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It has been well-known that under the assumption of a uniform mean flow, the acoustic wave propa-

gation equation can be formulated as a boundary integral equation. However, the constant mean

flow assumption, while convenient for formulating the integral equation, does not satisfy the solid

wall boundary condition wherever the body surface is not aligned with the assumed uniform flow.

A customary boundary condition for rigid surfaces is that the normal acoustic velocity be zero. In

this paper, a careful study of the acoustic energy conservation equation is presented that shows

such a boundary condition would in fact lead to source or sink points on solid surfaces. An alterna-

tive solid wall boundary condition, termed zero energy flux boundary condition, is proposed that

conserves the acoustic energy and a time domain boundary integral equation is derived.

Furthermore, stabilization of the integral equation by Burton–Miller type reformulation is pre-

sented. The stability is studied theoretically as well as numerically by an eigenvalue analysis.

Numerical solutions are also presented that demonstrate the stability of the current formulation.
VC 2017 Acoustical Society of America. https://doi.org/10.1121/1.5017734
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I. INTRODUCTION

Numerical solution of sound scattering by an acousti-

cally large body remains a significant challenge due to its

high demand on computational resources that are required to

resolve the acoustic waves of short wavelengths. It is well-

known that under the assumption of a constant mean flow,

the acoustic wave propagation is governed by the convective

wave equation that, in turn, can be converted into a boundary

integral equation. The boundary integral equation approach

has the advantage of reducing the spatial dimensions of the

problem by one, making it an attractive computational

method for calculating sound scattering and shielding at mid

to high frequencies. In this paper, we consider the problem

of acoustic scattering by rigid bodies in the presence of a

uniform flow using the boundary integral equation approach.

The present approach is based on the time domain boundary

integral equation. The time domain approach has some dis-

tinct advantages over a frequency domain approach. Most

notably, scattering solutions at all frequencies are obtained

within one single computation. In addition, broadband noise

sources and time dependent transient signals can be simu-

lated and studied. The time domain approach also couples

naturally with nonlinear computations where many frequen-

cies are generated.

Previously, scattering of sound waves by rigid bodies

with flow has been studied, in both the frequency domain

and the time domain. In Ref. 1, acoustic radiation in a mov-

ing flow was formulated as a boundary integral equation in

the frequency domain. The nonuniqueness of the exterior

problem was dealt with by applying the Burton–Miller refor-

mulation procedure.2 In the time domain, a boundary inte-

gral equation approach for scattering by moving surfaces

was first formulated and studied in Ref. 3. More recent stud-

ies of the time domain approach in the presence of a mean

flow can be found in Refs. 4–6.

A major difference between the current approach and

those taken previously is in the treatment of the boundary

condition at solid surfaces in the presence of flow. While the

linear acoustic problem as a perturbation over the mean flow

can be considered separately from the mean flow, an implicit

condition is that the mean flow itself satisfies the solid wall

boundary condition. The assumption of a constant mean flow

is an approximation to the actual mean flow and this assump-

tion is made such that the formulation of a boundary integral

equation becomes possible. While this facilitates the conver-

sion of the partial differential equation to the boundary inte-

gral equation, the simplified mean flow itself obviously

cannot satisfy the physical boundary condition at solid

boundaries wherever the surface is not aligned with the

assumed constant mean flow. As pointed out in Ref. 3, the

boundary integral equation derived based on such an

assumption would be formally valid when Mn � 1; where

Mn is the Mach number of mean flow normal to the body sur-

face. In this paper, we take a closer look at the boundary

condition to be used for scattering of acoustic waves at solid

surfaces where Mn is nonzero. In all the previous studies, a

boundary condition of normal acoustic velocity being zero

has been applied everywhere including the surfaces where

Mn 6¼ 0. However, an analysis of the acoustic energy equa-

tion will show that the usual boundary condition would leada)Electronic mail: fhu@odu.edu
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to nonzero energy flux at surfaces where Mn 6¼ 0, which

could potentially lead to nonconservation of the acoustic

energy. A new formulation is derived based on this acoustic

energy consideration, and an alternative boundary condition

is proposed by the requirement that energy flux be zero at

solid surfaces. From a physical point of view, the null acous-

tic energy flux condition should be equivalent to, or a direct

consequence of, the condition that the normal acoustic

velocity becomes zero on rigid surfaces. The fact that the

two now differ in the formulation of the boundary integral

equation for scattering with flow is due to the inconsistency

on the part of the underlying mean flow itself when the con-

stant flow simplification is made. Naturally, as mentioned

earlier, boundary integral equation approaches with a con-

stant mean flow would be applicable only to problems where

such a simplification is acceptable or justified, such as in

scattering with flow over slender bodies. From a computa-

tional point of view, however, due to the structure of the

integral equation, the new formulation also becomes much

simpler than those found in the literature for scattering with

flow, which is of great benefit for computation.

In addition to the modification of boundary condition at

solid surfaces, a Burton–Miller type reformulation of the

integral equation consistent with the new boundary condition

is also presented. It is well-known that the direct solution of

boundary integral equation for exterior scattering problems

is prone to numerical instabilities.1,2,4,7–12 In the time

domain, the instability is also more easily excited because

all frequencies within the numerical resolution are present in

the computation. There are generally two approaches for

dealing with this instability. One is the Burton–Miller refor-

mulation which has been widely used for frequency domain

exterior scattering problems. Recently, it has been shown

that Burton–Miller reformulation is effective for time

domain as well.7,8,11 Another method for the removal of the

instability is the CHIEF method.12,13 In the present study,

we apply the Burton–Miller technique for the elimination of

instabilities.

The rest of the paper is organized as follows. In Sec. II,

an integral relation for acoustic wave propagation is derived

for a constant mean flow in a general direction. Then, the

time domain boundary integral equation for scattering by

rigid bodies is derived in Sec. III. In Sec. IV, a

Burton–Miller type reformulation of time domain boundary

integral equation is presented and a discussion on the stabil-

ity of the new formulation is given in Sec. V. Numerical

methods for the time domain boundary integral equation are

discussed in Sec. VI. Stability of the current formulation is

demonstrated in Sec. VII by analyzing the eigenvalues of the

discretized system. An example of scattering by a convex

parabolic wing in the presence of a mean flow is presented

in Sec. VIII. Section IX contains the conclusions.

