Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the Perfectly Matched Layer technique

Fang Q. Hu*, X. D. Li† and D. K. Lin†

*Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia 23529

†School of Jet Propulsion, Beihang University, Beijing 100083, People’s Republic of China

Abstract

Absorbing boundary conditions for the nonlinear Euler and Navier-Stokes equations in three space dimensions are presented based on the Perfectly Matched Layer (PML) technique. The derivation of equations follows a three-step method recently developed for the PML of linearized Euler equations. To increase the efficiency of the PML, a pseudo mean flow is introduced in the formulation of absorption equations. The proposed PML equations will absorb exponentially the difference between the nonlinear fluctuation and the prescribed pseudo mean flow. With the nonlinearity in flux vectors, the proposed nonlinear absorbing equations are not formally perfectly matched to the governing equations as their linear counterparts are. However, numerical examples show satisfactory results. Furthermore, the nonlinear PML reduces automatically to the linear PML upon linearization about the pseudo mean flow. The validity and efficiency of proposed equations as absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations are demonstrated by numerical examples.

Keywords: Nonreflecting boundary condition; Perfectly Matched Layer; Navier-Stokes equations; Euler equations; Computational Fluid Dynamics; Computational Aeroacoustics

1 Introduction

Non-reflecting boundary condition is a critical component in the development of Computational Fluid Dynamics (CFD) and Computational Aeroacoustics (CAA) algorithms. It remains a significant challenge particularly for problems involving nonlinear governing equations. Perfectly Matched Layer (PML) is a technique of developing non-reflecting boundary conditions by constructing matched equations that can absorb
out-going waves at open computational boundaries. It was originally designed for computational electromagnetics[5, 6, 8, 28, 27, 7]. The significance of the PML technique lies in the fact that the absorbing zone is theoretically reflectionless for multi-dimensional linear waves of any angle and frequency. In the past few years, substantial progress has been made in the development of the PML technique for the Euler equations, starting with the studies for cases with constant mean flows, followed by extensions to cases with non-uniform mean flows[16, 17, 1, 18, 19, 4, 10, 9]. Most recently, applications of PML to linearized Navier-Stokes equations and nonlinear Navier-Stokes equations have been discussed in [12, 13]. A recent progress review is given in [21].

Although the PML technique itself is relatively simple when it is viewed as a complex change of variables in the frequency domain, it is important to note that, for the PML technique to yield stable absorbing boundary conditions, the phase and group velocities of the physical waves supported by the governing equations must be consistent and in the same direction[18, 9, 4]. For governing equations that support physical waves of inconsistent phase and group velocities, such as the Euler or Navier-Stokes equations for fluid dynamics, a space-time transformation may be required before applying the PML technique in the derivation process[18, 19]. This space-time transformation corrects the inconsistency in the phase and group velocities and thus permits the application of the PML technique. An emerging method of formulating PML involves essentially three steps[21]:

1. A proper space-time transformation is determined and applied to the governing equations;
2. A PML complex change of variables is applied in the frequency domain;
3. The time domain absorbing boundary condition is derived by a conversion of the frequency domain equations.

This procedure has been successfully applied to the derivation of PML for the linearized Euler equations in [18, 19].

In this paper, further application of the PML technique to the nonlinear Euler and Navier-Stokes equations is considered. Derivation of the absorbing equation is proceeded by applying the three steps outlined above to the nonlinear Navier-Stokes equations, which include the Euler equations as a special case. However, unlike the PML for linear equations, the conversion to time domain equations does not result in formally perfectly matched equations due to the nonlinearity in flux vectors. Nonetheless, the proposed absorbing equations are still effective for nonlinear problems as we will show in numerical examples. Furthermore, the nonlinear PML reduces automatically to the linear PML upon linearization. The current formulation offers a natural extension of the linear PML to nonlinear equations. For convenience of implementation in most existing CFD and CAA codes, all PML equations are formulated for the governing equations in the conservation form.

To absorb the nonlinear disturbances, a concept of “pseudo mean flow” is introduced. This makes the PML possible without knowing the exact mean flow at the start of the computation. Equations are derived that absorb the difference between the pseudo mean flow and the nonlinear disturbances, including the vorticity, acoustic, and entropy waves. One limitation of the current paper is that the pseudo mean flow is assumed to be aligned with one of three spatial axes. Recent efforts and new developments on extending the PML for oblique mean flows can be found in [11, 2, 24].

The rest of the paper is organized as follows. In the next section, the PML absorbing boundary condition is derived for the nonlinear Navier-Stokes equations. Further discussions on the formulation are given in section
3. In section 4, numerical examples that validate the effectiveness and stability of the PML for nonlinear Euler and Navier-Stokes equations will be presented. They include the absorption of a convective isentropic vortex in compressible flows, shear flow vortices and vortices shed from flow over a circular cylinder, calculation of flat plate boundary layers, and propagation of a 3D acoustic pulse. Concluding remarks are given in section 5.

2 Derivation of PML equations for nonlinear Navier-Stokes equations

2.1 Governing equations

We consider the three-dimensional compressible nonlinear Navier-Stokes equation written in the conservation form as

$$\frac{\partial \mathbf{u}}{\partial t} + \frac{\partial \mathbf{F}_1}{\partial x} + \frac{\partial \mathbf{F}_2}{\partial y} + \frac{\partial \mathbf{F}_3}{\partial z} = 0$$

where

$$\mathbf{u} = \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho e \end{bmatrix}$$

and flux vectors

$$\mathbf{F}_1 = \begin{bmatrix} \rho u \\ \rho u^2 + p - \tau_{xx} \\ \rho uv - \tau_{xy} \\ \rho uw - \tau_{xz} \\ (\rho e + p)u - u\tau_{xx} - v\tau_{xy} - w\tau_{xz} + q_x \end{bmatrix}$$

$$\mathbf{F}_2 = \begin{bmatrix} \rho v \\ \rho uv - \tau_{xy} \\ \rho v^2 + p - \tau_{yy} \\ \rho vw - \tau_{yz} \\ (\rho e + p)v - u\tau_{xy} - v\tau_{yy} - w\tau_{yz} + q_y \end{bmatrix}$$

$$\mathbf{F}_3 = \begin{bmatrix} \rho w \\ \rho uw - \tau_{xz} \\ \rho w^2 + p - \tau_{yz} \\ \rho w^2 - \tau_{zz} \\ (\rho e + p)w - u\tau_{xz} - v\tau_{yz} - w\tau_{zz} + q_z \end{bmatrix}$$
with viscous stress terms written as

\[\tau_{xx} = \frac{M}{Re} \left[2\mu \frac{\partial u}{\partial x} - \lambda \frac{\partial u}{\partial y} + \frac{\partial v}{\partial z} \right], \quad \tau_{yy} = \frac{M}{Re} \left[2\mu \frac{\partial v}{\partial y} - \lambda \frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} \right], \]

