 plots the time history of v-velocity and pressure
at a point close to the outflow boundary. Also plotted in symbols are the corresponding time histories from

a large domain calculation whose solution is not affected by the boundary. Very good agreement is found.

For the calculation shown in Figure 19, the pseudo mean flow @, used in the PML equation is the same
parallel flow as that of the initial condition (58), with a value of § = 1/1.4 according to the linear wave
analysis given in [19]. Calculations have also been made using different pseudo mean flow profiles to study
the effects of pseudo mean flow choices on the accuracy of the absorbing boundary condition. In particular,

three different pseudo mean flows have been applied at the outflow boundary where the thickness parameter

19



102 =
9] i R
ey 3= !
o 10°F _ -3
s
g B

4

% 10 3 P
= u
= i
£ 105k
< E
g - — £ » - v-velocity component

—_— pressure component

0 0.2 0.4 0.6 0.8

Figure 9: Maximum reflection error, for the v-velocity component and the pressure, as a function of vortex
strength U}, .../ Uo.

20



5 |
£
10° |-
) -
o i
° i
= 5
©
o 10°F
S -
o -
c
ie) B
3]
o 10"
= -
[} -
e i
10 P
0

Figure 10: Maximum relative reflection error (v-velocity component) at various Reynolds numbers. Uy = 0.5,
U ww = 0.5U0.

21



max

Reflection error relative to P

10"

10°

.................. Re20
— — — - Re50
————— - Re200
———— Re500
Euler

Figure 11: Maximum relative reflection error (pressure) at various Reynolds numbers. Uy = 0.5, U/ .. =

0.5U0y.

Maximum reflection error

10°

10°

10*

max

\\\\\Hw\

— € » - v-velocity component
————— pressure component

0.02

0.03 0.04 0.05
1/Re

Figure 12: Maximum relative reflection error, for the v-velocity and pressure, as a function of 1/Re.

22



10*

5 B
£
10° =
) o
e} B
Q i
> B
o
L 10°
S :
5 B
- B
K] -
5
= 107 F
&) B
e -
10°
0

Figure 13: Maximum relative reflection error for various strengths of the vortex. Uy = 0.2, Re = 200.

10" g
i - — — - U,=0.2
g i ——— U,=0.5
10° | U,=0.8
D -
je) -
° i
2 |
-—
«
L 10°
s |
E |
o i
ie] -
3]
QL 10"
) -
[nd B
10°
0

Figure 14: Maximum relative reflection error for different mean flows. U}, ,, = 0.5Uy, Re = 200.

23



6 A=0.08
A
i A=0.08 £=0.04 A=0.08
2 -
i N
> 0[£=0.04 A=0.04 ( ._9 £=0.02 A=0.04  |£=0.08
i __
2
I A=0.08 A=0.04 A=0.08
4
6 A=0.08
[ ] ] ]
-5 0 5 10
X

Figure 15: Mesh and computational domain (global).

for the u-velocity profile is taken to be § = 0.4, 0.6 and 0.8 respectively. Figure 21 shows the instantaneous
u-velocity contours for the three cases. The velocity contours inside the physical domain are nearly identical
in the three cases. This indicates that the PML equation is relatively accommodating in the choice of pseudo

mean flow as long as it is reasonably close to the actual flow.

4.5 Flat-plate boundary layer

In this example, we apply the PML absorbing boundary condition to the computation of steady boundary
layer profile formed by a uniform flow over a flat plate. A schematic of the computational domain is shown
in Figure 22. The incoming flow is uniform in the direction of z-axis with Mach number M = 0.1. The
Reynolds number is Re = 10000 and the Prandtl number Pr = 0.708.

PML domains are used at all the three non-reflecting boundaries. For the left inflow and top radiation
boundaries, the pseudo mean flow is the same as the incoming uniform flow. For the PML at the outflow
boundary, in order to adjust for the no-slip boundary condition at the wall, the pseudo mean flow is taken

to be the following,

_ M y>9
Up = . (61)
M sin(ry/28) 0<y <4
) 1 1+405(y-1al
’Up = O7 pp ==, pPp= ( ) p (62)

v P14 0.5(y — 1) M2
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Figure 16: Pressure contour plots at time ¢t = 5, 8, 10 and 450.
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The thickness parameter ¢ in (61) is taken to be an estimated boundary layer thickness. For the present
Reynolds number, § = 0.053 is used in the computation. The value of § is 0.0911 obtained by the formula
given in (50).