II. INTEGRAL REPRESENTATION OF ACOUSTIC
WAVES IN THE PRESENCE OF A UNIFORM MEAN
FLOW

The current problem is considered in the context of solv-

ing the wave equation in a moving medium exterior of

certain specified surface S, such as the scattering of sound

field by an object as shown in Fig. 1. Acoustic waves are

assumed to be disturbances of small amplitudes. Linear

acoustic problems are frequently formulated using a velocity

potential function /ðr; tÞ where the acoustic velocity u and

pressure p are related to / as follows:

u ¼ r/; p ¼ �q0

@/
@t
þ U � r/

� �
; (1)

where q0 is the mean density. With a constant mean flow U,

the acoustic disturbances are governed by the convective

wave equation.14 In the present study, we consider the solu-

tion of the following equation for the velocity potential:

@

@t
þ U � r

� �2

/� c2r2/ ¼ q r; tð Þ; (2)

with homogeneous initial conditions

/ r; 0ð Þ ¼ @/
@t

r; 0ð Þ ¼ 0; t ¼ 0: (3)

In the above, c is the speed of sound, U is the constant mean

velocity, and qðr; tÞ represents the known acoustic sources.

Furthermore, in addition to the radiation condition at the far

field, Eqs. (2) and (3) are to be supplemented with boundary

conditions on the scattering surface S. The suitable boundary

conditions to be applied on solid surfaces will be discussed

in Sec. III. It is well-known that the convective wave Eq. (2)

and the initial condition (3), as well as the boundary condi-

tions, can be reformulated into an integral equation. In the

literature, integral representation of sound waves in a mov-

ing flow is often derived by making use of generalized func-

tions in a setting of moving bodies in an otherwise

undisturbed medium.15–21 Here, we present a derivation

using a free-space Green’s function ~Gðr; t; r0; t0Þ that, for

convenience of discussion, is defined as follows:

@

@t
þ U � r

� �2

~G � c2r2 ~G ¼ d r � r0ð Þd t� t0ð Þ; (4)

with initial conditions

~G r; t; r0; t0ð Þ ¼ @
~G

@t
r; t; r0; t0ð Þ ¼ 0; t > t0; (5)

FIG. 1. A schematic showing the scattering body and mean flow. Scattering

surface is denoted by S and the solution domain exterior of S is denoted by

V. The surface normal vector n is taken to be outward from V and thus

inward toward the interior of the body.
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where r0 and t0 indicate, respectively, the source point and

initial time and r and t are the space-time variables of the

Green’s function.

Note that the time domain Green’s function ~Gðr; t; r0; t0Þ
defined above is nonzero for t 2 ð�1; t0�. The solution to

Eqs. (4) and (5) is well-known (see, e.g., Refs. 14, 17, and

23) and, for a mean flow of a general direction, can be writ-

ten as

~G r; t; r0; t0ð Þ ¼ G0

4pc2
d t0 � tþ b � r0 � rð Þ �

�R

ca2

� �
; (6)

where

G0 ¼
1

�R r; r0ð Þ ; and

�R r; r0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � r � r0ð Þ½ �2 þ a2jr � r0j2

q
; (7)

in which

M ¼ U

c
; a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2
p

; b ¼ U

c2 �U2
¼ U

c2a2
¼ M

ca2
;

U ¼ jUj; M ¼ jMj: (8)

By an operation of ~G�(2)�/� (4) and by integrating

over the volume V exterior of scattering surface S for space

and an interval ½0�; t0þ� for time t, it is straightforward to

show that we will get

ðt0þ

0�

ð
V

@

@t
~G
@/
@t
þU �r/

� �
�/

@ ~G

@t
þU �r ~G

� �" #(

þr� ~G
@/
@t
þU �r/

� �
�/

@ ~G

@t
þU �r ~G

� � !
U

" #

�c2r� ~Gr/�/r ~G
� �)

drdt

¼
ðt0þ

0�

ð
V

~Gq r; tð Þ�/ r; tð Þd r� r0ð Þd t� t0ð Þ
h i

drdt:

Integration of the first term in the above will be zero by

initial conditions thus defined for / and ~G. Then, upon using

the divergence theorem and the condition at infinity, we get

an expression for / at an arbitrary point r0 in V and time t0 as

follows:

/ r0; t0ð Þ ¼
ðt0þ

0�

ð
V

~Gq r; tð Þdrdt

þ c2

ðt0þ

0�

ð
S

~G
@/
@n
� /

@ ~G

@n

� �
drsdt

�c

ðt0þ

0�

ð
S

~G
@/
@t
þ U � r/

� ��

�/
@ ~G

@t
þ U � r ~G

� �#
Mndrsdt; (9)

where rs denotes points on surface S, and

Mn ¼ n �M ¼ n � U=c

is the normal component of the mean velocity Mach number

on surface point rs. Here, the unit normal vector n is

assumed to be outward from the solution domain. For the

exterior scattering problem considered in the present study,

the normal vector is then the one that is inward to the body

as noted in Fig. 1.

For convenience of discussion, we define a modified
normal derivative (denoted by an overbar) as

@

@�n
¼ @

@n
�Mn M � rð Þ: (10)

Then, Eq. (9) can be written as

/ r0; t0ð Þ ¼
ðt0þ

0

ð
V

~Gq r; tð Þdrdt

þ c2

ðt0þ

0

ð
S

~G
@/
@�n
� /

@ ~G

@�n

� �
drsdt

�c

ðt0þ

0

ð
S

~G
@/
@t
� /

@ ~G

@t

� �
Mndrsdt: (11)

Furthermore, if we introduce a combined normal deriva-
tive (denoted by a tilde) as

@

@~n
¼ @

@n
�Mn

c

@

@t
þ U � r

� �
¼ @

@�n
�Mn

c

@

@t
; (12)

we get another expression:

/ r0; t0ð Þ ¼
ðt0þ

0�

ð
V

~Gq r; tð Þdrdt

þ c2

ðt0þ

0�

ð
S

~G
@/
@~n
� /

@ ~G

@~n

� �
drsdt: (13)

Equations (9), (11), or (13) is the Kirchhoff integral rep-

resentation of the acoustic field in the presence of a uniform

mean flow. The integral relation can be further expressed as

integration of retarded values by utilizing ~G as given in Eq.

(6). In particular, note that we have

@ ~G

@~n
¼ 1

4pc2

@G0

@�n
d t0 � tþ b � r0 � rð Þ �

�R

ca2

� ��

þ
�R

ca2
d0 t0 � tþ b � r0 � rð Þ �

�R

ca2

� ��
; (14)

where G0 and �R are those defined in Eq. (7). Then Eq. (13)

can be written as

/ r0; t0ð Þ¼ 1

4pc2

ð
Vs

1
�R

q r; t0R
	 


drþ 1

4p

ð
S

G0

@/
@~n

rs; t
0
R

	 
�

�@G0

@�n
/ rs; t

0
R

	 

þ

�R

ca2

@/
@t

rs; t
0
R

	 
� ��
drs; (15)

where Vs denotes the region of acoustic sources and the

retarded time for t0 is defined as

t0R ¼ t0 þ b � r0 � rð Þ �
�R

ca2
: (16)
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The modified normal derivative for G0 is found to be the

following:

@G0

@�n
¼ � 1

�R
2

@ �R

@�n
¼ �a2 n � r � r0ð Þ

�R
3

: (17)

Equation (15) relates the solution at point r0 and time t0

to the direct contribution from source function q and a sur-

face contribution involving the retarded values of / and their

normal derivatives. As shown in Ref. 4, this form is equiva-

lent to previous such formulations appearing in the literature,

e.g., in Refs. 15 and 19, where the relationship had been

derived under the assumption of a mean flow that is aligned

with the x axis.

