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It has been well-known that under the assumption of a uniform mean flow, the acoustic wave propa-
gation equation can be formulated as a boundary integral equation. However, the constant mean
flow assumption, while convenient for formulating the integral equation, does not satisfy the solid
wall boundary condition wherever the body surface is not aligned with the assumed uniform flow.
A customary boundary condition for rigid surfaces is that the normal acoustic velocity be zero. In
this paper, a careful study of the acoustic energy conservation equation is presented that shows
such a boundary condition would in fact lead to source or sink points on solid surfaces. An alterna-
tive solid wall boundary condition, termed zero energy flux boundary condition, is proposed that
conserves the acoustic energy and a time domain boundary integral equation is derived.
Furthermore, stabilization of the integral equation by Burton—Miller type reformulation is pre-
sented. The stability is studied theoretically as well as numerically by an eigenvalue analysis.

Numerical solutions are also presented that demonstrate the stability of the current formulation.
© 2017 Acoustical Society of America. https://doi.org/10.1121/1.5017734
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I. INTRODUCTION

Numerical solution of sound scattering by an acousti-
cally large body remains a significant challenge due to its
high demand on computational resources that are required to
resolve the acoustic waves of short wavelengths. It is well-
known that under the assumption of a constant mean flow,
the acoustic wave propagation is governed by the convective
wave equation that, in turn, can be converted into a boundary
integral equation. The boundary integral equation approach
has the advantage of reducing the spatial dimensions of the
problem by one, making it an attractive computational
method for calculating sound scattering and shielding at mid
to high frequencies. In this paper, we consider the problem
of acoustic scattering by rigid bodies in the presence of a
uniform flow using the boundary integral equation approach.
The present approach is based on the time domain boundary
integral equation. The time domain approach has some dis-
tinct advantages over a frequency domain approach. Most
notably, scattering solutions at all frequencies are obtained
within one single computation. In addition, broadband noise
sources and time dependent transient signals can be simu-
lated and studied. The time domain approach also couples
naturally with nonlinear computations where many frequen-
cies are generated.

Previously, scattering of sound waves by rigid bodies
with flow has been studied, in both the frequency domain
and the time domain. In Ref. 1, acoustic radiation in a mov-
ing flow was formulated as a boundary integral equation in
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the frequency domain. The nonuniqueness of the exterior
problem was dealt with by applying the Burton—Miller refor-
mulation procedure.” In the time domain, a boundary inte-
gral equation approach for scattering by moving surfaces
was first formulated and studied in Ref. 3. More recent stud-
ies of the time domain approach in the presence of a mean
flow can be found in Refs. 4-6.

A major difference between the current approach and
those taken previously is in the treatment of the boundary
condition at solid surfaces in the presence of flow. While the
linear acoustic problem as a perturbation over the mean flow
can be considered separately from the mean flow, an implicit
condition is that the mean flow itself satisfies the solid wall
boundary condition. The assumption of a constant mean flow
is an approximation to the actual mean flow and this assump-
tion is made such that the formulation of a boundary integral
equation becomes possible. While this facilitates the conver-
sion of the partial differential equation to the boundary inte-
gral equation, the simplified mean flow itself obviously
cannot satisfy the physical boundary condition at solid
boundaries wherever the surface is not aligned with the
assumed constant mean flow. As pointed out in Ref. 3, the
boundary integral equation derived based on such an
assumption would be formally valid when M, < 1, where
M,, is the Mach number of mean flow normal to the body sur-
face. In this paper, we take a closer look at the boundary
condition to be used for scattering of acoustic waves at solid
surfaces where M,, is nonzero. In all the previous studies, a
boundary condition of normal acoustic velocity being zero
has been applied everywhere including the surfaces where
M, # 0. However, an analysis of the acoustic energy equa-
tion will show that the usual boundary condition would lead

© 2017 Acoustical Society of America
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to nonzero energy flux at surfaces where M, # 0, which
could potentially lead to nonconservation of the acoustic
energy. A new formulation is derived based on this acoustic
energy consideration, and an alternative boundary condition
is proposed by the requirement that energy flux be zero at
solid surfaces. From a physical point of view, the null acous-
tic energy flux condition should be equivalent to, or a direct
consequence of, the condition that the normal acoustic
velocity becomes zero on rigid surfaces. The fact that the
two now differ in the formulation of the boundary integral
equation for scattering with flow is due to the inconsistency
on the part of the underlying mean flow itself when the con-
stant flow simplification is made. Naturally, as mentioned
earlier, boundary integral equation approaches with a con-
stant mean flow would be applicable only to problems where
such a simplification is acceptable or justified, such as in
scattering with flow over slender bodies. From a computa-
tional point of view, however, due to the structure of the
integral equation, the new formulation also becomes much
simpler than those found in the literature for scattering with
flow, which is of great benefit for computation.

In addition to the modification of boundary condition at
solid surfaces, a Burton—Miller type reformulation of the
integral equation consistent with the new boundary condition
is also presented. It is well-known that the direct solution of
boundary integral equation for exterior scattering problems
is prone to numerical instabilities."**’"'? In the time
domain, the instability is also more easily excited because
all frequencies within the numerical resolution are present in
the computation. There are generally two approaches for
dealing with this instability. One is the Burton—Miller refor-
mulation which has been widely used for frequency domain
exterior scattering problems. Recently, it has been shown
that Burton—Miller reformulation is effective for time
domain as well.”*!" Another method for the removal of the
instability is the CHIEF method.'*'? In the present study,
we apply the Burton—Miller technique for the elimination of
instabilities.

The rest of the paper is organized as follows. In Sec. II,
an integral relation for acoustic wave propagation is derived
for a constant mean flow in a general direction. Then, the
time domain boundary integral equation for scattering by
rigid bodies is derived in Sec. III. In Sec. IV, a
Burton—Miller type reformulation of time domain boundary
integral equation is presented and a discussion on the stabil-
ity of the new formulation is given in Sec. V. Numerical
methods for the time domain boundary integral equation are
discussed in Sec. VI. Stability of the current formulation is
demonstrated in Sec. VII by analyzing the eigenvalues of the
discretized system. An example of scattering by a convex
parabolic wing in the presence of a mean flow is presented
in Sec. VIII. Section IX contains the conclusions.