Numerical calculation starts with an initialization of all variables in the physical domain by the uniform
incoming flow. After the transients are absorbed by the PML domains, the numerical solution approaches to
a steady state. Figure 23 shows the time history of the residues of the steady state governing equations in the
physical domain. The L2 norm of of the residues eventually becomes less than 1078, an indication that the
numerical solution is close to the steady state solution. Figure 24 shows the contours of the u-velocity in the
whole computational domain and Figure 25 shows the normalized stream-wise velocity profile. Also plotted
in Figure 25 are the theoretical Blasius similarity solution, with good agreement. We note that the PML
has been primarily designed to absorb time-dependent out-going waves. The purpose of this example is to
demonstrate the possibility of using the proposed absorbing boundary condition for steady state applications.

Further studies on the efficiency of PML for such calculations will be carried out in the future.

We also note that the pseudo mean flow (61) used in the outflow PML domain does not exactly satisty the
steady state Navier-Stokes equations. Nonetheless, as pointed out earlier in section 3, the equations written
in the form of (38)-(44) still appear to be effective. For steady state computations, it is also possible to

update the initial pseudo mean flow with an improved mean flow as the computation proceeds.

4.6 Three dimensional acoustic pulse

In this example, the propagation of a three dimensional nonlinear acoustic pulse in a uniform mean flow
is simulated using the nonlinear Navier-Stokes equations. The PML absorbing boundary conditions are
applied in all non-reflecting boundaries, similar to the situation depicted in Figure 3. The initial condition

is as follows,

max max

t=0,p=1+P e~ 2@ +y*+2*)/8 o Uy v =0, w=0, p= 1 + P e n2)@+y?+57)/r
Y

where y = 1.4, 79 = 1.0, Uy = 0.5, P/

max

is [-12,12] x [-12,12] x [-12,12], including the PML domain, with a uniform mesh Az = Ay = Az =0.2.

3

= 0.5, and the Reynolds number is 500. The computational domain
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Figure 24: Stream-wise velocity contours.
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The PML domains have a width of 10 grid points on all six sides and the maximum of PML absorption

coefficients 0,4, is 10. The pseudo mean flow is set as the uniform background flow with the value of
B ="Uo/(1-Ug).
Figure 26 shows the pressure contours at ¢ = 8 and 12. The effectiveness of the PML boundary condition is

well demonstrated.

Figure 27 shows the pressure at a point close to the outflow boundary, (z,y, z) = (9,0,0), as a function of
time. Very good agreement between the computational and reference solutions is observed. Also shown are
the differences between the two solutions relative to the pulse strength P’ For P/ =0.1,0.2 and 0.5,

max*® max

maximum relative reflection errors are all around 10~%.

5 Conclusions

A time-domain absorbing boundary condition for the nonlinear Euler and Navier-Stokes equations has been
presented following a recently developed method for the linearized Euler equations. It offers a natural
extension of the linear PML equations to nonlinear equations of fluid dynamics. By introducing the concept
of pseudo mean flow, the efficiency of PML is increased as it becomes only necessary to absorb the difference
between the total variable and a prescribed pseudo mean flow. The pseudo mean flow is not required to be
exactly the same as the actual mean flow when the latter is not available. Although the proposed equations
are not theoretically perfectly matched to the nonlinear governing equations as their linear counter-parts are,
numerical examples demonstrated their effectiveness as absorbing boundary conditions in truncating open

boundaries in nonlinear Euler and Navier-Stokes simulations.

Since the proposed nonlinear equations reduce to the linear PML equations upon a linearization about the
pseudo mean flow, the linear stability property of the PML proposed here is expected to be the same as
those given in [19]. Although no numerical instability has been found in all our computations, theoretical
property on the nonlinear stability remains to be defined. The success of PML for the fully nonlinear Euler
and Navier-Stokes equations reported in the present paper is a significant step toward a wider application

of the PML technique for computational fluid dynamics and computational aeroacoustics.

ACKNOWLEDGMENTS

This work is supported by grants from the National Science Foundation DMS-0411402(F. Q. Hu), the
National Natural Science Foundation of China 50676003 and the 973 program-2007CB714604 (X. D. Li and
D. K. Lin), and the 111 project B07009 of China. The authors also would like to thank the reviewers for

constructive comments.

References
[1] S. Abarbanel, D. Gottlieb and J. S. Hesthaven, Well-posed perfectly matched layers for advective acous-
tics, Journal of Computational Physics, Vol. 154, 266-283, 1999.

[2] D. Appel6, T. Hagstrom and G. Kreiss, Perfectly matched layers for hyperbolic systems: general for-
mulation, well-posedness, and stability, STAM Journal on Applied Mathematics, Vol.67, No. 1, 1-23,
2006.

34



B @




0.74 10" £

102k - P ,=0.1
B Computational 3 E  eeeaaa- P =0.2
0.73 B o Reference F P,.=0.5

10°

10* |

10°

10°

Reflection error relative to P

0.7 -

oo b v ma’“‘.v""

Figure 27: Left: pressure at a point close to the boundary as a function of time; Right: relative reflection
error in pressure compared with the large domain reference solution.