\[\tau_{zz} = \frac{M}{Re} \left[2\mu \frac{\partial w}{\partial z} - \lambda \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right], \quad \lambda = \frac{2}{3} \mu \]

\[\tau_{xy} = \frac{M}{Re} \mu (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}), \quad \tau_{xz} = \frac{M}{Re} \mu (\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}), \quad \tau_{yz} = \frac{M}{Re} \mu (\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}) \]

and heat transfer terms

\[q_x = -\frac{M}{(\gamma - 1) Pr Re} \frac{\partial T}{\partial x}, \quad q_y = -\frac{M}{(\gamma - 1) Pr Re} \frac{\partial T}{\partial y}, \quad q_z = -\frac{M}{(\gamma - 1) Pr Re} \frac{\partial T}{\partial z} \]

where \(\mu \) is nondimensionalized viscosity which, unless noted otherwise, will be assumed to be a function of temperature \(T \) by the Sutherland’s formula[25]. The equation of state and the energy function are

\[\gamma p = \rho T, \quad e = \frac{u^2 + v^2 + w^2}{2} + \frac{p}{\gamma - 1} \rho \]

In the above, \(u, v \) and \(w \) are the velocity components in \(x, y \) and \(z \) directions respectively, \(p \) is the pressure, \(\rho \) is the density, and \(T \) is the temperature. The velocity is non-dimensionalized by a reference speed of sound \(a_\infty \), density by \(\rho_\infty \) and pressure by \(\rho_\infty a_\infty^2 \). Viscosity \(\mu \) is non-dimensionalized by a reference value \(\mu_\infty \) and \(Re = \rho_\infty U_\infty L_\infty/\mu_\infty \) is the Reynolds number based on a characteristic flow velocity \(U_\infty \) and length scale \(L_\infty \). \(M \) is the Mach number \(U_\infty/a_\infty \). \(Pr \) is the Prandtl number and \(\gamma \) is the specific heats ratio.

To facilitate the derivation of PML equations for (1), we denote \(\mathbf{G}(\mathbf{u}) \) as a vector that contains all variables whose spatial derivative is present in formulating the flux vectors, i.e.,

\[\mathbf{G}(\mathbf{u}) = \begin{bmatrix} u \\ v \\ w \\ T \end{bmatrix} \]

and introduce new variables \(\mathbf{e}_1, \mathbf{e}_2 \) and \(\mathbf{e}_3 \) as

\[\mathbf{e}_1 = \frac{\partial \mathbf{G}(\mathbf{u})}{\partial x} = \begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial x} \\ \frac{\partial w}{\partial x} \\ \frac{\partial T}{\partial x} \end{bmatrix}, \quad \mathbf{e}_2 = \frac{\partial \mathbf{G}(\mathbf{u})}{\partial y} = \begin{bmatrix} \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial y} \\ \frac{\partial w}{\partial y} \\ \frac{\partial T}{\partial y} \end{bmatrix}, \quad \mathbf{e}_3 = \frac{\partial \mathbf{G}(\mathbf{u})}{\partial z} = \begin{bmatrix} \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial z} \\ \frac{\partial T}{\partial z} \end{bmatrix} \]

We then re-define the flux vectors of (3)-(5) as explicit functions of \(\mathbf{u}, \mathbf{e}_1, \mathbf{e}_2 \) and \(\mathbf{e}_3 \) and re-write (1) as

\[\frac{\partial \mathbf{u}}{\partial t} + \frac{\partial \mathbf{F}_1(\mathbf{u}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)}{\partial x} + \frac{\partial \mathbf{F}_2(\mathbf{u}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)}{\partial y} + \frac{\partial \mathbf{F}_3(\mathbf{u}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)}{\partial z} = 0 \]

Equations (12) and (13) form a system of partial differential equations for unknowns \(\mathbf{u}, \mathbf{e}_1, \mathbf{e}_2 \) and \(\mathbf{e}_3 \). This system is only a re-writing of the original Navier-Stokes equation (1) and thus is equivalent to (1). We note
that now the flux vectors $F_1(\mathbf{u}, e_1, e_2, e_3)$, $F_2(\mathbf{u}, e_1, e_2, e_3)$ and $F_3(\mathbf{u}, e_1, e_2, e_3)$ do not explicitly involve spatial derivatives of \mathbf{u}. In what follows, we shall derive the PML equations for (12) and (13).

2.2 Pseudo mean flow

As shown in Figure 1, at non-reflecting boundaries, we introduce PML domains to absorb out-going disturbances. We wish to formulate the equations to be used in the added zones so that out-going waves can be exponentially reduced once they enter the added zones while causing as little numerical reflection as possible. By reducing the disturbances to a negligible level toward the end of the PML domain, the use of PML makes a non-reflecting boundary condition at the outer boundaries of the whole computational domain unnecessary.

In nonlinear simulations, a solution \mathbf{u} of (1) can be regarded as consisting of a time-independent mean state and a time-dependent fluctuation that has to be governed by the nonlinear equations. However, it may not be most efficient to absorb the total variable \mathbf{u} and to reduce it to nearly zero inside the PML domain. On the other hand, the exact mean state is usually not known at the start of the computation. The PML formulation presented here will not require the exact mean flow. Instead, as in [17], we shall partition the solution inside the PML domain into two parts as follows,

$$
\mathbf{u} = \bar{\mathbf{u}} + \mathbf{u}', \quad e_1 = \bar{e}_1 + e_1', \quad e_2 = \bar{e}_2 + e_2', \quad e_3 = \bar{e}_3 + e_3'
$$

with

$$
e_1 = \frac{\partial G(\bar{\mathbf{u}})}{\partial x}, \quad e_2 = \frac{\partial G(\bar{\mathbf{u}})}{\partial y}, \quad e_3 = \frac{\partial G(\bar{\mathbf{u}})}{\partial z}
$$

where $\bar{\mathbf{u}}$ denotes a prescribed time-independent “pseudo mean flow”[17, 20]. We only require that the chosen $\bar{\mathbf{u}}$ satisfy the steady-state equation:
\[
\frac{\partial F_1(\bar{u}_p, e_1, e_2, e_3)}{\partial x} + \frac{\partial F_2(\bar{u}_p, e_1, e_2, e_3)}{\partial y} + \frac{\partial F_3(\bar{u}_p, e_1, e_2, e_3)}{\partial z} = 0
\]

It is important to emphasize that this pseudo mean flow is not required to be the exact mean flow at the non-reflecting boundary. The use of \(\bar{u}_p\) is to make the PML domain more efficient since we now need only to absorb \(u', \ e'_1, \ e'_2\) and \(e'_3\), namely, the differences between total flow variables and that of a prescribed pseudo mean flow, as illustrated in Figure 2. In practical computations, any known steady state solution that resembles the actual flow could serve as a pseudo mean flow. It also follows that the choice for \(\bar{u}_p\) is not unique. Of course, the closer the pseudo mean flow is to the actual mean flow the better.