Il. INTEGRAL REPRESENTATION OF ACOUSTIC
WAVES IN THE PRESENCE OF A UNIFORM MEAN
FLOW

The current problem is considered in the context of solv-
ing the wave equation in a moving medium exterior of
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certain specified surface S, such as the scattering of sound
field by an object as shown in Fig. 1. Acoustic waves are
assumed to be disturbances of small amplitudes. Linear
acoustic problems are frequently formulated using a velocity
potential function ¢(r,t) where the acoustic velocity u and
pressure p are related to ¢ as follows:

Po(%JrU'V(ﬁ), ey

u:vd)u p=— ot

where p is the mean density. With a constant mean flow U,
the acoustic disturbances are governed by the convective
wave equation.'* In the present study, we consider the solu-
tion of the following equation for the velocity potential:

2
0
(& +U- v) ¢ — AV = q(r,1), )
with homogeneous initial conditions
¢(r,0) = %(r, 0)=0, r=0. 3)

In the above, c is the speed of sound, U is the constant mean
velocity, and ¢(r, ) represents the known acoustic sources.
Furthermore, in addition to the radiation condition at the far
field, Egs. (2) and (3) are to be supplemented with boundary
conditions on the scattering surface S. The suitable boundary
conditions to be applied on solid surfaces will be discussed
in Sec. III. It is well-known that the convective wave Eq. (2)
and the initial condition (3), as well as the boundary condi-
tions, can be reformulated into an integral equation. In the
literature, integral representation of sound waves in a mov-
ing flow is often derived by making use of generalized func-
tions in a setting of moving bodies in an otherwise
undisturbed medium.'>?' Here, we present a derivation
using a free-space Green’s function G(r,tr;r,f') that, for
convenience of discussion, is defined as follows:

2
(g‘i' U- V) G— VG =6r—r)ot—1), @

with initial conditions

G(r,t;r',t’):—(r,t;r’,t’):O, t>t/7 (5)

% Sources S

= v

FIG. 1. A schematic showing the scattering body and mean flow. Scattering
surface is denoted by S and the solution domain exterior of S is denoted by
V. The surface normal vector n is taken to be outward from V and thus
inward toward the interior of the body.
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where #' and ¢ indicate, respectively, the source point and
initial time and r and ¢ are the space-time variables of the
Green'’s function.

Note that the time domain Green’s function G (r,#; 7, 7')
defined above is nonzero for ¢ € (—oo,#]. The solution to
Egs. (4) and (5) is well-known (see, e.g., Refs. 14, 17, and
23) and, for a mean flow of a general direction, can be writ-

ten as
~ Gy R
G(r,t;r/,t/)—W(s(t'—t-l-ﬁ-(r/—r)—E), (6)
where
1
Go—= ——— and
"R
R(r,r’):\/[M (r—r)]" +2r—r), (7
in which
U U U M
et ¥ » B —U? 2az  co?’
U=U|, M=|M| (8)

By an operation of GX(Z)—¢ X (4) and by integrating
over the volume V exterior of scattering surface S for space
and an interval [07,7"] for time ¢, it is straightforward to
show that we will get

J:JV{& G<%¢+U V¢>> ¢<8_é+u.vé)
+V- <G<%¢+U V(f)) d)(%?—FUVG))U

—*V - [GVd— VG| }drdt

/+
:J J [GNq(r,t) —qb(r,t)é(r—r’)é(t—t’)} drdt.
v

0-

Integration of the first term in the above will be zero by
initial conditions thus defined for ¢ and G. Then, upon using
the divergence theorem and the condition at infinity, we get
an expression for ¢ at an arbitrary point # in V and time ¢ as
follows:

o000 = | [ Gatr-ara

0

—I—ch J( 8—f qbaG)drxdt

[ Ll o

_(/)( +U- VG> M, drt, 9)

where r; denotes points on surface S, and
M,=n-M=n-U/c
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is the normal component of the mean velocity Mach number
on surface point r,. Here, the unit normal vector n is
assumed to be outward from the solution domain. For the
exterior scattering problem considered in the present study,
the normal vector is then the one that is inward to the body
as noted in Fig. 1.

For convenience of discussion, we define a modified
normal derivative (denoted by an overbar) as

g 0

== MM V). (10)

Then, Eq. (9) can be written as

Ve
(j)(r',t’):J JGq(r,t)drdt
0
o aé)
+C JO J(Gan_ % drsdt
A1 [ 1e2_ G_G}
—c JO L [G o o | Madrsar (11)

Furthermore, if we introduce a combined normal deriva-
tive (denoted by a tilde) as

0 M,0

g 0 M,[(0
( on ¢ ot (12)

on ot

o on ¢ U V)

we get another expression:

P, 1) = j

0

¢ aé)
+c L J(G% = drdt. (13)

Equations (9), (11), or (13) is the Kirchhoff integral rep-
resentation of the acoustic field in the presence of a uniform
mean flow. The integral relation can be further expressed as
integration of retarded values by utilizing G as given in Eq.
(6). In particular, note that we have

a—G:L%[é(t’—t—l—ﬂ-(r’—r)—E)

t/+

J Gq(r,t)drdt

on  4nc? on co?
+£25’<t’—t+ﬁ-(r’—r)—£2)}, (14)
co. cor

where G, and R are those defined in Eq. (7). Then Eq. (13)
can be written as

I, 1 / 1 ¢ /
qf)(r ,t ) :477[6‘2 JVSRq(rJR)dr+4TCJ\ [G()aﬁ (I'S,IR)
, R 0
= ((j)(rs t )_|_ 5 8¢ (thR)>}drs, (15)

where V; denotes the region of acoustic sources and the
retarded time for 7 is defined as
R
lo=04+B-" —r) ——

et (16)
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The modified normal derivative for G is found to be the
following:

0 _ _1OR__,nl=r) a7
on R> On R’

Equation (15) relates the solution at point 7' and time #
to the direct contribution from source function ¢ and a sur-
face contribution involving the retarded values of ¢ and their
normal derivatives. As shown in Ref. 4, this form is equiva-
lent to previous such formulations appearing in the literature,
e.g., in Refs. 15 and 19, where the relationship had been
derived under the assumption of a mean flow that is aligned
with the x axis.

When both ¢(rg,t) and (O¢p/0n)(rs,t) on surface S are
known, ¢(r',¢) at any field point # can be computed by
using Eq. (15).

lll. TIME DOMAIN BOUNDARY INTEGRAL EQUATION
FOR SCATTERING WITH SOLID SURFACES

A boundary integral equation (BIE) is formed by taking
the limit ' — r} in the integral relation (15), where 7/, is a
point on the boundary. The integral in Eq. (15) involving
0Gy/0n is weakly singular and, by using Eq. (A1) given in
Appendix A (assuming 7/, is a smooth boundary collocation
point), it can be shown that

lim J 0Gh (rsﬂ‘)fﬁ("wtfg)drs
S

r—r on

N JS%(réyrs)¢(rsat;€)drs _an)(r;’t,)' (18)

Applying this limit to Eq. (15), we get the following
time domain boundary integral equation (TDBIE):

2nq§(r;,t) JS <G08¢ (rx;t;e)_@ qs(rsvt;?)