When both /ðrs; tÞ and ð@/=@~nÞðrs; tÞ on surface S are

known, /ðr0; t0Þ at any field point r0 can be computed by

using Eq. (15).

III. TIME DOMAIN BOUNDARY INTEGRAL EQUATION
FOR SCATTERING WITH SOLID SURFACES

A boundary integral equation (BIE) is formed by taking

the limit r0 ! r0s in the integral relation (15), where r0s is a

point on the boundary. The integral in Eq. (15) involving

@G0=@�n is weakly singular and, by using Eq. (A1) given in

Appendix A (assuming r0s is a smooth boundary collocation

point), it can be shown that

lim
r0!r0s

ð
S

@G0

@�n
rs; r

0ð Þ/ rs; t
0
R

	 

drs

¼
ð

S

@G0

@�n
rs; r

0
s

	 

/ rs; t

0
R

	 

drs � 2p/ r0s; t

0	 

: (18)

Applying this limit to Eq. (15), we get the following

time domain boundary integral equation (TDBIE):

2p/ r0s; t
0	 

�
ð

S

G0

@/
@~n

rs; t
0
R

	 

�@G0

@�n

�
/ rs; t

0
R

	 
 

þ
�R

ca2

@/
@t

rs; t
0
R

	 
��
drs¼Q r0s; t

0	 

; (19)

where Qðr0s; t0Þ denotes the contribution from the external

sources to the surface point r0s:

Q r0s; t
0	 

¼ 1

c2

ð
Vs

1
�R

q r; t0R
	 


dr: (20)

For sound scattering problems, /ðr0s; t0Þ on the scattering

surface S is to be determined by Eq. (19) when the boundary

condition for / on S is given. A customary boundary condi-

tion on rigid surfaces is that the normal component of the

acoustic velocity be zero, i.e., n � u ¼ 0, which, considering

Eq. (1), leads to

n � r/ ¼ @/
@n

rs; tð Þ ¼ 0; rs 2 S: (21)

Indeed, in all the previous literature on wave scattering

with a uniform mean flow (e.g., Refs. 1, 3–5, and 22–25), in

both the frequency domain and the time domain, boundary

conditions of type (21) have been assumed at solid wall

boundaries. To implement such a boundary condition, the

combined normal derivative appearing in Eq. (19) would then

be separated into the normal and tangential components as

@/
@~n
¼ 1�M2

n

	 
 @/
@n
�Mn

1

c

@/
@t
þMT � r/

� �
; (22)

where MT is the tangential component of the mean flow

Mach number M.

In the present paper, however, we propose an alternative

boundary condition to be used at solid surfaces when solving

TDBIE (19) in the presence of a uniform flow. The new

boundary condition is based on a consideration of the acous-

tic energy.

It can be shown that the convective wave Eq. (2) with-

out the source term has an associated energy equation:

@E

@t
þr � J ¼ 0; (23)

where

E ¼ 1

2

���r/
���2 þ 1

2c2

���D/
Dt

���2 �U � r/
c2

D/
Dt

;

J ¼ �@/
@t
r/� 1

c2

D/
Dt

U

� �
;

D

Dt
¼ @

@t
þU � r: (24)

Equation (23) can be validated directly by using the

expressions defined in Eq. (24). When substituted by the

acoustic velocity and pressure defined in Eq. (1), q0E is the

usual acoustic energy density in a uniform flow.26–28

By Eq. (24), it is immediately clear that the energy flux

at a surface of normal n is the following:

Jn ¼ J � n ¼ � @/
@t

@/
@n
�Mn

c

D/
Dt

� �
¼ � @/

@t

@/
@~n

: (25)

Clearly, on a surface where the normal component of

the mean velocity Mn is nonzero, i.e., where the surface is

not aligned with the mean flow, application of boundary con-

dition (21) will result in nonzero energy flux, i.e., Jn 6¼ 0

and, consequently, cause the surface to be acting like an

acoustic energy source or sink according to Eq. (25). This

will apparently lead to nonconservation of the total acoustic

energy.

Alternatively, the boundary condition on the solid sur-

face may be defined by the requirement that no energy flows

into or out of the surface. By Eq. (25) and to ensure energy

flux Jn¼ 0 on solid surfaces, we propose that the boundary

condition be modified such that the combined normal deriva-
tive of /, defined in Eq. (12), is zero:

@/
@~n

rs; tð Þ ¼
@/
@n
�Mn

c

D/
Dt
¼ 0; rs 2 S: (26)

The total acoustic energy will be conserved under this

new condition. Equation (26) will be referred to as the zero

energy flux (ZEF) boundary condition.
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Now by applying ZEF boundary condition Eq. (26) to

Eq. (19), a new formulation of the TDBIE for /ðr0s; t0Þ with

solid surfaces is found as follows:

2p/ r0s; t
0	 

þ
ð

S

@G0

@�n
/ rs; t

0
R

	 

þ

�R

ca2

@/
@t

rs; t
0
R

	 
� �
� drs ¼ Q r0s; t

0	 

: (27)

Equation (27) is one of the main results of the present

paper. It is a new formulation for the time domain boundary

integral equation for acoustic scattering by rigid surfaces in

a constant mean flow. It is different from those in the litera-

ture in several aspects. First, the boundary condition used for

Eq. (27) is one that is based on the acoustic energy flux con-

sideration instead of the acoustic normal velocity. The two

approaches differ on the part of the boundary where the

mean flow itself does not satisfy the slip boundary condition.

Second, the new equation is much simpler than those of the

previous formulations in which tangential derivatives of the

solution on the scattering surface are required to be kept as

part of the integral equation. Of course, boundary condition

(26) reduces to the usual one [Eq. (21)] wherever the mean

flow satisfies the solid wall boundary condition, i.e., Mn¼ 0.

IV. BURTON–MILLER TYPE REFORMULATION IN TIME
DOMAIN WITH A MEAN FLOW

Direct solution of boundary integral equations for exte-

rior scattering problems, however, is known to suffer numer-

ical instabilities. The instability is generally attributed to the

existence of resonance frequencies for the interior

domain.1,2,7–10 In time domain solutions, the instability is

more easily triggered because a continuous spectrum of fre-

quencies within the numerical resolution are present in com-

putation. This instability is one of the major difficulties that

have hindered the use of time domain integral equations.