By (12)-(16), the governing equations for \(u', e'_1, e'_2\) and \(e'_3\) are

\[
\frac{\partial u'}{\partial t} + \frac{\partial [F_1 - \bar{F}_1]}{\partial x} + \frac{\partial [F_2 - \bar{F}_2]}{\partial y} + \frac{\partial [F_3 - \bar{F}_3]}{\partial z} = 0
\]

\[
e'_1 = \frac{\partial [G - \bar{G}]}{\partial x}, \ e'_2 = \frac{\partial [G - \bar{G}]}{\partial y}, \ e'_3 = \frac{\partial [G - \bar{G}]}{\partial z}
\]

For brevity, the arguments for the flux vectors \(F_1, F_2, F_3\) and vector \(G\) are not shown explicitly in (17)-(18), and an over-bar indicates that the vector is computed using the pseudo mean flow. We shall now derive the PML equations that absorb \(u', e'_1, e'_2\) and \(e'_3\).

2.3 Formulation of PML equations

We will assume in the present paper that the pseudo mean flow is in the direction of x-axis. By following the three-step method for the derivation of PML described in Introduction, we first apply a space-time transformation of the form

\[
\bar{t} = t + \beta x
\]
to equations (17)-(18) where β is a parameter dependent on the pseudo mean flow profile, as suggested in [14]. This transformation is necessary to maintain linear stability of the PML equations. More discussions on parameter β and the pseudo mean flow will be given in the next section. Transformation (19) gives the following changes in partial derivatives, with respect to t and x,

$$\frac{\partial}{\partial t} \rightarrow \frac{\partial}{\partial t'} \frac{\partial}{\partial x} \rightarrow \frac{\partial}{\partial x} + \beta \frac{\partial}{\partial t}$$

and (17)-(18) now become

$$\frac{\partial \mathbf{u}'}{\partial t} + \beta \frac{\partial [\mathbf{F}_1 - \mathbf{F}_1]}{\partial t} + \frac{\partial [\mathbf{F}_1 - \mathbf{F}_1]}{\partial x} + \frac{\partial [\mathbf{F}_2 - \mathbf{F}_2]}{\partial y} + \frac{\partial [\mathbf{F}_3 - \mathbf{F}_3]}{\partial z} = 0 \quad (20)$$

$$e'_1 = \beta \frac{\partial [\mathbf{G} - \mathbf{G}]}{\partial t} + \frac{\partial [\mathbf{G} - \mathbf{G}]}{\partial x}, \quad e'_2 = \frac{\partial [\mathbf{G} - \mathbf{G}]}{\partial y}, \quad e'_3 = \frac{\partial [\mathbf{G} - \mathbf{G}]}{\partial z} \quad (21)$$

In frequency domain, the above is

$$(-i\omega \mathbf{u}') + \beta (-i\omega) [\mathbf{F}_1 - \mathbf{F}_1] + \frac{\partial [\mathbf{F}_1 - \mathbf{F}_1]}{\partial x} + \frac{\partial [\mathbf{F}_2 - \mathbf{F}_2]}{\partial y} + \frac{\partial [\mathbf{F}_3 - \mathbf{F}_3]}{\partial z} = 0 \quad (22)$$

$$\mathbf{e}'_1 = \beta (-i\omega) [\mathbf{G} - \mathbf{G}] + \frac{\partial [\mathbf{G} - \mathbf{G}]}{\partial x}, \quad \mathbf{e}'_2 = \frac{\partial [\mathbf{G} - \mathbf{G}]}{\partial y}, \quad \mathbf{e}'_3 = \frac{\partial [\mathbf{G} - \mathbf{G}]}{\partial z} \quad (23)$$

where a tilde indicates the time Fourier transformed variable.

In the second step, we apply the PML complex change of variables to (23) and (24), which amounts to a modification of spatial derivatives as

$$\frac{\partial}{\partial x} \rightarrow \frac{1}{1 + i\sigma_x} \frac{\partial}{\partial x}, \quad \frac{\partial}{\partial y} \rightarrow \frac{1}{1 + i\sigma_y} \frac{\partial}{\partial y}, \quad \frac{\partial}{\partial z} \rightarrow \frac{1}{1 + i\sigma_z} \frac{\partial}{\partial z}$$

where σ_x, σ_y and σ_z are absorption coefficients, positive, and could be functions of x, y and z respectively[6, 7, 19]. Application of the PML complex change of variables yields the following:

$$(-i\omega \mathbf{u}') + \beta (-i\omega) [\mathbf{F}_1 - \mathbf{F}_1] + \frac{1}{1 + i\sigma_x} \frac{\partial [\mathbf{F}_1 - \mathbf{F}_1]}{\partial x} + \frac{1}{1 + i\sigma_y} \frac{\partial [\mathbf{F}_2 - \mathbf{F}_2]}{\partial y} + \frac{1}{1 + i\sigma_z} \frac{\partial [\mathbf{F}_3 - \mathbf{F}_3]}{\partial z} = 0 \quad (24)$$

$$\mathbf{e}''_1 = \beta (-i\omega) [\mathbf{G} - \mathbf{G}] + \frac{1}{1 + i\sigma_x} \frac{\partial [\mathbf{G} - \mathbf{G}]}{\partial x}, \quad \mathbf{e}''_2 = \frac{1}{1 + i\sigma_y} \frac{\partial [\mathbf{G} - \mathbf{G}]}{\partial y}, \quad \mathbf{e}''_3 = \frac{1}{1 + i\sigma_z} \frac{\partial [\mathbf{G} - \mathbf{G}]}{\partial z} \quad (25)$$

In the third step, we try to re-write (25)-(26) in the time domain to obtain the absorbing boundary condition. This can be done in many different ways[20]. In order to keep the number of auxiliary variables small for the general three-dimensional equations considered here, we will use a “split” approach in the derivation below. Let
\[\mathbf{u}' = q_1 + q_2 + q_3 \] (27)

where \(q_1, q_2 \) and \(q_3 \) are auxiliary variables that satisfy the following equations split from (25).

\[-i\omega \tilde{q}_1 + \beta(-i\omega)[\tilde{F}_1 - \tilde{F}_1] + \frac{1}{1 + \frac{i\sigma_x}{\omega}} \frac{\partial[\tilde{F}_1 - \tilde{F}_1]}{\partial x} = 0 \] (28)

\[-i\omega \tilde{q}_2 + \frac{1}{1 + \frac{i\sigma_y}{\omega}} \frac{\partial[\tilde{F}_2 - \tilde{F}_2]}{\partial y} = 0, \quad -i\omega \tilde{q}_3 + \frac{1}{1 + \frac{i\sigma_z}{\omega}} \frac{\partial[\tilde{F}_3 - \tilde{F}_3]}{\partial z} = 0 \] (29)

We note that by adding the three equations in (28)-(29), we will recover (25). The auxiliary variables \(q_1, q_2 \) and \(q_3 \) are introduced only to facilitate the conversion of equation (25) into one in the time domain.