on on
R 0¢
e (rs,t}e)} )drs =0(r,7), (19)
where Q(r),7) denotes the contribution from the external
sources to the surface }1)01nt r:
o(r.,?7) :C_ZJ 7q( R)dr. (20)

For sound scattering problems, ¢(r’, ) on the scattering
surface S is to be determined by Eq. (19) when the boundary
condition for ¢ on S is given. A customary boundary condi-
tion on rigid surfaces is that the normal component of the
acoustic velocity be zero, i.e., n - u = 0, which, considering
Eq. (1), leads to

99

n-Vp=—-(r0)=0, r€s. 1)

Indeed, in all the previous literature on wave scattering
with a uniform mean flow (e.g., Refs. 1, 3-5, and 22-25), in
both the frequency domain and the time domain, boundary
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conditions of type (21) have been assumed at solid wall
boundaries. To implement such a boundary condition, the
combined normal derivative appearing in Eq. (19) would then
be separated into the normal and tangential components as

9¢ 2\ 0 19¢
P (lfM)%fM <C8+MT qu), (22)

where M7 is the tangential component of the mean flow
Mach number M.

In the present paper, however, we propose an alternative
boundary condition to be used at solid surfaces when solving
TDBIE (19) in the presence of a uniform flow. The new
boundary condition is based on a consideration of the acous-
tic energy.

It can be shown that the convective wave Eq. (2) with-
out the source term has an associated energy equation:

OE
E+V -J =0, (23)
where
=3[vol 5zl el -
2 2C2 Dt c?
__99¢ _lD_¢> D ‘9
J= a;(v c2DtU’ Dt 8t+Uv 24

Equation (23) can be validated directly by using the
expressions defined in Eq. (24). When substituted by the
acoustic velocity and pressure defined in Eq. (1), poE is the
usual acoustic energy density in a uniform flow.**%®

By Eq. (24), it is immediately clear that the energy flux
at a surface of normal n is the following:

a0 %_%D_‘f’)__
Sn=J-m ot (8}1 c Dt)

9¢ 9¢
ot on’ 25)

Clearly, on a surface where the normal component of
the mean velocity M,, is nonzero, i.e., where the surface is
not aligned with the mean flow, application of boundary con-
dition (21) will result in nonzero energy flux, i.e., J, # 0
and, consequently, cause the surface to be acting like an
acoustic energy source or sink according to Eq. (25). This
will apparently lead to nonconservation of the total acoustic
energy.

Alternatively, the boundary condition on the solid sur-
face may be defined by the requirement that no energy flows
into or out of the surface. By Eq. (25) and to ensure energy
flux J,,=0 on solid surfaces, we propose that the boundary
condition be modified such that the combined normal deriva-
tive of ¢, defined in Eq. (12), is zero:

o9 o M,D¢$
a~ (rs,t) % ?F O rg € S. (26)

The total acoustic energy will be conserved under this
new condition. Equation (26) will be referred to as the zero
energy flux (ZEF) boundary condition.
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Now by applying ZEF boundary condition Eq. (26) to
Eq. (19), a new formulation of the TDBIE for ¢(r,,¢) with
solid surfaces is found as follows:

/ / aG R a /
2o) + | 20 (gl + 552 ()
xdr, = Q(r, 7). @7)

Equation (27) is one of the main results of the present
paper. It is a new formulation for the time domain boundary
integral equation for acoustic scattering by rigid surfaces in
a constant mean flow. It is different from those in the litera-
ture in several aspects. First, the boundary condition used for
Eq. (27) is one that is based on the acoustic energy flux con-
sideration instead of the acoustic normal velocity. The two
approaches differ on the part of the boundary where the
mean flow itself does not satisfy the slip boundary condition.
Second, the new equation is much simpler than those of the
previous formulations in which tangential derivatives of the
solution on the scattering surface are required to be kept as
part of the integral equation. Of course, boundary condition
(26) reduces to the usual one [Eq. (21)] wherever the mean
flow satisfies the solid wall boundary condition, i.e., M, =0.

IV. BURTON-MILLER TYPE REFORMULATION IN TIME
DOMAIN WITH A MEAN FLOW

Direct solution of boundary integral equations for exte-
rior scattering problems, however, is known to suffer numer-
ical instabilities. The instability is generally attributed to the
existence of resonance frequencies for the interior
domain."*”~' In time domain solutions, the instability is
more easily triggered because a continuous spectrum of fre-
quencies within the numerical resolution are present in com-
putation. This instability is one of the major difficulties that
have hindered the use of time domain integral equations.
Recently, the Burton—Miller type reformulation that has
been widely used for exterior scattering problems in the fre-
quency domain has shown to be effective in eliminating the
instability in the time domain as well.>”8 In Ref. 8, a theo-
retical justification has been provided for the extension of
the Burton—Miller formulation to the time domain for the
wave equation without flow. In this section, we derive the
Burton—Miller reformulation for the TDBIE (27). An analy-
sis on its stability similar to that in Ref. 8 is given in Sec. V.

For convenience of discussion, we define the following
time domain double layer potential:

D(p|(r,{')= J J(:;(j(rv,t,r ) p(ry,t)drdt

oG R,
J aO(rur)<¢(rsvtR)+E£(rs,tR)>drs.
(28)

The Burton-Miller type reformulation is carried out by
applying a linear combination of the time and certain normal
derivatives to the time domain integral equation. In earlier
studies of the Burton—Miller formulation for scattering with a
flow, the modified normal derivative (10) had been used.'*
Here, we propose that the normal derivative to be used for
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the Burton-Miller formulation be the combined normal
derivative defined in Eq. (12). Specifically, the Burton—Miller
reformulation is obtained by applying the following deriva-
tive operator to the boundary integral equation at surface
points r/:

ag—i—bc J

ar " oi’ 29)

where G and b are constants and ¢ is the speed of sound. That
is, operator (29) is applied to the integral Eq. (27) to give

.0 v
aw(anﬁ(rs,t) +

~ 0
+ bcﬁ (4np(r', 1

DIl (ri.7))
) + Dl](r, 7))

= —( )-&-bc%(r;,t’). (30)

r=r

s

Applying again the ZEF boundary condition (26), Eq. (30) is
expanded to be the following:

. 09, , G, 0
a [271%(&,[’) +La—ﬁo("s ")<8(f (ro,te)

R 94 d [ 9Go,
+Eﬁ(n’tl ))drs} —&-bc[a J a—o(rs,r)

R 0¢
% <¢)(ry7t;3) _’_EE (rs;t;?)>drsj|r/_r/

;92 90
=g (1 0) e (r, ). (31)
Note that an integral with a kernel (9°Gy/0r'0n)(ry,r.) is
hyper-singular when r; coincides with r). In particular, we
have

Gy

on'on on’ R’
il (ry=r)] [ (ri—
RS

Ar.—7v 2
(rs,r;) :ﬁ |‘062n(er_73rS)‘| :“_[n'n/*Mn’Mn]

13 3 R

Thus, (92Go/0r'di)(ry,¥) is of order O(1/|ry —F’) as
ry —r.