Recently, the Burton–Miller type reformulation that has

been widely used for exterior scattering problems in the fre-

quency domain has shown to be effective in eliminating the

instability in the time domain as well.2,7,8 In Ref. 8, a theo-

retical justification has been provided for the extension of

the Burton–Miller formulation to the time domain for the

wave equation without flow. In this section, we derive the

Burton–Miller reformulation for the TDBIE (27). An analy-

sis on its stability similar to that in Ref. 8 is given in Sec. V.

For convenience of discussion, we define the following

time domain double layer potential:

D /½ � r0;t0ð Þ¼
ðt0þ

0

ð
S

@ ~G

@~n
rs;t;r

0;t0ð Þ/ rs;tð Þdrsdt

¼
ð

S

@G0

@�n
rs;r

0ð Þ / rs;t
0
R

	 

þ

�R

ca2

@/
@t

rs;t
0
R

	 
� �
drs:

(28)

The Burton–Miller type reformulation is carried out by

applying a linear combination of the time and certain normal

derivatives to the time domain integral equation. In earlier

studies of the Burton–Miller formulation for scattering with a

flow, the modified normal derivative (10) had been used.1,4

Here, we propose that the normal derivative to be used for

the Burton–Miller formulation be the combined normal
derivative defined in Eq. (12). Specifically, the Burton–Miller

reformulation is obtained by applying the following deriva-

tive operator to the boundary integral equation at surface

points r0s:

~a
@

@t0
þ ~bc

@

@~n0
; (29)

where ~a and ~b are constants and c is the speed of sound. That

is, operator (29) is applied to the integral Eq. (27) to give

~a
@

@t0
2p/ r0s; t

0	 

þD /½ � r0s; t

0	 
	 

þ ~bc

@

@~n0
4p/ r0; t0ð Þ þ D /½ � r0; t0ð Þ
	 
����

r0¼r0s

¼ ~a
@Q

@t0
r0s; t

0	 

þ ~bc

@Q

@~n0
r0s; t

0	 

: (30)

Applying again the ZEF boundary condition (26), Eq. (30) is

expanded to be the following:

~a 2p
@/
@t

r0s; t
0	 

þ
ð

S

@G0

@�n
rs;r

0ð Þ @/
@t

rs; t
0
R

	 
�"

þ
�R

ca2

@/
@t2

rs; t
0
R

	 
�
drs

�
þ ~bc

@

@~n0

ð
S

@G0

@�n
rs;r

0ð Þ
�

� / rs; t
0
R

	 

þ

�R

ca2

@/
@t

rs; t
0
R

	 
� �
drs

�
r0¼r0s

¼ ~a
@Q

@t0
r0s; t

0	 

þ ~bc

@Q

@~n0
r0s; t
0	 

: (31)

Note that an integral with a kernel ð@2G0=@�n0@�nÞðrs; r
0
sÞ is

hyper-singular when rs coincides with r0s. In particular, we

have

@2G0

@�n0@�n
rs;r

0
s

	 

¼ @

@�n0
�a2

n� rs�r0s
	 


�R
3

" #
¼ a2

�R
3

n�n0�Mn0Mn½ �

þ3a4
n� rs�r0s
	 
� �

n0 � r0s�rs

	 
� �
�R

5
: (32)

Thus, ð@2G0=@�n0@�nÞðrs; r
0
sÞ is of order Oð1=jrs � r0sj

3Þ as

rs ! r0s:
We consider the following regularization process for the

hyper-singular integral in Eq. (31) that adds and subtracts a

term involving the value at the collocation point /ðr0s; t0Þ:

@

@~n0

ð
S

@G0

@�n
rs;r

0
s

	 

/ rs;t

0
R

	 

þ

�R

ca2

@/
@t

rs;t
0
R

	 
� �
drs

" #

¼ @

@~n0

ð
S

@G0

@�n
rs;r

0
s

	 

/ rs;t

0
R

	 

�/ r0s;t

0	 

þ

�R

ca2

@/
@t

�"

� rs;t
0
R

	 
�
drs

�
þ/ r0s;t

0	 
 @
@~n0

ð
S

@G0

@�n
rs;r

0
s

	 

drs

� �
: (33)

The first integral is now integrable by Cauchy Principal

Value (Appendix B) and the second integral is zero accord-

ing to Eq. (A1) given in Appendix A. Upon carrying out the
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derivatives inside the first integral shown above, we get the

following Burton–Miller reformulation of the time domain

boundary integral equation (BM-TDBIE):

2p~a
@/ r0s;t

0	 

@t

þ ~a

ð
S

@G0

@�n

@/
@t

rs;t
0
R

	 
�

þ
�R

ca2

@2/
@t2

rs;t
0
R

	 
�
drs�

~b

ca4

ð
S

�R
3@G0

@�n0
@G0

@�n

@2/
@t2

rs;t
0
R

	 

drs

þ ~bc

ð
S

@2G0

@�n0@�n
/ rs;t

0
R

	 

�/ r0s;t

0	 

þ

�R

ca2

@/
@t

rs;t
0
R

	 
� �
drs

¼ ~a
@Q

@t0
r0s;t
0	 

þ ~bc

@Q

@~n0
r0s;t
0	 

: (34)

The proper values for the coefficients ~a and ~b will be

given in Sec. V where stability of Eq. (34) will be discussed.

V. STABILITY OF THE TIME DOMAIN BURTON–MILLER
FORMULATION IN THE PRESENCE OF A MEAN FLOW

Following closely the work in Ref. 8 for the case with-

out flow, we demonstrate in this section that the

Burton–Miller type reformulation presented in Sec. IV elimi-

nates the nontrivial solutions of the homogeneous integral

equation in the case with a flow as well.

Suppose that there is a nontrivial solution /0ðrs; tÞ to the

homogeneous formulation for Eq. (34) in which the source

term is set to zero. We will show in what follows that such a

solution is not possible. Consider the double layer potential

Eq. (28) extended to domains both exterior and interior of

surface S:

D /0½ � r0;t0ð Þ

¼
ð

S

@G0

@�n
rs;r

0ð Þ /0 rs;t
0
R

	 

þ

�R

ca2

@/0

@t
rs;t
0
R

	 
� �
drs

�
wþ; r0 2V; exterior of S

w0; r0 ¼r0s on S

w�; r0 2V�; interior of S:

8><
>:

We note that wþ and w� satisfy the homogeneous con-

vective wave equation in the exterior and interior domains of

S, respectively. It can also be shown that

lim
r0!r0s

wþ ¼ w0 � 2p/0ðr0s; t0Þ; (35)

lim
r0!r0s

w� ¼ w0 þ 2p/0ðr0s; t0Þ; (36)

lim
r0!r0s

@wþ

@~n0
¼ lim

r0!r0s

@w�

@~n0
: (37)

Equations (35) and (36) can be found by using the limits

given in Eq. (A1) in Appendix A, and Eq. (37) follows after

an application of the regularization process (33) to both sides

of the equation.