By multiplying \((1 + \frac{i\sigma_x}{\omega}) \), \((1 + \frac{i\sigma_y}{\omega}) \) and \((1 + \frac{i\sigma_z}{\omega}) \) to the equations for \(\tilde{q}_1 \) and \(\tilde{e}_1', \tilde{q}_2 \) and \(\tilde{e}_2' \), and \(\tilde{q}_3 \) and \(\tilde{e}_3' \), respectively, we get the following set of equations,

\[(-i\omega + \sigma_x) \tilde{q}_1 + \beta(-i\omega + \sigma_x)[\tilde{F}_1 - \tilde{F}_1] + \frac{\partial[\tilde{F}_1 - \tilde{F}_1]}{\partial x} = 0 \] (30)

\[(-i\omega + \sigma_y) \tilde{q}_2 + \frac{\partial[\tilde{F}_2 - \tilde{F}_2]}{\partial y} = 0, \quad (-i\omega + \sigma_z) \tilde{q}_3 + \frac{\partial[\tilde{F}_3 - \tilde{F}_3]}{\partial z} = 0 \] (31)

\[(1 + \frac{i\sigma_x}{\omega}) \tilde{e}_1' = \beta(-i\omega + \sigma_x)[\tilde{G} - \tilde{G}] + \frac{\partial[\tilde{G} - \tilde{G}]}{\partial x} \] (32)

\[(1 + \frac{i\sigma_y}{\omega}) \tilde{e}_2' = \frac{\partial[\tilde{G} - \tilde{G}]}{\partial y}, \quad (1 + \frac{i\sigma_z}{\omega}) \tilde{e}_3' = \frac{\partial[\tilde{G} - \tilde{G}]}{\partial z} \] (33)

We next write the time domain equations for the above as

\[\frac{\partial q_1}{\partial t} + \sigma_x q_1 + \beta \sigma_x [\tilde{F}_1 - \tilde{F}_1] + \beta \frac{\partial[\tilde{F}_1 - \tilde{F}_1]}{\partial t} + \frac{\partial[\tilde{F}_1 - \tilde{F}_1]}{\partial x} = 0 \] (34)

\[\frac{\partial q_2}{\partial t} + \sigma_y q_2 + \frac{\partial[\tilde{F}_2 - \tilde{F}_2]}{\partial y} = 0, \quad \frac{\partial q_3}{\partial t} + \sigma_z q_3 + \frac{\partial[\tilde{F}_3 - \tilde{F}_3]}{\partial z} = 0 \] (35)

\[e_1' + \sigma_x r_1 = \beta \sigma_x [\tilde{G} - \tilde{G}] + \beta \frac{\partial[\tilde{G} - \tilde{G}]}{\partial t} + \frac{\partial[\tilde{G} - \tilde{G}]}{\partial x} \] (36)

\[e_2' + \sigma_y r_2 = \frac{\partial[\tilde{G} - \tilde{G}]}{\partial y}, \quad e_3' + \sigma_z r_3 = \frac{\partial[\tilde{G} - \tilde{G}]}{\partial z} \] (37)

where a second set of auxiliary variables \(r_1, r_2, r_3 \) are defined as
\[
\frac{\partial \mathbf{r}_i}{\partial t} = e'_i, \quad i = 1, 2, 3
\]

Finally, by writing back in the original space and time variables, we obtain the time-domain absorbing boundary equations as follows,

\[
\frac{\partial \mathbf{u}}{\partial t} + \frac{\partial [F_1 - \bar{F}_1]}{\partial x} + \frac{\partial [F_2 - \bar{F}_2]}{\partial y} + \frac{\partial [F_3 - \bar{F}_3]}{\partial z} + \sigma_x q_1 + \sigma_y q_2 + \sigma_z q_3 + \beta \sigma_x [F_1 - \bar{F}_1] = 0
\] (38)

\[
\frac{\partial q_1}{\partial t} + \sigma_x q_1 + \frac{\partial [F_1 - \bar{F}_1]}{\partial x} + \beta \sigma_x [F_1 - \bar{F}_1] = 0
\] (39)

\[
\frac{\partial q_2}{\partial t} + \sigma_y q_2 + \frac{\partial [F_2 - \bar{F}_2]}{\partial y} = 0
\] (40)

\[
\frac{\partial q_3}{\partial t} + \sigma_z q_3 + \frac{\partial [F_3 - \bar{F}_3]}{\partial z} = 0
\] (41)

\[
\frac{\partial r_1}{\partial t} + \sigma_x r_1 = \frac{\partial [G - \bar{G}]}{\partial x} + \beta \sigma_x [G - \bar{G}]
\] (42)

\[
\frac{\partial r_2}{\partial t} + \sigma_y r_2 = \frac{\partial [G - \bar{G}]}{\partial y}
\] (43)

\[
\frac{\partial r_3}{\partial t} + \sigma_z r_3 = \frac{\partial [G - \bar{G}]}{\partial z}
\] (44)

where \(F_i\) and \(G\) are functions of \(\mathbf{u}\) and \(e_i, i = 1, 2, 3\), as defined by (3)-(5) and (11), and \(e_i\) are computed by

\[
e_1 = \frac{\partial G}{\partial x} - \sigma_x r_1 + \beta \sigma_x [G - \bar{G}]
\] (45)

\[
e_2 = \frac{\partial G}{\partial y} - \sigma_y r_2
\] (46)

\[
e_3 = \frac{\partial G}{\partial z} - \sigma_z r_3
\] (47)

Equations (38)-(44) are the governing equations to be solved in the PML domain. We should point out that when the flux vectors are nonlinear functions, unlike in linear cases, the time domain equations (34)-(37) are no longer the exact inverse Fourier transformation of the frequency domain equations (30)-(33). As a result, equations (38)-(44) are not deemed formally perfectly matched to the nonlinear governing equation (1), although numerical results are still quite satisfactory as we will demonstrate later in the paper.

We note that equation (38) is equivalent to the sum of equations (39)-(41) and thus is not formally an independent equation, because the following relation holds true in the PML domain,
\[u = \bar{u}_p + q_1 + q_2 + q_3 \] \((48) \)

However, equation (38) can often be implemented easily as it is written in the original physical variables. The use of (38) will also reduce the requirement on storage, because an inspection of equations (38)-(44) shows that not all the auxiliary variables are needed everywhere inside the PML domain. The auxiliary variables are only needed where the corresponding absorption coefficient is non-zero. For instance, \(q_1 \) and \(r_1 \) are only necessary at \(x \)-layers where \(\sigma_x \) is not zero; similarly, \(q_2, r_2 \) and \(q_3, r_3 \) are only necessary where \(\sigma_y \) and \(\sigma_z \) are respectively not zero. Since absorption coefficients \(\sigma_x, \sigma_y \) and \(\sigma_z \) are functions of \(x, y \) or \(z \), respectively, regions of non-zero absorption coefficients, as well as the required auxiliary variables, are as shown in Figure 3 for a section of computational domain with PML.