We consider the following regularization process for the
hyper-singular integral in Eq. (31) that adds and subtracts a
term involving the value at the collocation point ¢ (r},7'):

o | [ 9G R 0 /

o e (000 250
o | oG , , R 0

:ﬁ JSa—;(r.vyrs) <¢(r.th)_¢( )+?£

. (rs,t}e)>drs} Fod) 2, [L%(rs,r;)dn} .33)

The first integral is now integrable by Cauchy Principal
Value (Appendix B) and the second integral is zero accord-
ing to Eq. (A1) given in Appendix A. Upon carrying out the
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derivatives inside the first integral shown above, we get the
following Burton—Miller reformulation of the time domain
boundary integral equation (BM-TDBIE):

2nda¢(r;,,f)+aj Gy (8¢( 1)

ot On \ ot
R 824) , —36G08G082¢
EW(R’%OCZR 064LR on’ an o2 (rst)drs
J < (rs,tp) — o (r0) + 28t (rsstk) )d’s
a2 (0. 0) +he 2 (1), (34)

The proper values for the coefficients @ and b will be
given in Sec. V where stability of Eq. (34) will be discussed.

V. STABILITY OF THE TIME DOMAIN BURTON-MILLER
FORMULATION IN THE PRESENCE OF A MEAN FLOW

Following closely the work in Ref. 8 for the case with-
out flow, we demonstrate in this section that the
Burton-Miller type reformulation presented in Sec. IV elimi-
nates the nontrivial solutions of the homogeneous integral
equation in the case with a flow as well.

Suppose that there is a nontrivial solution ¢ (rs,?) to the
homogeneous formulation for Eq. (34) in which the source
term is set to zero. We will show in what follows that such a
solution is not possible. Consider the double layer potential
Eq. (28) extended to domains both exterior and interior of
surface S:

D[] (r',1)
9Gy R 0¢
=J P ——(rs,r )<¢o(’x7f§e)+@7to(’sﬁ§e))d”s
wt, ¥ eV, exterior of S

=< wg, =r.onS$S
w™, ¥ €V, interior of S.
We note that w' and w™ satisfy the homogeneous con-
vective wave equation in the exterior and interior domains of
S, respectively. It can also be shown that

’}Er'lJ wt =wo — 2 (r, 1), (35)

’}1m w = wo + 21y (rl, 1), (36)
_owt o Ow

I = m G @

Equations (35) and (36) can be found by using the limits
given in Eq. (A1) in Appendix A, and Eq. (37) follows after
an application of the regularization process (33) to both sides
of the equation.

Now since ¢ (ry,t) satisfies the homogeneous
Burton-Miller formulation for Eq. (30) where the right hand
side is zero, we have, at r' = r/,
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.0 0
8_ (2npy + wo) + bca— (47rd)0 +w ) =0.
v

K

By the jump conditions (35)—(37) as well as the ZEF
boundary condition (26), the above yields

_Oow™ -~ Ow™

On the other hand, since w~ satisfies the convective
wave equation and by the energy Eq. (23) of the convective
wave equation, we have

QJ 1|V IJr1 Dw~
oty (2 2¢2| Dt c2 Dt

J v (o a5 o

Y
which, with an application of the divergence theorem,
becomes

2 U-Vw Dw™

dr

1 ., 1|Dw [* U-Vw Dw™
I, lavw R v T
O Owm Ow
= — ————drdt, 39
L L ot on 4 (39

where V™ represents the volume interior of S. The minus
sign on the right hand side has been added due to the fact
that the normal derivative used in Eq. (39) is still the one
that is inward of the body surface. Note that, for subsonic
flows where |U| < ¢, the left hand side of Eq. (39) is

nonnegative:

2
1

2¢?

Dw~
Dt

-~ Dw™
(V ‘72 Dt

_U-VW_DW_ >o.
2 Dt —

U-Vw Dw~
c? Dt

2
1 Dw~
Zivw || ===
) +c| w|‘ Dt

On the other hand, using Eq. (38), the right hand side of Eq.
(39) will be nonpositive:

1
§|VW7|2 +

O owm Ow 1 ow™
— ————dr, = — — d s <0,
JO JS 8t afl ! Cz JO JS bc 5t "
provided that
a
=< 0. 40
; (40)

The above implies that w™ has to be a trivial solution,
i.e., w~ = 0 under condition (40). A simple choice for a and
bisa=—b=1.

As shown in Refs. 810 and mentioned in Sec. IV,
numerical instability associated with solving TDBIE is attrib-
uted to the existence of nontrivial resonant solutions. The
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analysis in this section shows that nontrivial solutions of the
homogeneous integral equation are eliminated by the
Burton—Miller reformulation of TDBIE (27). Hence, the
instability caused by the resonant solutions will be effectively
suppressed by using BM-TDBIE (34) under condition (40).

VI. TIME DOMAIN BOUNDARY ELEMENT METHOD

In this section and Sec. VII, we describe a numerical
solution of Eq. (34) by the time domain boundary element
method (TDBEM) and demonstrate numerical stability of
the new formulation.

Let surface S be discretized by surface elements E;,
j=12,....N,, where N, is the total number of elements, and
the time be discretized by ¢, = nAt, where At is the time step.
The time domain numerical solution on the discretized sur-
face can be expanded as

N, N,
Blro,t) =D Wl (r)P, (1), (41)

n=0 j—1

where ¢;(ry) is the surface basis function for element E; and
W,(2) is the temporal basis function for time node #,. Here N, is
the total number of time steps. For simplicity, we consider only
constant elements where collocation node r; for E; is located at
the center of the element and the nodal basis function is

(r,) = 1, ry on element E; that contains node r;
Pi\Ts) = 0, otherwise.

(42)

The temporal basis function is taken to be the third-
order shifted Lagrange basis polynomial that is commonly

used for time domain boundary element methods:'"*
t—1
wn<t)=T< At"), (43)
where
LB L R Y
—Tt+1 -1, — T
6 6 ) —
L L P TS
—T—T — =T T
2 2 ? —
Y(1) = 1 1
(®) l——t—7 47, 1<1<2 “44)
2 2
11 1
I—Fr+7:2—gr3, 2<1<3
0, other.