Now since /0ðrs; tÞ satisfies the homogeneous

Burton–Miller formulation for Eq. (30) where the right hand

side is zero, we have, at r0 ¼ r0s,

~a
@

@t0
2p/0 þ w0ð Þ þ ~bc

@

@~n0
4p/0 þ wþ
	 
����

r0s

¼ 0:

By the jump conditions (35)–(37) as well as the ZEF

boundary condition (26), the above yields

~a
@w�

@t0
þ ~bc

@w�

@~n0
¼ 0: (38)

On the other hand, since w� satisfies the convective

wave equation and by the energy Eq. (23) of the convective

wave equation, we have

@

@t

ð
V�

1

2
jrw�j2 þ 1

2c2

����Dw�

Dt

����
2

� U � rw�

c2

Dw�

Dt

" #
dr

¼
ð

V�
r � @w�

@t
rw� � 1

c2

Dw�

Dt
U

� �� �
dr;

which, with an application of the divergence theorem,

becomes

ð
V�

1

2
jrw�j2 þ 1

2c2

����Dw�

Dt

����
2

� U � rw�

c2

Dw�

Dt

" #
dr

¼ �
ðtþ

0

ð
S

@w�

@t

@w�

@~n
drsdt; (39)

where V� represents the volume interior of S. The minus

sign on the right hand side has been added due to the fact

that the normal derivative used in Eq. (39) is still the one

that is inward of the body surface. Note that, for subsonic

flows where jUj < c, the left hand side of Eq. (39) is

nonnegative:

1

2
jrw�j2 þ 1

2c2

����Dw�

Dt

����
2

� U � rw�

c2

Dw�

Dt

¼ 1

2
jrw�j � 1

c

����Dw�

Dt

����
 !2

þ 1

c
jrw�j

����Dw�

Dt

����
� U � rw�

c2

Dw�

Dt
� 0:

On the other hand, using Eq. (38), the right hand side of Eq.

(39) will be nonpositive:

�
ðtþ

0

ð
S

@w�

@t

@w�

@~n
drs ¼

1

c2

ðtþ

0

ð
S

~a
~bc

���� @w�

@t

����
2

drs 	 0;

provided that

~a
~b
< 0: (40)

The above implies that w� has to be a trivial solution,

i.e., w� � 0 under condition (40). A simple choice for ~a and
~b is ~a ¼ �~b ¼ 1.

As shown in Refs. 8–10 and mentioned in Sec. IV,

numerical instability associated with solving TDBIE is attrib-

uted to the existence of nontrivial resonant solutions. The
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analysis in this section shows that nontrivial solutions of the

homogeneous integral equation are eliminated by the

Burton–Miller reformulation of TDBIE (27). Hence, the

instability caused by the resonant solutions will be effectively

suppressed by using BM-TDBIE (34) under condition (40).

VI. TIME DOMAIN BOUNDARY ELEMENT METHOD

In this section and Sec. VII, we describe a numerical

solution of Eq. (34) by the time domain boundary element

method (TDBEM) and demonstrate numerical stability of

the new formulation.

Let surface S be discretized by surface elements Ej,

j¼ 1,2,…,Ne, where Ne is the total number of elements, and

the time be discretized by tn¼ nDt, where Dt is the time step.

The time domain numerical solution on the discretized sur-

face can be expanded as

/ðrs; tÞ ¼
XNt

n¼0

XNe

j¼1

un
j ujðrsÞwnðtÞ; (41)

where ujðrsÞ is the surface basis function for element Ej and

wn(t) is the temporal basis function for time node tn. Here Nt is

the total number of time steps. For simplicity, we consider only

constant elements where collocation node rj for Ej is located at

the center of the element and the nodal basis function is

ujðrsÞ¼
�

1; rs on element Ej that contains node rj

0; otherwise:

(42)

The temporal basis function is taken to be the third-

order shifted Lagrange basis polynomial that is commonly

used for time domain boundary element methods:11,29

wn tð Þ ¼ W
t� tn

Dt

� �
; (43)

where

W sð Þ ¼

1þ 11

6
sþ s2 þ 1

6
s3; �1 < s 	 0

1þ 1

2
s� s2 � 1

2
s3; 0 < s 	 1

1� 1

2
s� s2 þ 1

2
s3; 1 < s 	 2

1� 11

6
sþ s2 � 1

6
s3; 2 < s 	 3

0; other:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(44)

For example, at any point rs on element Ej and at any

off-nodal time t ¼ tn � gDt; 0 	 g < 1, the value for /ðrs; tÞ
is found by

/ðrs; tÞ ¼ ujðrsÞ un
j Wð�gÞ þ un�1

j Wð1� gÞ
h

þun�2
j Wð2� gÞ þ un�3

j Wð3� gÞ
i
: (45)

With the nodal spatial and temporal basis functions

defined above, expansion coefficient un
j in Eq. (41)

represents the value of / at the collocation node rj on ele-

ment Ej at time level tn. By substituting expansion Eq. (41)

into BM-TDBIE (34) and evaluating the equation at colloca-

tion points ri of all elements, i¼ 1,2,…,Ne, and at time level

tn, a march-on-in-time scheme (MOT) is obtained that can

be expressed in a matrix form as

B0un ¼ qn � B1un�1 � B2un�2 � � � � � BJun�J ; (46)

where uk denotes a vector that contains all the expansion coeffi-

cients fuk
j ; j ¼ 1; 2; :::;Neg at time level tk. The nonzero entries

for matrices Bk, k¼ 0,1,2,.,J, in Eq. (46) can be found to be

Bkf gij ¼ 2p~adijw
0
n�k tnð Þ þ ~a

ð
Ej

@G0

@�n

�
w0n�k tnRð Þ

þ
�R

ca2
w00n�k tn

Rð Þ
�

drsþ ~bcdijdk0Diþ ~bc

ð
Ej

@2G0

@�n0@�n

� wn�k tn
Rð Þ � dijwn�k tnð Þ þ

�R

ca2
w0n�k tn

Rð Þ
� �

drs

þ
~b

ca4

ð
Ej

�R
3 @G0

@�n0
@G0

@�n
w00n�k tnRð Þdrs; (47)

for i; j ¼ 1; 2; :::;Ne, where dij and dk0 are Kronecker delta

functions and a prime in the above denotes derivative with

respect to time, and

tn
R ¼ tn þ b � ri � rsð Þ �

�R rs; rið Þ
ca2

;

Di ¼ �
ð

S�Ei

@2G0

@�n0@�n
rs; rið Þdrs: (48)

It is easy to see that the entry fBkgij represents contri-

butions to the value at node ri and time tn from nodal

value of element Ej of time level tn�k. The integrals in Eq.