Therefore, the equations to be solved in a PML domain will be (38), for \(u \), plus additional equations from (39)-(44) for the auxiliary variables \(q_i \) and \(r_i \) wherever the corresponding absorption coefficient is non-zero. At the corner layer where all the absorption coefficients are non-zero, the equation for one of the \(q \) variables may be substituted by relation (48) if so desired.

We also note that, the three terms involving spatial derivatives of \(\bar{F}_1, \bar{F}_2 \) and \(\bar{F}_3 \) can obviously be dropped from (38) if the pseudo mean flow satisfies the steady state equation (16). However, the equations as written in (38)-(43) would still be self-consistent in the limit of \(u \rightarrow \bar{u}_p \) even if the pseudo mean flow \(\bar{u}_p, \bar{e}_1, \bar{e}_2 \) and \(\bar{e}_3 \) do not exactly satisfy (16). That is, \(u = \bar{u}_p \) with \(q_i = r_i = 0 \) will always satisfy the equations written as (38)-(43). This could be helpful for problems where only a pseudo mean flow that approximately satisfies the steady state equation (16) would be available. For such cases, inclusion of the flux expressions from the pseudo mean flow as written in (38) can prove to be useful.

The equations given above, (38)-(44), include the PML for the inviscid nonlinear Euler equations as a special case, by neglecting the viscous terms. Exclusion of viscous effects leads to the elimination of terms involving
e_1, e_2 and e_3 and, consequently, the necessity for auxiliary variables r_1, r_2 and r_3. Thus, the equations to be solved in the absorbing zone for inviscid problems will be (38)-(41).

3 Pseudo mean flow and value for β

In our derivation above, the only requirement on the pseudo mean flow u_p is that it would satisfy the steady state equation (16). As pointed out earlier, the exact mean flow is often unknown at the start of a computation. A suitable known solution to the steady equation (16) that resembles the actual flow can be a viable pseudo mean flow in the formulation of the PML equation. In this sense, the choice of pseudo mean flow is not unique. For many practical problems, such a pseudo mean flow would be relatively easy to find[17, 21]. For instance, a parallel flow will satisfy the steady state Euler equation and thus can be used as a pseudo mean flow for the appropriate nonlinear Euler simulations. For example, in primitive variables,

$$
\begin{bmatrix}
\rho \\
u \\
v \\
w \\
p
\end{bmatrix}
=
\begin{bmatrix}
\tilde{\rho}_p(y) \\
\tilde{u}_p(y) \\
0 \\
0 \\
\tilde{p}_p
\end{bmatrix}
$$

(49)

will satisfy (16) without the viscous terms, where $\tilde{\rho}_p(y)$ and $\tilde{u}_p(y)$ can be freely adjusted to resemble the flow at the non-reflecting boundary. Likewise, a constant uniform mean flow also satisfies the steady state Navier-Stokes equations.

Once the pseudo mean flow is chosen, the parameter β in the PML equations is to be determined as described in [19]. The purpose of the space-time transformation given in (19) is to ensure linear stability of the PML equations. It is used to correct the inconsistency in the phase and group velocities of the acoustic wave modes in the derivation process.

For inviscid problems, since the linearization of PML equations derived in this paper is equivalent to the linearized Euler equation given in [19] in frequency domain, the value for β can be found in the same way as that described in [19] based on the pseudo mean flow employed. In general, a study on the dispersion relation $D(\omega, k) = 0$ for the linear waves supported by the pseudo mean flow would be required to determine the value of β. For the special case where the density of the pseudo mean flow is constant, i.e., $\tilde{\rho}_p(y) = 1$, we may use a simple empirical formula given in [19],

$$
\beta = \frac{\bar{U}_m}{1 - \bar{U}_m^2}, \quad \bar{U}_m = \frac{1}{b - a} \int_a^b \bar{u}_p(y) dy
$$

(50)

where the computational domain for y is $[a, b]$.

For viscous problems, it has been found that the presence of viscosity will not substantially affect the value for β, since the inconsistency in the phase and group velocities occurs only for the acoustic waves for a parallel flow in the direction of x, to which viscous effects are usually small. As an example, we consider a pseudo mean flow given by

$$
\bar{u}_p(y) = \frac{1}{2}(u_1 + u_2) + \frac{1}{2}(u_1 - u_2) \tanh\left(\frac{y}{0.2}\right), \quad \bar{v}_p = 0, \quad \bar{\rho}_p(y) = 1, \quad \bar{p}_p = \frac{1}{\gamma}
$$
with

\[u_1 = 0.8, \quad u_2 = 0.2, \quad \text{and} \quad -1 \leq y \leq 1 \]

A numerical study of the dispersion relations of linear waves gives the following values for \(\beta \):

\[
\text{Inviscid: } \quad \beta \approx 0.63 \\
\text{Re} = 5000: \quad \beta \approx 0.63 \\
\text{Re} = 500: \quad \beta \approx 0.63 \\
\text{Re} = 50: \quad \beta \approx 0.64
\]

while the empirical formula (50) gives \(\beta \approx U_m/(1 - U_m^2) = 2/3 \approx 0.67 \) by using \(U_m = 1/2 \), the average of \(\bar{u}_p \).

4 Numerical examples

In this section, we present numerical examples of using the absorbing boundary conditions derived in the present study for the nonlinear Euler and Navier-Stokes equations, based on a viscous computational aeroacoustic approach[23][22]. The dispersion-relation-preserving scheme[26] is applied for spatial discretization and the optimized 5- and 6-stage alternating low-dissipation and low-dispersion Runge-Kutta scheme[15] is used for time integration.

4.1 Isentropic vortex using nonlinear Euler equations

We first present a numerical example that verifies the effectiveness of the PML for the nonlinear Euler equation. The two-dimensional nonlinear Euler equations support an advective solution of the form

\[
\begin{pmatrix}
 \rho(x, t) \\
 u(x, t) \\
 v(x, t) \\
 p(x, t)
\end{pmatrix} =
\begin{pmatrix}
 0 \\
 U_0 \\
 V_0 \\
 0
\end{pmatrix} +
\begin{pmatrix}
 \rho_r(r) \\
 -u_r(r) \sin \theta \\
 u_r(r) \cos \theta \\
 p_r(r)
\end{pmatrix}
\]

(51)

where \(r = \sqrt{(x - U_0 t)^2 + (y - V_0 t)^2} \). For any given \(u_r(r) \) and \(\rho_r(r) \), the pressure \(p_r(r) \) is found by

\[
\frac{d}{dr} p_r(r) = \rho_r(r) \frac{u_r^2(r)}{r}
\]

(52)

Equation (51) gives a solution that advects with constant velocity \((U_0, V_0)\).