For example, at any point r; on element £; and at any
off-nodal time ¢ = t, — Az, 0 < 5 < 1, the value for ¢(r, 1)
is found by

D, 1) = @;(rs) |u V(=) + ul "W (1 — 1)
Q) S u B )| @)

With the nodal spatial and temporal basis functions
defined above, expansion coefficient uj’.l in Eq. (41)
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represents the value of ¢ at the collocation node r; on ele-
ment E; at time level 7,. By substituting expansion Eq. (41)
into BM-TDBIE (34) and evaluating the equation at colloca-
tion points r; of all elements, i =1,2,...,N,, and at time level
t,, a march-on-in-time scheme (MOT) is obtained that can
be expressed in a matrix form as

Bou' =q¢" —Biu" ' —Bou"? — - — By, (46)

where u* denotes a vector that contains all the expansion coeffi-
cients {uj", j=1,2,..,N,} at time level #;. The nonzero entries
for matrices By, k=0,1,2,.,J, in Eq. (46) can be found to be

e [ 0Go ([,
(B2, = 2t o) +a G (W)
E; on
R

" n N - 82GO
Wi k(tg) ) dre + bedyoDi + be ;

on'on

R , .
X <lpn—k (r;l?) - 51}‘//11—1(([11) + Ewnk(tR)> drs
I; j RS 8G0@ "

on' on nfk(lﬁ)drw (47)

cot |
for i,j=1,2,...,N., where ; and Jyy are Kronecker delta
functions and a prime in the above denotes derivative with
respect to time, and

0 R(rs, 1)
=1ty +B-(ri—ry)— oz
8*Gy
D= — ., 1i)dry. 48
LE,, Bon ("o Ti)dr (48)

It is easy to see that the entry {Bk}lj/' represents contri-
butions to the value at node r; and time ¢, from nodal
value of element E; of time level #, ;. The integrals in Eq.
(47) are to be evaluated using high-order quadrature on
each element. For the computational results reported in
this paper, each element is mapped to a standard element
of [-1,1] x [—1, 1] and Legendre-Gauss quadrature rule of
degree six is used for integration in each dimension.
Integration on the singular elements where i = is detailed
in Appendix B.

The index J in Eq. (46) denotes the maximum time his-
tory of the solution required for Eq. (46) and is dependent on
the length of the scattering surface and the mean flow as

J =
co? At

+3, L=max [-M - (r, —r,) + R(r,,7})].

rg,ries

(49)

Due to the limited temporal stencil width shown in
Eqgs. (44) and (45), the B matrices are sparse. In particu-
lar, we note that matrix By in Eq. (46) is a very sparse
matrix and represents interactions within the same ele-
ment or between nearby nodes at the same time level ¢,.
By is also found to be diagonally dominant. Solutions for
u" in Eq. (46) can be found efficiently by an iterative
method, such as the Jacobi iterative method, with rapid

convergence. 11,30
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VIl. EIGENVALUE STABILITY ANALYSIS OF THE NEW
INTEGRAL EQUATION

As mentioned in Secs. V and VI, direct numerical solu-
tion of the time domain boundary integral Eq. (27) is prone
to numerical instabilities. In Fig. 2, we first show an example
of scattering of a point source by a parabolic wing in a mean
flow of Mach number 0.5, M = (0.5,0,0), to demonstrate
the elimination of numerical instability by the Burton—Miller
reformulation of TDBIE (27). The geometry of the scattering
surface is a convex parabolic wing and is defined as follows:

z=0.1L,(1-2*/L%), —L,<x<L,, —L,<y<L,, (50)
where L, = L, = 0.5. In this example, the scattering surface
is discretized by 2316 quadrilateral elements. The source
function is a broadband point source defined as the
following:

g(r,1) = e o(r o), (51)
where ro = (0,0, 1) and o = 1.42/(6Ar)*.

The time history of the solution on a surface collocation
point is plotted in Fig. 2 for the cases without and with
Burton—Miller reformulation. The top figure shows the result
obtained by directly solving the TDBIE (27). It is seen that
the solution initially behaves well but eventually becomes
unstable. On the other hand, the solution obtained by the
BM-TDBIE (34), shown in the bottom figure, remains
stable.

To further study the stability of the MOT scheme (46),
we conduct a numerical eigenvalue study of the discretized
system of equations.”’ For numerical stability consider-
ations, we look for solutions of the form

to the corresponding homogeneous system for Eq. (46). By
substituting Eq. (52) into Eq. (46) without the source term,
we obtain a polynomial eigenvalue problem

[Boij + B B P B+ B./]eo =0,
(53)

which can be cast into a generalized eigenvalue problem as
follows:

-B, -B, ~B;., -B;] %!
I 0 0 0 €12
0 I 0 0 :
0 0 0 0 .
0 0 I 0 !
. eO -
B, 0 0 0 07|%!
0 I 0 0 0|2
o B SNEN)
O 0 0 --- I 0 .
0O 0 0 --- 0 I !
- eO -

where ¢; = /eo. For numerical scheme (46) to be stable, it is
necessary that |A| < 1 for all eigenvalues of Eq. (54). We note
that this is a necessary but not sufficient condition for stability
because the iteration matrix for Eq. (54) is not a normal matrix.*

Eigenvalue analyses of scattering by two geometric
shapes are presented in Table I. One of the geometries is the
parabolic wing as described previously in Eq. (50). The other
is a sphere of radius @ =0.5. The surface of the sphere is first
discretized by 512 unstructured triangular elements each of
which is then subdivided into three quadrilateral surface ele-
ments resulting in a total of 1536 surface elements. The
mean flow Mach number varies from 0 to 0.9. A total of

u' = "e (52) eight cases are considered in Table 1.
0.2 Without Burton-Miller reformulation
11111
£ 0.09 ;
: L
0.00 ‘
‘ H H ‘ ‘ H FIG. 2. Time history of numerical
-0.05 solution on a surface collocation
H ‘ H H ‘ ‘ H point, showing the elimination of
—-0.1 T 5 3 7 5 6 ins.tabiliFy by Burton—-Miller reformu-
lation of TDBIE. M = (0.5, 0, 0). The
0.2 With Burton-Miller reformulation nondimensional  time  step s
cAt/L, = 0.04. Top: solution of Eq.
0.15 (27) without Burton—-Miller reformu-
lation; bottom: solution by BM-
0.10 TDBIE Egq. (34).
£ 0.09
ASS
0.00
—0.05
-0l 2 7 3 5 10 12 17
time t
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TABLE I. Maximum eigenvalue, |4/, computed using Eq. (54) for scat-
tering by a parabolic wing and by a sphere, for cases with and without
Burton-Miller (B—M) reformulation. N, is the total number of elements and
M is the mean flow Mach number. The nondimensional time step is
cAt/L = 0.04 for all the cases where the length scale L is L, and radius a,
respectively, for the parabolic wing and the sphere.