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

E. Becache, A.-S. Bonnet-Ben Dhia and G. Legendre, Perfectly Matched layers for the convected
Helmholtz equation, STAM Journal on Numerical Analysis, Vol. 42, No. 1, 409-433, 2004.

E. Becache, S. Fauqueux and P. Joly, Stability of perfectly matched layers, group velocities and
anisotropic waves, Journal of Computational Physics, Vol. 188, 399-433, 2003.

J. P. Berenger, A Perfectly Matched Layer for the Absorption of Electromagnetic waves, Journal of
Computational Physics, Vol. 114, 185-200, 1994.

W. C. Chew, W. H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations with
stretched coordinates, IEEE Microwave Opt. Technol. Lett., Vol. 7, 599-604, 1994.

F. Collino and P. Monk, “The perfectly matched layer in curvilinear coordinates”, SIAM J. Sci, Comp,
Vol. 19, No. 6, P. 2016, 1998.

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD
lattices”, IEEE Trans. Antennas Propagation, Vol. 44, P. 1630, 1996.

T. Hagstrom and I. Nazarov, Absorbing layers and radiation boundary conditions for jet flow simula-
tions, ATAA paper 2002-2606, 2002.

T. Hagstrom and I. Nazarov, Perfectly matched layers and radiation boundary conditions for shear flow
calculations, ATAA paper 2003-3298, 2003.

T. Hagstrom, A new construction of perfectly matched layers for hyperbolic systems with application to
linearized Euler equations, Mathematical and numerical aspects of wave propagation — WAVES 20083,
125-129, G. C. Cohen, E. Heikkola, P. Joly and P. Neittaanmaki ed., Springer, 2003.

T. Hagstrom, J. Goodrich, I. Nazarov and C. Dodson, High-order methods and boundary conditions
for simulating subsonic flows, ATAA paper 2005-2869, 2005

T. Hagstrom and D. Appeld, Experiments with Hermite Methods for simulating compressible flows:
Runge-Kutta time-stepping and absorbing layers, ATAA paper 2007-3505, 2007

36



[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22|

[23]

[24]

[25]

[26]

[27]

28]

M. E. Hayder and H. L. Atkins, Experiences with PML boundary conditions in fluid-flow computa-
tions, ITUTAM symposium of computational methods for unbounded domains, T. L. Geers (ed.), Kluwer
Academic Publishers, 207-216, 1998.

F. Q. Hu, M. Y. Hussaini and J. L. Manthey, Low-dissipation and -dispersion Runge-Kutta schemes for
computational acoustics”, Journal of Computational Physics, Vol. 124, 177-191, 1996.

F. Q. Hu, On absorbing boundary conditions of linearized Euler equations by a perfectly matched layer,
Journal of Computational Physics, Vol. 129, 201-219, 1996.

F. Q. Hu, On Perfectly Matched Layer as an absorbing boundary condition, AIAA paper 96-1664, 1996

F. Q. Hu, A stable,Perfectly Matched Layer for linearized Euler equations in unsplit physical variables,
Journal of Computational Physics, Vol. 173, 455-480, 2001.

F. Q. Hu, A perfectly matched layer absorbing boundary condition for linearized Euler equations with

a non-uniform mean-flow, Journal of Computational Physics, Vol. 208, 469-492, 2005.

F. Q. Hu, On the construction of PML absorbing boundary condition for the nonlinear Euler equations,
ATAA paper 2006-0798, 2006.

F. Q. Hu, Development of PML absorbing boundary condition for Computational Aeroacoustics: A
progress review, to appear in Computers & Fluids, d0i:10.1016/j.compfluid. 2007.02.012.

X.D. Li and J.H. Gao, Numerical Simulation of Three-Dimensional supersonic jet screech tones, ATAA
paper 2005-2882, 2005.

X.D. Li and J.H. Gao, Numerical Simulation of the generation mechanism of axisymmetric supersonic
jet screech tones, Physics of Fluids, Vol.17, Art No: 085105, 2005.

F. Nataf, A new approach to perfectly matched layers for the linearized Euler system, Journal of
Computational Physics, Vol. 214, 757-772, 1006.

H. Schlichting, Boundary-layer theory, McGraw-Hill, 1979.

C. K. W. Tam and J. C. Webb, Dispersion-relation-preserving schemes for computational acoustics,
Journal of Computational Physics, Vol. 107, 262-281, 1993.

E. Turkel and A. Yefet, “Absorbing PML boundary layers for wave-like equations”, Applied Numerical
Mathematics, Vol. 27, 533-557, 1998.

L. Zhao and A. C. Cangellaris, “GT-PML: generalized theory of perfectly match layers and its application
to the reflectionless truncation of finite-difference time-domain grids”, IEEE Trans. Microwave Theory
Tech., Vol. 44., 2555-2563, 1996.

37