For our numerical tests, we consider a velocity distribution of the form

\[
\frac{d}{dr} p_r(r) = \frac{U''_{max}}{b} r e^{3(1 - \frac{r^2}{b^2})}
\]

(53)
where U'_{max} is the maximum velocity at $r = b$. For isentropic flow, we assume

$$
p_{r} = \frac{1}{\gamma} \rho_{r}
$$

and, by integrating (52), we get the following density and pressure distributions,

$$
\rho_{r}(r) = \left(1 - \frac{1}{2}(\gamma - 1)U'^{2}_{\text{max}} e^{1 - \frac{x}{\Delta}} \right)^{1/(\gamma - 1)}
$$

$$
p_{r}(r) = \frac{1}{\gamma} \left(1 - \frac{1}{2}(\gamma - 1)U'^{2}_{\text{max}} e^{1 - \frac{x}{\Delta}} \right)^{\gamma/(\gamma - 1)}
$$

The v-velocity contours of a numerical solution is shown in Figure 4. The initial condition is that given in (51) with $(U_{0}, V_{0}) = (0.5, 0)$, $U'_{\text{max}} = 0.5U_{0} = 0.25$, and $b = 0.2$. The nonlinear Euler equation is solved by a finite difference scheme in a computational domain of $[-1.2, 1.2] \times [-1.2, 1.2]$ with a uniform grid of $\Delta x = \Delta y = 0.02$, including the surrounding PML domain of 10 grid points in width. In particular, the PML absorption coefficient is taken to be

$$
\sigma_{x} = \sigma_{\text{max}} \left| x - x_{0} \right|^{\alpha}
$$

with $\sigma_{\text{max}} = 20$, $\alpha = 4$ and x_{0} is the location of interface between PML and physical domains. A similar model for σ_{y} is used. A grid stretching in the PML domain is also used to increase the efficiency of the absorbing zone. The stretching factor is

$$
\alpha(x) = 1 + 2 \left| \frac{x - x_{0}}{D} \right|^{2}
$$

as noted in [19]. The pseudo mean flow is taken to be the same as the uniform background flow with parameter $\beta = U_{0}/(1 - U_{0}^{2})$.

Figure 4 shows the v-velocity contours at time $t = 0$, 1.5, 2.5 and 3.5 respectively, at levels from ±0.02 to ±0.4. Absorption of the vortex by PML at the outflow boundary is clearly demonstrated. Figure 5 shows the v-velocity as a function of x along $y = 0$, as the vortex exits the computational domain. Also plotted in dashed lines are the exact solution. The numerical solution matches the exact solution in the Euler domain while decays exponentially in the PML domain.

To further assess the magnitude of reflection error, Figure 6 plots the maximum difference between the numerical solution and a reference solution obtained using a larger computational domain, along a vertical line near the outflow boundary, as a function of time. The reflection errors are indeed quite small and decrease with an increase in the width of the PML domain employed. Figure 7 shows the trend in the reduction of the maximum reflection error, for the v-velocity component as well as the pressure, as the PML width increases.

Figure 8 shows the maximum reflection error in v-velocity component relative to the maximum velocity of the vortex U'_{max} along $x = 0.9$ near the outflow boundary for various strengths of the vortex. Although reflection error generally increases with the strength of the vortex, a relative error of less than 1% is achieved.
for all cases with PML width of 20 grid points. Figure 9 plots the maximum reflection error, for the v-velocity component and the pressure, as a function of the vortex strength U_{max}'/U_0 in a log scale, showing the trend of increase in reflection error with the increase in the nonlinearity.

4.2 Isentropic vortex with nonlinear Navier-Stokes equations

The example in the previous section is repeated using the nonlinear Navier-Stokes equations. The computational domain and initial condition are similar but viscous terms in the governing equations are now included. The numerical solution is compared with a large domain solution to obtain a measure of the reflection error. Figure 10 shows the reflection error for the v-velocity component relative to the maximum perturbation velocity U_{max}' of the initial vortex, at various Reynolds numbers which is based on the velocity U_0. Figure 11 shows the reflection error for the pressure relative to the maximum pressure perturbation caused by the vortex, P_{max}', which is defined by $|p_r(0) - p_r(\infty)| \approx \frac{1}{2} U_{\text{max}}'^2$ as given in (56). It is seen that generally reflection errors shown in Figures 10 and 11 decrease with the Reynolds number. This reduction in reflection error is partly due to a weakening of vortex by viscous diffusion effect when it reaches the outflow boundary from its initial position $(x, y) = (0, 0)$. Figure 12 shows the trend of reduction of the maximum reflection error as a function of the Reynolds number.

Figure 13 shows the effect of the strength of vortex on the reflection errors in the Navier-Stokes simulation. In this example, the background uniform flow is taken to be $U_0 = 0.2$ while the maximum velocity of the vortex perturbation is increased from $U_{\text{max}}' = 0.1U_0$ up to $2.0U_0$, a very high nonlinearity. It is observed that reflection errors increase with the strength of the vortex. This is not unexpected because the nonlinearity increases with U_{max}'. In particular, we note that when U_{max}' is greater than U_0, part of the vortex region actually have a total velocity in direction opposite to the background mean flow.

Figure 14 shows the effects of the mean flow Mach number on the effectiveness of the PML domain. The background flow Mach number U_0 is varied from 0.2 to 0.8 while the strength of vortex U_{max}' is kept as $0.5U_0$ in each case. The maximum reflection errors are found to be of similar magnitude. This means that the effectiveness of the absorbing boundary condition does not strongly depend on the mean flow Mach number.

4.3 Viscous flow over a circular cylinder

In this example, we show the absorption of nonlinear vortices shedded by a viscous flow over a circular cylinder. The uniform incoming flow has a Mach number $M = U_\infty/a_\infty = 0.2$. Here U_∞ and a_∞ denote the velocity of the uniform flow and the speed of sound respectively. The velocity and the length are nondimensionalized by a_∞ and the diameter of the cylinder d, respectively. The Reynolds number is defined as $Re = U_\infty d/\nu_\infty$, where ν_∞ is the reference kinematic viscosity. For the present calculation, $Re = 150$ and the Prandtl number $Pr = 0.75$.