Parabolic wing Sphere
V‘Imax M"max
N, M with B-M without B-M N, M with B-M without B-M

Eq. 34) Eq. (27) Eq. (34) Eq. 27)
2316 0.0 1.000000 1.095949 1536 0.0 1.000000 1.007840
2316 0.3 1.000000 1.160628 1536 0.3 1.000000  1.000000
2316 0.6 1.000000 1.129116 1536 0.6 1.000000  0.999968
2316 0.9 1.000000 1.582909 1536 0.9 1.000000  1.003901

Eigenvalues of the generalized eigenvalue problem (54)
can be found via a sparse eigenvalue solver available in
MATLAB and Python, or by a matrix power iteration method
detailed in Appendix C. The values of the largest eigenvalue
for the eight cases are listed in Table I. For the
Burton—-Miller formulation BM-TDBIE (34), all eigenvalues
are no greater than unity and stability is observed. In con-
trast, direct solution of Eq. (27) results in eigenvalues greater
than unity in all but two of the eight cases studied, indicating
that Eq. (27) without Burton—Miller reformulation can lead
to unstable solutions.

VIil. ANUMERICAL EXAMPLE

In this section, we show a numerical example of sound
scattering by a solid body in the presence of a uniform mean
flow. The geometry of the solid body is that of the parabolic
wing as defined in Eq. (50). The dimensions of the wing in
the current example are L, = 0.5, L, = 1.5. The incident
field is produced by a point source for the velocity potential
of the form (51), located at ro = (0,0, 10L,), directly above
the center point of the wing. The mean flow is assumed to be
in the direction of the x axis, M = (M, 0,0), where M is the
flow Mach number. For the results shown in this example, a
total of 4364 quadrilateral elements are used for the discreti-
zation of the parabolic wing surface. The far field pressure

Parabolic Wing
(a)
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Source point ;z
~ j/\y

directivity is to be computed as illustrated in the schematics
of the computational domain in Fig. 3. The setup of the prob-
lem is the same as that considered in Ref. 3. Our computa-
tional results will be compared with those in Ref. 3.

The time domain boundary integral Eq. (34) is first
solved by the MOT scheme (46) as described in Sec. VI
After the value of ¢ on the scattering surface is found, the
solutions at far field points can be computed using Eq. (15)
with the ZEF boundary condition (26) applied. From the
velocity potential function ¢(r,r), the acoustic pressure
p(r, 1) is then obtained by the relation given in Eq. (1), where
the temporal and spatial derivatives are computed by finite
difference approximations. Here, the sixth-order central dif-
ference is used. Finally, for any selected frequency w, the
frequency domain solution can be obtained from the time
domain results by either using the fast Fourier transform
algorithm or the following summation:

plr,®) = Adlp(r, )" + plr, ) 4 p(r, 15)e
o p(r, e o]

where At is the time step of the MOT scheme and N, is the
total number of time steps.

To compare with the results presented in Ref. 3, far field
pressure directivity is calculated at three frequencies:
kL.=1, 3, and 5, where k = w/c is the wave-number. A
value of nondimensional time step ¢At/L, = 0.05 is used in
the computation, which yields a resolution of approximately
25At per period of the highest frequency kL, =5, sufficiently
fine for the third-order time basis function (44) used for the
example.”’

As in Ref. 3, the directivity function D(0) is defined as

‘w)

p(F, o)

D(0) = oo(@)

) (55)

h

X

where the far field points are sampled on a circle of radius R
on the x — z plane across the mid-span of the parabolic wing:

# = (R cos 0,0, R sin0), (56)

with R = 105L, as was used in Ref. 3. In Eq. (55), po(w) is a
reference value that is taken to be the pressure by the point

FIG. 3. A schematic of the computa-
tional setup. Left: dimensions of the
parabolic wing and the surface mesh
formed by 4364 quadrilateral elements,
with L,=0.5, L,=1.5; Right: a dia-
gram of the scattering body, source
point, and the far field observation
point which is on the x — z plane and
defined by # = (R cos 0,0, R sin 0) and
R = 105L,.

W[ X
ing

Far field observation points

(b)
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FIG. 4. Far field total pressure directiv-
ity patterns on the x—z plane, for the
frequencies and Mach numbers as indi-
cated. The horizontal and vertical
directions represent, respectively, the x
and z directions as defined in Fig. 3.
Lines with symbols: Current calcula-
tion; Solid lines: Results from Ref. 3.

source (without the solid body) at the center point of the
wing of coordinates (0, 0, 0).

Figure 4 plots the directivity function D(0) as polar
graphs, in lines with symbols, at the three frequencies for the
cases of Mach number M =0 and M =0.5. Effects of the
mean flow on sound scattering are clearly seen. Also shown
in Fig. 4 are the results from Ref. 3, in solid lines. We note
that, at the low frequency kL, =1, very good agreements are
found for both the cases with and without flow. At higher
frequencies, the two solutions in the downward direction
(the shielded side below the scattering body) are also in very
good agreements, while the results in the upward direction
show some discrepancies. The discrepancies may be attrib-
uted to the fact that a much coarser mesh, only 46 elements
and 120 nodal points, was used for the results in Ref. 3, as
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compared to 4364 elements used in the current computation.
We also note that the results from Ref. 3 were computed
using the usual normal velocity boundary condition (21).
The fact that the results from both computations largely
agree indicates that for the current example of a slender
geometry, where normal component of the mean flow M, is
small, the difference in the boundary condition does not
have a large effect on the computational results. However, as
pointed out earlier, the computation is much simplified by
using the ZEF condition.

IX. CONCLUSIONS

In this paper, we have considered the boundary condi-
tion to be used in time domain boundary integral equation
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analysis of acoustic scattering by solid bodies under a con-
stant mean flow assumption. After an examination of the
energy equation associated with the convective wave equa-
tion, it is proposed that an alternative boundary condition be
defined by the requirement that the energy flux be zero at
solid boundaries, instead of the usual boundary condition
that the normal acoustic velocity component be zero. A new
TDBIE is derived based on the proposed ZEF solid wall
boundary condition. The new formulation differs from those
found in the literature on the part of the boundary where the
constant mean flow itself does not satisfy the solid surface
boundary condition. In addition to conserving the acoustic
energy, another significant advantage of the new equation is
that it is considerably simpler than previous formulations. In
particular, tangential derivatives of the solution on the solid
surfaces are no longer required in the new formulation,
which greatly simplifies numerical implementation and
makes the separation of normal and tangential derivatives of
the solution unnecessary. Moreover, to stabilize the TDBIE,
a Burton—-Miller reformulation is also derived. Numerical
solutions and eigenvalue analysis are presented that demon-
strate stability of the new formulation.
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APPENDIX A: LIMIT OF WEAKLY-SINGULAR
INTEGRAL

By Egs. (17) and (32), it is easy show that the modified
normal derivatives (0Go/0n)(rs, 1) and (8*Go /O’ On)(rs, 1)
have a singularity of order O(1/|r; —r,|) and O(1/|r,
—r§)|3), respectively, which makes their surface integrals
weakly singular and hyper-singular, respectively. In this appen-
dix, we state some useful results.