(47) are to be evaluated using high-order quadrature on

each element. For the computational results reported in

this paper, each element is mapped to a standard element

of ½�1; 1� � ½�1; 1� and Legendre–Gauss quadrature rule of

degree six is used for integration in each dimension.

Integration on the singular elements where i¼ j is detailed

in Appendix B.

The index J in Eq. (46) denotes the maximum time his-

tory of the solution required for Eq. (46) and is dependent on

the length of the scattering surface and the mean flow as

J ¼
�L

ca2Dt
þ 3; �L ¼ max

rs;r0s2S
�M � r0s � rs

	 

þ �R rs; r

0
s

	 
� �
:

(49)

Due to the limited temporal stencil width shown in

Eqs. (44) and (45), the B matrices are sparse. In particu-

lar, we note that matrix B0 in Eq. (46) is a very sparse

matrix and represents interactions within the same ele-

ment or between nearby nodes at the same time level tn.

B0 is also found to be diagonally dominant. Solutions for

un in Eq. (46) can be found efficiently by an iterative

method, such as the Jacobi iterative method, with rapid

convergence.11,30
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VII. EIGENVALUE STABILITY ANALYSIS OF THE NEW
INTEGRAL EQUATION

As mentioned in Secs. V and VI, direct numerical solu-

tion of the time domain boundary integral Eq. (27) is prone

to numerical instabilities. In Fig. 2, we first show an example

of scattering of a point source by a parabolic wing in a mean

flow of Mach number 0.5, M ¼ ð0:5; 0; 0Þ, to demonstrate

the elimination of numerical instability by the Burton–Miller

reformulation of TDBIE (27). The geometry of the scattering

surface is a convex parabolic wing and is defined as follows:

z¼0:1Lxð1�x2=L2
xÞ; �Lx	x	Lx; �Ly	y	Ly; (50)

where Lx ¼ Ly ¼ 0:5. In this example, the scattering surface

is discretized by 2316 quadrilateral elements. The source

function is a broadband point source defined as the

following:

qðr; tÞ ¼ e�rt2dðr � r0Þ; (51)

where r0 ¼ ð0; 0; 1Þ and r ¼ 1:42=ð6DtÞ2:
The time history of the solution on a surface collocation

point is plotted in Fig. 2 for the cases without and with

Burton–Miller reformulation. The top figure shows the result

obtained by directly solving the TDBIE (27). It is seen that

the solution initially behaves well but eventually becomes

unstable. On the other hand, the solution obtained by the

BM-TDBIE (34), shown in the bottom figure, remains

stable.

To further study the stability of the MOT scheme (46),

we conduct a numerical eigenvalue study of the discretized

system of equations.31 For numerical stability consider-

ations, we look for solutions of the form

un ¼ kne0 (52)

to the corresponding homogeneous system for Eq. (46). By

substituting Eq. (52) into Eq. (46) without the source term,

we obtain a polynomial eigenvalue problem

B0k
J þ B1k

J�1 þ B2k
J�2 þ � � � þ BJ�1kþ BJ

� �
e0 ¼ 0;

(53)

which can be cast into a generalized eigenvalue problem as

follows:

�B1 �B2 � � � �BJ�1 �BJ

I 0 � � � 0 0

0 I � � � 0 0

� � � � � � � � � � � � � � �
0 0 � � � 0 0

0 0 � � � I 0

2
6666664

3
7777775

eJ�1

eJ�2

..

.

..

.

e1

e0

2
666666664

3
777777775

¼ k

B0 0 0 � � � 0 0

0 I 0 � � � 0 0

0 0 I � � � 0 0

� � � � � � � � � � � � � � � � � �
0 0 0 � � � I 0

0 0 0 � � � 0 I

2
6666664

3
7777775

eJ�1

eJ�2

..

.

..

.

e1

e0

2
666666664

3
777777775
; (54)

where ej ¼ kje0. For numerical scheme (46) to be stable, it is

necessary that jkj 	 1 for all eigenvalues of Eq. (54). We note

that this is a necessary but not sufficient condition for stability

because the iteration matrix for Eq. (54) is not a normal matrix.32

Eigenvalue analyses of scattering by two geometric

shapes are presented in Table I. One of the geometries is the

parabolic wing as described previously in Eq. (50). The other

is a sphere of radius a¼ 0.5. The surface of the sphere is first

discretized by 512 unstructured triangular elements each of

which is then subdivided into three quadrilateral surface ele-

ments resulting in a total of 1536 surface elements. The

mean flow Mach number varies from 0 to 0.9. A total of

eight cases are considered in Table I.

FIG. 2. Time history of numerical

solution on a surface collocation

point, showing the elimination of

instability by Burton–Miller reformu-

lation of TDBIE. M ¼ ð0:5; 0; 0Þ. The

nondimensional time step is

cDt=Lx ¼ 0:04. Top: solution of Eq.

(27) without Burton–Miller reformu-

lation; bottom: solution by BM-

TDBIE Eq. (34).
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Eigenvalues of the generalized eigenvalue problem (54)

can be found via a sparse eigenvalue solver available in

MATLAB and Python, or by a matrix power iteration method

detailed in Appendix C. The values of the largest eigenvalue

for the eight cases are listed in Table I. For the

Burton–Miller formulation BM–TDBIE (34), all eigenvalues

are no greater than unity and stability is observed. In con-

trast, direct solution of Eq. (27) results in eigenvalues greater

than unity in all but two of the eight cases studied, indicating

that Eq. (27) without Burton–Miller reformulation can lead

to unstable solutions.

VIII. A NUMERICAL EXAMPLE

In this section, we show a numerical example of sound

scattering by a solid body in the presence of a uniform mean

flow. The geometry of the solid body is that of the parabolic

wing as defined in Eq. (50). The dimensions of the wing in

the current example are Lx ¼ 0:5; Ly ¼ 1:5. The incident

field is produced by a point source for the velocity potential

of the form (51), located at r0 ¼ ð0; 0; 10LxÞ, directly above

the center point of the wing. The mean flow is assumed to be

in the direction of the x axis, M ¼ ðM; 0; 0Þ, where M is the

flow Mach number. For the results shown in this example, a

total of 4364 quadrilateral elements are used for the discreti-

zation of the parabolic wing surface. The far field pressure

directivity is to be computed as illustrated in the schematics

of the computational domain in Fig. 3. The setup of the prob-

lem is the same as that considered in Ref. 3. Our computa-

tional results will be compared with those in Ref. 3.

The time domain boundary integral Eq. (34) is first

solved by the MOT scheme (46) as described in Sec. VI.