Figure 15 shows the multi-domain computational mesh layout with overset grids, for $(x, y) \in [-7, 11] \times [-7, 7]$. The cylinder is located at $(x, y) = (0, 0)$ with a radius of 0.5 and all PML domains have a width of 20 grid points. The main computational domain is divided into two regions. An O-grid system with non-uniform meshes is adopted around the cylinder, covering a region in polar coordinates of $0.5 \leq r \leq 1.5$, $0 \leq \theta \leq 2\pi$, with a non-uniform grid spacing of $\Delta r_{\text{min}} = 0.005$, $\Delta r_{\text{max}} = 0.02$, and $\Delta \theta = 1.2^\circ$. Another region is
Figure 4: v-velocity contour levels from ±0.02 to ±0.24.
Figure 5: v-velocity profile along $y = 0$ at progressive time frames. Solid line: numerical solution; dashed line: exact solution. Vertical dashed lines indicate the Euler/PML interface.
Figure 6: Maximum reflection error (v-velocity component) along \(x = 0.9 \) near the outflow boundary. PML width is as indicated.

composed of multi-block uniform meshes with \(\Delta x = \Delta y = \Delta \). In each block, the value of \(\Delta \) is specified in Figure 15. A high-order Lagrange interpolation technique is utilized for the overset grids.

Calculation is initiated with the uniform flow for the entire computational domain. A natural choice for the pseudo mean flow is the incoming uniform flow at all four PML domains, namely,

\[\bar{u}_p = M, \quad \bar{v}_p = 0, \quad \bar{\rho}_p = 1, \quad \bar{\rho}_p = 1/\gamma \] \hspace{1cm} (57)

with \(\beta = M/(1-M^2) \). Figure 16 shows the instantaneous pressure contours at \(t = 5, 8, 10 \) and 450, calculated by the direct numerical simulation, solving (1) in the physical domain and PML equations (38)-(44) in the absorbing zones. The initial transient pressure wave exits the computational domain without noticeable reflection. After \(t = 400 \), vortex shedding is observed. Figure 17 shows the vorticity contours over a period of vortex shedding. The absorption of the nonlinear vortices by the PML zone at the outflow is clearly seen.

In Figure 18, we show the v-velocity and pressure at a point \((x, y) = (9, 0)\) on the outflow boundary of the physical domain as a function of time, from \(t = 0 \) to \(t = 700 \). Also plotted, in symbols, is the result of a reference solution computed using a larger computational domain. The reference solution is obtained using a computational domain of \([-7, 30] \times [-7, 7]\). The discrepancy seen in the pressure around time \(t = 300 \) is due to the truncation of the initial wake flow by the smaller computational domain before the periodic vortex shedding is started. Good agreement in the time history of the periodically shed vortices is observed. Figures 17 and 18 indicate that the PML domain at the outflow boundary can effectively absorb these vortices as they convect out of the computational domain.
Figure 7: Maximum reflection error, for the v-velocity component and pressure, as a function of the PML width D.

4.4 Shear layer roll-up vortices

In this example, we simulate a mixing layer with roll-up vortices induced by the Kelvin-Helmholtz instability. The PML equations developed in the present paper are applied as the absorbing boundary condition. The Navier-Stokes equation (1) is solved in a computational domain of $[-1, 9] \times [-1, 1]$ by a finite difference scheme, with $\Delta x = 0.05$ and $\Delta y = 0.01$. The Reynolds number for this computation is 10000. PML domain with a width of 10 grid points are added at four sides of the computational domain to absorb all out-going waves. The initial condition is

$$
\begin{pmatrix}
\rho \\
u \\
u \\
p
\end{pmatrix} = \begin{pmatrix}
\bar{\rho}(y) \\
\bar{U}(y) \\
0 \\
\frac{1}{\gamma}
\end{pmatrix}
$$

where

$$
\bar{U}(y) = \frac{1}{2} \left[(U_1 + U_2) + (U_1 - U_2) \tanh \left(\frac{2y}{\delta} \right) \right], \quad \bar{\rho}(y) = \frac{1}{T(y)}
$$

with

$$
\bar{T}(y) = T_1 \frac{\bar{U} - U_2}{U_1 - U_2} + T_2 \frac{U_1 - \bar{U}}{U_1 - U_2} + \frac{\gamma - 1}{2} (U_1 - \bar{U})(\bar{U} - U_2)
$$

where the mean temperature $\bar{T}(y)$ is determined by the Crocco relation for compressible flows. The parameters are
Figure 8: Maximum relative reflection error (v-velocity component) along $x = 0.9$ near the outflow boundary. PML width $D = 20\Delta x$.

$U_1 = 0.8$, $U_2 = 0.2$, $\delta = 0.4$, $T_1 = 1$, $T_2 = 0.8$, $\gamma = 1.4$.

A source term is added to the energy equation in (1) to induce the instability wave. The source term is of the form

$$s(x, y, t) = 5 \sin(\omega t)e^{-(\ln 2)(x-x_0)^2+(y-y_0)^2)/r_0^2}$$

where $\omega = \pi/2$, $(x_0, y_0) = (-0.5, 0)$ and $r_0 = 0.03$.

The added source term excites the Kelvin-Helmholtz instability wave which would grow exponentially and develop into roll-up vortices. Figure 19 gives a time sequence of vorticity contours showing the absorption of out-going vorticities at the outflow boundary. Figure 20 plots the time history of v-velocity and pressure at a point close to the outflow boundary. Also plotted in symbols are the corresponding time histories from a large domain calculation whose solution is not affected by the boundary. Very good agreement is found.

For the calculation shown in Figure 19, the pseudo mean flow \bar{u}_p used in the PML equation is the same parallel flow as that of the initial condition (58), with a value of $\beta = 1/1.4$ according to the linear wave analysis given in [19]. Calculations have also been made using different pseudo mean flow profiles to study the effects of pseudo mean flow choices on the accuracy of the absorbing boundary condition. In particular, three different pseudo mean flows have been applied at the outflow boundary where the thickness parameter
Figure 9: Maximum reflection error, for the v-velocity component and the pressure, as a function of vortex strength U_{max}/U_0.
Figure 10: Maximum relative reflection error (v-velocity component) at various Reynolds numbers. $U_0 = 0.5$, $U'_{\max} = 0.5U_0$.
Figure 11: Maximum relative reflection error (pressure) at various Reynolds numbers. \(U_0 = 0.5, U'_{\text{max}} = 0.5U_0 \).

Figure 12: Maximum relative reflection error, for the v-velocity and pressure, as a function of $1/\text{Re}$.
Figure 13: Maximum relative reflection error for various strengths of the vortex. $U_0 = 0.2$, $Re = 200$.

Figure 14: Maximum relative reflection error for different mean flows. $U'_{\text{max}} = 0.5U_0$, $Re = 200$.

23
for the u-velocity profile is taken to be $\delta = 0.4, 0.6$ and 0.8 respectively. Figure 21 shows the instantaneous u-velocity contours for the three cases. The velocity contours inside the physical domain are nearly identical in the three cases. This indicates that the PML equation is relatively accommodating in the choice of pseudo mean flow as long as it is reasonably close to the actual flow.

4.5 Flat-plate boundary layer

In this example, we apply the PML absorbing boundary condition to the computation of steady boundary layer profile formed by a uniform flow over a flat plate. A schematic of the computational domain is shown in Figure 22. The incoming flow is uniform in the direction of x-axis with Mach number $M = 0.1$. The Reynolds number is $Re = 10000$ and the Prandtl number $Pr = 0.708$.