For surface integrals involving 0G /0, we have

0, r €V, exteriorofS

1 0G 1
—J 0y, ¥ )dry = , r'=r.es

4 ) On 2 Ab
1, ¥ €V~ interiorof S.

The first and third equations in Eq. (A1) can be obtained by
the fact that any constant can be a solution to the homoge-
neous convective wave equation with homogeneous normal
derivative on the boundary for the interior domain V—
enclosed by S. By substituting ¢ =1 into Eq. (15) and noting
the choice of the normal direction and the placement of #/,
the first and third equation in Eq. (A1) follow immediately.
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The second integral in Eq. (A1) becomes weakly singu-
lar when r’ approaches a point on surface S. This particular
limit has been studied previous in the literature for a mean
flow that is aligned with the x-coordinate.'®** Here, we
show the calculation for a general mean flow. Assuming 7/, is
a smooth point on S, consider modifying surface S by a
spherical surface of radius ¢ and centered at r, as shown in
Fig. 5. The surface is assumed to be smooth at r.. If we
denote the small hemispherical surface as S., we have

. oG . oG
'}LTT:L Jsa—ﬁo (rs,r)drs = rl,l_{rrli JS—SF 8—’; (rs, ' )dr,

0

+ limj ﬁ(rj,r’)drs. (A2)
S, (911

r'—r,

Note that, for the surface integral on S, using Eq. (10), we
have

aGO - 062 np (Xs - X;) + ny (yA — y,v) + nj (Zs _ Z,v)
on =3

on R

e
R

By the symmetry of R with respect to hemispheres S,
and S., the complementary hemisphere of S, and by using a
local spherical coordinate system which is centered at , and
whose local z direction coincides with mean flow M, namely,
X —x, =esinvcosl, y;, —y, =esinvsinb, z; —z, =€ cosv, we
have

G 2
lim J —f)drx = foczj _izalr‘Y = fa—J %dr_Y
r—r)s. On s. R 2 )sas R
2 (2n pm 3
_ J €’ sinv 3/2d1/d9
2 Jo Jo(e2costv + €202 sin’y)
1
1
_ zJ _
= —T7To dX = -2m.
. (uZ 1+ (1 - az)xz)3/2

The last integral above can be found by direct integra-
tion. The second equation in Eq. (A1) follows as e — 0 and
by noting that, for ¥ € V, the limit on the left hand side of
Eq. (A2) is zero.

S

’

r
FIG. 5. A schematic diagram for a hemisphere that caps a surface point 7.

Note that the normal vector is in the direction outward from the region of
solution and into the body.
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APPENDIX B: EVALUATION OF HYPER-SINGULAR
INTEGRAL

We consider the numerical evaluation of the regularized
integral involving the double normal derivative of G, in Eq.
(34) on a singular element E;. Note that as ry — r/, we have

R 0¢
X £) — wi =2 (r /
¢(" ) R) ¢("‘w )+ca2 o1 (" ) R)

=V (ri,t) - (ro—r) + 8- (ri 1)

X ¢ (r,7) +0<|rs —r§|2>.

B B

Let the surface element E; be mapped to a local coordi-
nate (¢, 1) € [—1, 1] x [—1, 1], which is then in turn converted
into a local polar coordinate (r, 0) centered at the collocation
point 7. Denote the integrand for the integral in (r, 0) as

azG / / R_ a¢ /
re0= () (910000 L0 0
X |re x| (B2)

By Eq. (B1), F(r,0) is of order O(1/r?) as r — 0. Let
the limit

lim r2F(r, 0) = G(0).

r—0

(B3)

It is easy to show that fg "G(0)d0 = 0. Then we have the fol-
lowing for the integral on surface element E;:

2n (r(0)
limJ J F(r,0)rdrd0

e—0 0 e
2n ¢r(0) [277(, _
i J J [r F(r,0) G(H)_FG(H)} It
e—0 0 Je r r
21 ¢r(6) 2 . o
_ J J Mdrd()
o Jo r
21
+ linaj G(0)[Inr(0) — Ineldo
€— 0
2 (r(0) 2 o 21
:J J Mdrdﬂj G(0)Inr(0)do.
o Jo r 0

The final integrals above can now be evaluated using
regular high-order numerical quadrature.

APPENDIX C: EIGENVALUE BY MATRIX POWER
ITERATION METHOD

We describe a matrix power iteration method for finding
the largest eigenvalue of Eq. (54). Let

-B,'B, —-B;'B, —-B,'B;_, —B;'B;
I [ 0 0
a= D Lo 8
0 0 v .- 0 0
0 0O - - I 0
(CD
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Then, the power iteration method proceeds as follows.>

Given an arbitrary unit vector (), and for k = 1,2, ...,
compute

v = Ael D), (C2)
(k)
w__Y
e’ = v, (C3)
o]l
and eigenvalue
20 =[] ge® = [o®] k1), (C4)

The iteration is stopped when |i®) — A6=D|/120) < ¢
where ¢ is the tolerance and set to be 10~'2. When the itera-
tion is convergent, Eq. (C4) converges to the largest eigen-
value of A.

Furthermore, if we denote

S o]
€ > Vs

o) — R (C5)
e(lk) v(lk)
eék) v(()k)

then, Eq. (C2) can also be computed through the following
relations that save memory and storage:

vﬁk,)l =-B,' [Ble‘(k:ll) + Bze‘<k:21) + -

JrBj_le(lk_l) JrB]e(()k_l)

(k) (k=1) (k) (k=1)
Vi, =€, .., =e .

)

(Co)

We note that the iterative step shown in Eq. (C6) is the
same as the MOT iteration Eq. (46) without the source term.
Therefore, it can be carried out using the same computa-
tional scheme for Eq. (46).

'P. Zhang and T. W. Wu, “A hypersingular integral formulation for acous-
tic radiation in moving flows,” J. Sound Vib. 206, 309-326 (1997).

2A. I. Burton and G. F. Miller, “The application of integral equation meth-
ods to the numerical solution of some exterior boundary-value problems,”
Proc. R. Soc. London, Ser. A 323, 201-210 (1971).

*M. K. Myers and J. S. Hausmann, “Computation of acoustic scattering
from a moving rigid surface,” J. Acoust. Soc. Am. 91, 2594-2605 (1992).
“F. Q. Hu, “An efficient solution of time domain boundary integral equa-
tions for acoustic scattering and its acceleration by Graphics Processing

Units,” ATAA paper 2013-2018 (2013).