After the value of / on the scattering surface is found, the

solutions at far field points can be computed using Eq. (15)

with the ZEF boundary condition (26) applied. From the

velocity potential function /ðr; tÞ, the acoustic pressure

pðr; tÞ is then obtained by the relation given in Eq. (1), where

the temporal and spatial derivatives are computed by finite

difference approximations. Here, the sixth-order central dif-

ference is used. Finally, for any selected frequency x, the

frequency domain solution can be obtained from the time

domain results by either using the fast Fourier transform

algorithm or the following summation:

pðr;xÞ ¼Dt pðr; t1Þe�ixt1 þ pðr; t2Þe�ixt2 þ pðr; t3Þe�ixt3
�

þ� � �þ pðr; tNt
Þe�ixtNt

�
;

where Dt is the time step of the MOT scheme and Nt is the

total number of time steps.

To compare with the results presented in Ref. 3, far field

pressure directivity is calculated at three frequencies:

kLx¼ 1, 3, and 5, where k ¼ x=c is the wave-number. A

value of nondimensional time step cDt=Lx ¼ 0:05 is used in

the computation, which yields a resolution of approximately

25Dt per period of the highest frequency kLx¼ 5, sufficiently

fine for the third-order time basis function (44) used for the

example.29

As in Ref. 3, the directivity function DðhÞ is defined as

D hð Þ ¼ R̂

Lx

���� p r̂;xð Þ
p0 xð Þ

����; (55)

where the far field points are sampled on a circle of radius R̂
on the x – z plane across the mid-span of the parabolic wing:

r̂ ¼ ðR̂ cos h; 0; R̂ sin hÞ; (56)

with R̂ ¼ 105Lx as was used in Ref. 3. In Eq. (55), p0ðx) is a

reference value that is taken to be the pressure by the point

TABLE I. Maximum eigenvalue, jkjmax, computed using Eq. (54) for scat-

tering by a parabolic wing and by a sphere, for cases with and without

Burton–Miller (B–M) reformulation. Ne is the total number of elements and

M is the mean flow Mach number. The nondimensional time step is

cDt=L ¼ 0:04 for all the cases where the length scale L is Lx and radius a,

respectively, for the parabolic wing and the sphere.

Parabolic wing Sphere

jkjmax jkjmax

Ne M with B–M without B–M Ne M with B–M without B–M

Eq. (34) Eq. (27) Eq. (34) Eq. (27)

2316 0.0 1.000000 1.095949 1536 0.0 1.000000 1.007840

2316 0.3 1.000000 1.160628 1536 0.3 1.000000 1.000000

2316 0.6 1.000000 1.129116 1536 0.6 1.000000 0.999968

2316 0.9 1.000000 1.582909 1536 0.9 1.000000 1.003901

(a) (b)

FIG. 3. A schematic of the computa-

tional setup. Left: dimensions of the

parabolic wing and the surface mesh

formed by 4364 quadrilateral elements,

with Lx¼ 0.5, Ly¼ 1.5; Right: a dia-

gram of the scattering body, source

point, and the far field observation

point which is on the x – z plane and

defined by r̂ ¼ ðR̂ cos h; 0; R̂ sin hÞ and

R̂ ¼ 105Lx.

3632 J. Acoust. Soc. Am. 142 (6), December 2017 Hu et al.



source (without the solid body) at the center point of the

wing of coordinates (0, 0, 0).

Figure 4 plots the directivity function D(h) as polar

graphs, in lines with symbols, at the three frequencies for the

cases of Mach number M¼ 0 and M¼ 0.5. Effects of the

mean flow on sound scattering are clearly seen. Also shown

in Fig. 4 are the results from Ref. 3, in solid lines. We note

that, at the low frequency kLx¼ 1, very good agreements are

found for both the cases with and without flow. At higher

frequencies, the two solutions in the downward direction

(the shielded side below the scattering body) are also in very

good agreements, while the results in the upward direction

show some discrepancies. The discrepancies may be attrib-

uted to the fact that a much coarser mesh, only 46 elements

and 120 nodal points, was used for the results in Ref. 3, as

compared to 4364 elements used in the current computation.

We also note that the results from Ref. 3 were computed

using the usual normal velocity boundary condition (21).

The fact that the results from both computations largely

agree indicates that for the current example of a slender

geometry, where normal component of the mean flow Mn is

small, the difference in the boundary condition does not

have a large effect on the computational results. However, as

pointed out earlier, the computation is much simplified by

using the ZEF condition.

IX. CONCLUSIONS

In this paper, we have considered the boundary condi-

tion to be used in time domain boundary integral equation

FIG. 4. Far field total pressure directiv-

ity patterns on the x–z plane, for the

frequencies and Mach numbers as indi-

cated. The horizontal and vertical

directions represent, respectively, the x
and z directions as defined in Fig. 3.

Lines with symbols: Current calcula-

tion; Solid lines: Results from Ref. 3.
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analysis of acoustic scattering by solid bodies under a con-

stant mean flow assumption. After an examination of the

energy equation associated with the convective wave equa-

tion, it is proposed that an alternative boundary condition be

defined by the requirement that the energy flux be zero at

solid boundaries, instead of the usual boundary condition

that the normal acoustic velocity component be zero. A new

TDBIE is derived based on the proposed ZEF solid wall

boundary condition. The new formulation differs from those

found in the literature on the part of the boundary where the

constant mean flow itself does not satisfy the solid surface

boundary condition. In addition to conserving the acoustic

energy, another significant advantage of the new equation is

that it is considerably simpler than previous formulations. In

particular, tangential derivatives of the solution on the solid

surfaces are no longer required in the new formulation,

which greatly simplifies numerical implementation and

makes the separation of normal and tangential derivatives of

the solution unnecessary. Moreover, to stabilize the TDBIE,

a Burton–Miller reformulation is also derived. Numerical

solutions and eigenvalue analysis are presented that demon-

strate stability of the new formulation.
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APPENDIX A: LIMIT OF WEAKLY-SINGULAR
INTEGRAL

By Eqs. (17) and (32), it is easy show that the modified

normal derivatives ð@G0=@�nÞðrs; r
0
s) and ð@2G0=@�n0@�nÞðrs; r

0
sÞ

have a singularity of order Oð1=jrs � r0sjÞ and Oð1=jrs

�r0sÞj
3Þ; respectively, which makes their surface integrals

weakly singular and hyper-singular, respectively. In this appen-

dix, we state some useful results.

For surface integrals involving @G0=@�n, we have

1

4p

ð
S

@G0

@�n
rs;r

0ð Þdrs¼
0; r0 2V; exteriorof S
1

2
; r0 ¼ r0s 2 S

1; r0 2V�; interiorof S:

8>><
>>: (A1)

The first and third equations in Eq. (A1) can be obtained by

the fact that any constant can be a solution to the homoge-

neous convective wave equation with homogeneous normal

derivative on the boundary for the interior domain V�

enclosed by S. By substituting /¼ 1 into Eq. (15) and noting

the choice of the normal direction and the placement of r0,
the first and third equation in Eq. (A1) follow immediately.