PML domains are used at all the three non-reflecting boundaries. For the left inflow and top radiation boundaries, the pseudo mean flow is the same as the incoming uniform flow. For the PML at the outflow boundary, in order to adjust for the no-slip boundary condition at the wall, the pseudo mean flow is taken to be the following,

\[
\bar{u}_p = \begin{cases}
M & y > \delta \\
M \sin(\pi y/2\delta) & 0 \leq y \leq \delta
\end{cases}
\]

\[\bar{v}_p = 0, \quad \bar{\rho}_p = \frac{1}{\gamma}, \quad \bar{\rho}_p = \frac{1 + 0.5(\gamma - 1)\bar{u}_p^2}{1 + 0.5(\gamma - 1)M^2}\]
Figure 16: Pressure contour plots at time $t = 5, 8, 10$ and 450.
Figure 17: Vorticity contour plots over a period of vortex shedding, from left to right, top to bottom.
Figure 18: Time history of the v-velocity and pressure. Solid line: computational; circle: large domain calculation.
Figure 19: A time sequence of vorticity contour plots.
Figure 20: Time history of the \(\epsilon \)-velocity and pressure. Solid line: computational; circle: large domain calculation.
Figure 21: Instantaneous u-velocity contours in three computations, using different pseudo mean flow thickness. (a) $\delta = 0.4$; (b) $\delta = 0.6$; (c) $\delta = 0.8$.
The thickness parameter δ in (61) is taken to be an estimated boundary layer thickness. For the present Reynolds number, $\delta = 0.053$ is used in the computation. The value of β is 0.0911 obtained by the formula given in (50).

Numerical calculation starts with an initialization of all variables in the physical domain by the uniform incoming flow. After the transients are absorbed by the PML domains, the numerical solution approaches to a steady state. Figure 23 shows the time history of the residues of the steady state governing equations in the physical domain. The L_2 norm of the residues eventually becomes less than 10^{-8}, an indication that the numerical solution is close to the steady state solution. Figure 24 shows the contours of the u-velocity in the whole computational domain and Figure 25 shows the normalized stream-wise velocity profile. Also plotted in Figure 25 are the theoretical Blasius similarity solution, with good agreement. We note that the PML has been primarily designed to absorb time-dependent out-going waves. The purpose of this example is to demonstrate the possibility of using the proposed absorbing boundary condition for steady state applications. Further studies on the efficiency of PML for such calculations will be carried out in the future.

We also note that the pseudo mean flow (61) used in the outflow PML domain does not exactly satisfy the steady state Navier-Stokes equations. Nonetheless, as pointed out earlier in section 3, the equations written in the form of (38)-(44) still appear to be effective. For steady state computations, it is also possible to update the initial pseudo mean flow with an improved mean flow as the computation proceeds.

4.6 Three dimensional acoustic pulse

In this example, the propagation of a three dimensional nonlinear acoustic pulse in a uniform mean flow is simulated using the nonlinear Navier-Stokes equations. The PML absorbing boundary conditions are applied in all non-reflecting boundaries, similar to the situation depicted in Figure 3. The initial condition is as follows,

$$ t = 0, \quad \rho = 1 + P_{max} e^{-(\ln 2)(x^2+y^2+z^2)/r_0^2}, \quad u = U_0, \quad v = 0, \quad w = 0, \quad p = \frac{1}{\gamma} + P_{max} e^{-(\ln 2)(x^2+y^2+z^2)/r_0^2} $$

where $\gamma = 1.4, r_0 = 1.0, U_0 = 0.5, P_{max} = 0.5$, and the Reynolds number is 500. The computational domain is $[-12, 12] \times [-12, 12] \times [-12, 12]$, including the PML domain, with a uniform mesh $\Delta x = \Delta y = \Delta z = 0.2$.

![Figure 22: Schematic of computational domain for the boundary layer computation.](image)
Figure 23: L2 norm of residues over the physical domain. $L_2(\rho), L_2(\rho u), L_2(\rho v)$ and $L_2(\rho e)$ denote the residues of continuity, momentum (u and v) and energy equations, respectively, and t_n denotes the time.

Figure 24: Stream-wise velocity contours.
Figure 25: Comparison with Blasius solution at \(x = 0.4, 0.6, 0.8 \). \(u_e \) is the exterior stream-wise velocity.
The PML domains have a width of 10 grid points on all six sides and the maximum of PML absorption coefficients σ_{max} is 10. The pseudo mean flow is set as the uniform background flow with the value of $\beta = U_0/(1 - U_0^2)$.

Figure 26 shows the pressure contours at $t = 8$ and 12. The effectiveness of the PML boundary condition is well demonstrated.

Figure 27 shows the pressure at a point close to the outflow boundary, $(x, y, z) = (9, 0, 0)$, as a function of time. Very good agreement between the computational and reference solutions is observed. Also shown are the differences between the two solutions relative to the pulse strength P'_{max}. For $P'_{max} = 0.1, 0.2$ and 0.5, maximum relative reflection errors are all around 10^{-4}.

5 Conclusions

A time-domain absorbing boundary condition for the nonlinear Euler and Navier-Stokes equations has been presented following a recently developed method for the linearized Euler equations. It offers a natural extension of the linear PML equations to nonlinear equations of fluid dynamics. By introducing the concept of pseudo mean flow, the efficiency of PML is increased as it becomes only necessary to absorb the difference between the total variable and a prescribed pseudo mean flow. The pseudo mean flow is not required to be exactly the same as the actual mean flow when the latter is not available. Although the proposed equations are not theoretically perfectly matched to the nonlinear governing equations as their linear counter-parts are, numerical examples demonstrated their effectiveness as absorbing boundary conditions in truncating open boundaries in nonlinear Euler and Navier-Stokes simulations.

Since the proposed nonlinear equations reduce to the linear PML equations upon a linearization about the pseudo mean flow, the linear stability property of the PML proposed here is expected to be the same as those given in [19]. Although no numerical instability has been found in all our computations, theoretical property on the nonlinear stability remains to be defined. The success of PML for the fully nonlinear Euler and Navier-Stokes equations reported in the present paper is a significant step toward a wider application of the PML technique for computational fluid dynamics and computational aeroacoustics.

ACKNOWLEDGMENTS

This work is supported by grants from the National Science Foundation DMS-0411402(F. Q. Hu), the National Natural Science Foundation of China 50676003 and the 973 program-2007CB714604 (X. D. Li and D. K. Lin), and the 111 project B07009 of China. The authors also would like to thank the reviewers for constructive comments.

References

Figure 26: Slices of pressure contours at $t = 8$ (top) and $t = 12$ (bottom).
Figure 27: Left: pressure at a point close to the boundary as a function of time; Right: relative reflection error in pressure compared with the large domain reference solution.