5Y. W. Lee and D. J. Lee, “Derivation and implementation of the boundary
integral formula for the convective acoustic wave equation in time
domain,” J. Acoust. Soc. Am. 136, 2959-2967 (2014).

°F. Q. Hu, M. E. Pizzo, and D. M. Nark, “On the assessment of acoustic
scattering and shielding by time domain boundary integral equation sol-
utions,” AIAA paper 2016-2779 (2016).

7A. A. Ergin, B. Shanker, and E. Michielssen, “Analysis of transient wave
scattering from rigid bodies using a Burton—Miller approach,” J. Acoust.
Soc. Am. 106, 2396-2404 (1999).
8p. I. Chappell, P. J. Harris, D. Henwood, and R. Chakrabarti, “A stable
boundary element method for modeling transient acoustic radiation,”
J. Acoust. Soc. Am. 120, 74-80 (2006).

Huetal. 3635


https://doi.org/10.1006/jsvi.1997.1039
https://doi.org/10.1098/rspa.1971.0097
https://doi.org/10.1121/1.402996
https://doi.org/10.1121/1.4898427
https://doi.org/10.1121/1.428076
https://doi.org/10.1121/1.428076
https://doi.org/10.1121/1.2202909

°B. P. Rynne, “Instabilities in time marching methods for scattering prob-
lems,” Electromagnetics 6, 129-144 (1986).

19p_D. Smith, “Instabilities in time marching methods for scattering: Cause
and rectification,” Electromagnetics 10, 439-451 (1990).

A. D. Jones and F. Q. Hu, “A three-dimensional time-domain boundary
element method for the computation of exact Green’s functions in acoustic
analogy,” AIAA paper 2007-3479 (2007).

'H-W. Jiang and J-G. Ih, “Stabilization of time domain acoustic boundary
element method for the exterior problem avoiding the nonuniqueness,”
J. Acoust. Soc. Am. 133, 1237-1244 (2013).

BH. A. Schenck, “Improved integral formulation for acoustic radiation
problems,” J. Acoust. Soc. Am. 44, 41-58 (1968).

“p, M. Morse and K. U. Ingard, Theoretical Acoustics (Princeton,
University Press, Princeton, NJ, 1986).

W. R. Morgans, “The Kirchhoff formula extended to a moving surface,”
Philos. Mag. 9, 141-161 (1930).

16). E. Ffowcs Williams and D. L. Hawkings, “Sound generation by turbu-
lence and surfaces in arbitrary motion,” Philos. Trans. R. Soc. 264A,
321-342 (1969).

17Dowling, A. P. and J. E. Ffowcs Williams, Sound and Sources of Sound
(Horwood Publishing, Westergaten, 1983).

8F_ Farassat and M. K. Myers, “Extension of Kirchhoff formula to radiation
from moving surfaces,” J. Sound Vib. 123, 451-460 (1988).

"YM. K. Myers and J. S. Hausmann, “On the application of the Kirchhoff
formula for moving surfaces,” J. Sound Vib. 139, 174-178 (1990).

20A. S. Lyrintzis, “Review: The use of Kirchhoff’s method in computational
aeroacoustics,” J. Fluids Eng. 116, 665-676 (1994).

2Ip. p. Lockard, “An efficient, two-dimensional implementation of the Ffowcs
Williams and Hawkings equation,” J. Sound Vib. 229, 897-911 (2000).

3636  J. Acoust. Soc. Am. 142 (6), December 2017

22F, Q. Hu, Y. P. Guo, and A. D. Jones, “On the computation and applica-
tion of exact Green’s function in acoustic analogy,” AIAA paper 2005-
2986 (2005).

23Y. Guo, “Computation of sound propagation by boundary element meth-
od,” NASA Contract Report, NAS1-00086-A003 (2005).

A, Agarwal and P. J. Morris, “Prediction method for broadband
noise from unsteady flow in a slat cove,” AIAA J. 44, 301-312
(2006).

M. H. Dunn and A. F. Tenetti, “Application of fast multipole methods to
the NASA Fast Scattering code,” AIAA paper 2008-2875 (2008).

26C, L. Morfey, “Acoustic energy in non-uniform flows,” J. Sound Vib. 14,
159-179 (1971).

2TM. K. Myers, “Transport of energy by disturbances in arbitrary flows,”
J. Fluid Mech. 226, 383—400 (1991).

Bw. Mohring, “Energy conservation, time reversal invariance and
reciprocity in ducts with flow,” J. Fluid Mech. 431, 223-237
(2001).

2%F. Q. Hu, “Further development of a time domain boundary integral equa-
tion method for aeroacoustic scattering computation,” AIAA paper 2014-
3194 (2014).

30G. H. Golub and C. F. Van Loan, Matrix Computation, 4th ed. (Johns
Hopkins Studies in the Mathematical Sciences, Baltimore, 2013).

3S. . Dodson, S. P. Walker, and M. J. Bluck, “Impicitness and stability of
time domain integral equation scattering analysis,” Appl. Comp.
Eletromag. Soc. J. 13, 291-301 (1998).

2A. Iserles, A First Course in the Numerical Analysis of Differential
Equations, 2nd ed. (Cambridge University Press, London, 2008).

L. Long, “The compressible aerodynamics of rotating blades based on an
acoustic formulation,” NASA TP 2197 (1983).

Hu et al.


https://doi.org/10.1080/02726348608915207
https://doi.org/10.1080/02726349008908256
https://doi.org/10.1121/1.4774377
https://doi.org/10.1121/1.1911085
https://doi.org/10.1080/14786443008564988
https://doi.org/10.1098/rsta.1969.0031
https://doi.org/10.1016/S0022-460X(88)80162-7
https://doi.org/10.1016/0022-460X(90)90784-W
https://doi.org/10.1115/1.2911834
https://doi.org/10.1006/jsvi.1999.2522
https://doi.org/10.2514/1.12991
https://doi.org/10.1016/0022-460X(71)90381-6
https://doi.org/10.1017/S0022112091002434
https://doi.org/10.1017/S0022112000003050

	s1
	l
	n1
	s2
	d1
	d2
	d3
	d4
	d5
	f1
	d6
	d7
	d8
	d9
	s2
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	s3
	d18
	d19
	d20
	d21
	d22
	d23
	d24
	d25
	d26
	d27
	s4
	d28
	d29
	d30
	d31
	d32
	d33
	d34
	d35
	d36
	d37
	d38
	d39
	s5
	d40
	s6
	d41
	d42
	d43
	d44
	d45
	d46
	d47
	d48
	d49
	s7
	d50
	d51
	d52
	d53
	d54
	f2
	s8
	d55
	d56
	t1
	f3
	s9
	f4
	dA1
	dA2
	app1
	f5
	dB1
	dB2
	dB3
	app2
	app3
	dC1
	dC2
	dC3
	dC4
	dC5
	dC6
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33