The second integral in Eq. (A1) becomes weakly singu-

lar when r0 approaches a point on surface S. This particular

limit has been studied previous in the literature for a mean

flow that is aligned with the x-coordinate.19,33 Here, we

show the calculation for a general mean flow. Assuming r0s is

a smooth point on S, consider modifying surface S by a

spherical surface of radius e and centered at r0s as shown in

Fig. 5. The surface is assumed to be smooth at r0s. If we

denote the small hemispherical surface as S�, we have

lim
r0!r0s

ð
S

@G0

@�n
rs; r

0ð Þdrs ¼ lim
r0!r0s

ð
S�S�

@G0

@�n
rs; r

0ð Þdrs

þ lim
r0!r0s

ð
S�

@G0

@�n
rs; r

0ð Þdrs: (A2)

Note that, for the surface integral on S�, using Eq. (10), we

have

@G0

@�n
¼ �a2

n1 xs � x0s
	 


þ n2 ys � y0s
	 


þ n3 zs � z0s
	 


�R
3

¼ �a2 �

�R
3
:

By the symmetry of �R with respect to hemispheres S�
and S0�, the complementary hemisphere of S�, and by using a

local spherical coordinate system which is centered at r0s and

whose local z direction coincides with mean flow M, namely,

xs�x0s¼ �sin�cosh; ys�y0s¼ �sin� sinh, zs�z0s¼ � cos�, we

have

lim
r0!r0s

ð
S�

@G0

@�n
drs ¼ �a2

ð
S�

�

�R
3

drs ¼ �
a2

2

ð
S�þS0�

�

�R
3

drs

¼ � a2

2

ð2p

0

ðp

0

�3 sin �

�2 cos2� þ �2a2 sin2�ð Þ3=2
d�dh

¼ �pa2

ð1

�1

1

a2 þ 1� a2ð Þv2
	 
3=2

dv ¼ �2p:

The last integral above can be found by direct integra-

tion. The second equation in Eq. (A1) follows as �! 0 and

by noting that, for r0 2 V, the limit on the left hand side of

Eq. (A2) is zero.

FIG. 5. A schematic diagram for a hemisphere that caps a surface point r0s.
Note that the normal vector is in the direction outward from the region of

solution and into the body.
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APPENDIX B: EVALUATION OF HYPER-SINGULAR
INTEGRAL

We consider the numerical evaluation of the regularized

integral involving the double normal derivative of G0 in Eq.

(34) on a singular element Ei. Note that as rs ! r0s, we have

/ rs; t
0
R

	 

�/ r0s; t

0	 

þ

�R

ca2

@/
@t

rs; t
0
R

	 

¼r/ r0s; t

0	 

� rs � r0s
	 


þ b � r0s � rs

	 

� @/
@t

r0s; t
0	 

þO jrs � r0sj

2

 �

: (B1)

Let the surface element Ei be mapped to a local coordi-

nate ðn; gÞ 2 ½�1; 1� � ½�1; 1�, which is then in turn converted

into a local polar coordinate ðr; hÞ centered at the collocation

point r0s. Denote the integrand for the integral in ðr; h) as

F r;hð Þ¼ @2G0

@�n0@�n

� �
/ rs;t

0
R

	 

�/ r0s;t

0	 

þ

�R

ca2

@/
@t

rs;t
0
R

	 
� �
�jrn�rgj: (B2)

By Eq. (B1), Fðr; hÞ is of order Oð1=r2Þ as r ! 0. Let

the limit

lim
r!0

r2Fðr; hÞ ¼ GðhÞ: (B3)

It is easy to show that
Ð 2p

0
GðhÞdh ¼ 0. Then we have the fol-

lowing for the integral on surface element Ei:

lim
�!0

ð2p

0

ðr hð Þ

�

F r;hð Þrdrdh

¼ lim
�!0

ð2p

0

ðr hð Þ

�

r2F r;hð Þ �G hð Þ
r

þG hð Þ
r

� �
drdh

¼
ð2p

0

ðr hð Þ

0

r2F r;hð Þ �G hð Þ
r

drdh

þ lim
�!0

ð2p

0

G hð Þ lnr hð Þ � ln�½ �dh

¼
ð2p

0

ðr hð Þ

0

r2F r;hð Þ �G hð Þ
r

drdhþ
ð2p

0

G hð Þlnr hð Þdh:

The final integrals above can now be evaluated using

regular high-order numerical quadrature.

APPENDIX C: EIGENVALUE BY MATRIX POWER
ITERATION METHOD

We describe a matrix power iteration method for finding

the largest eigenvalue of Eq. (54). Let

A¼

�B�1
0 B1 �B�1

0 B2 � � � � � � �B�1
0 BJ�1 �B�1

0 BJ

I 0 � � � � � � 0 0

0 I � � � � � � 0 0

� � � � � � � � � � � � � � � � � �
0 0 � � � � � � 0 0

0 0 � � � � � � I 0

2
66666664

3
77777775
:

(C1)

Then, the power iteration method proceeds as follows.30

Given an arbitrary unit vector eð0Þ, and for k ¼ 1; 2; :::,
compute

vðkÞ ¼ Aeðk�1Þ; (C2)

e kð Þ ¼ v kð Þ

jjv kð Þjj2
; (C3)

and eigenvalue

kðkÞ ¼ eðkÞ½ �TAeðkÞ ¼ eðkÞ½ �Tvðkþ1Þ: (C4)

The iteration is stopped when jkðkÞ � kðk�1Þj=jkðkÞj < �,
where � is the tolerance and set to be 10�12. When the itera-

tion is convergent, Eq. (C4) converges to the largest eigen-

value of A.

Furthermore, if we denote

eðkÞ ¼

e
ðkÞ
J�1

e
ðkÞ
J�2

..

.

..

.

e
ðkÞ
1

e
ðkÞ
0

2
66666666664

3
77777777775
; vðkÞ ¼

v
ðkÞ
J�1

v
ðkÞ
J�2

..

.

..

.

v
ðkÞ
1

v
ðkÞ
0

2
66666666664

3
77777777775
; (C5)

then, Eq. (C2) can also be computed through the following

relations that save memory and storage:

v
ðkÞ
J�1 ¼ �B�1

0 B1e
ðk�1Þ
J�1 þ B2e

ðk�1Þ
J�2 þ � � �

h
þBJ�1e

ðk�1Þ
1 þ BJe

ðk�1Þ
0

i
;

v
ðkÞ
J�2 ¼ e

ðk�1Þ
J�1 ;…;v

ðkÞ
0 ¼ e

ðk�1Þ
1 : (C6)

We note that the iterative step shown in Eq. (C6) is the

same as the MOT iteration Eq. (46) without the source term.

Therefore, it can be carried out using the same computa-

tional scheme for Eq. (46).
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